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Magnetic Excitations in Uranium Dioxide

R. A. CowLEY AND G. DQLLING

Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada
(Received 28 August 1967)

The spin-wave dispersion relations have been measured in antiferromagnetic uranium dioxide by inelastic
neutron-scattering techniques. The triple-axis crystal spectrometer at the C5 facility of NRU was used
throughout in its constant-Q mode of operation. The dispersion relations were obtained for spin waves prop-
agating along the main symmetry directions at 9'K, and less complete measurements were made at higher
temperatures both above and below the Noel temperature. The theory of spin waves in UO& is developed and
various models are used in attempts to deduce the exchange and anisotropy parameters from the experi-
mental results. None of the models are completely satisfactory, because of the difhculties arising from the
multidomain character of the specimen, and from the strong interaction between the magnons and the
phonons. A theory of this interaction is also developed which gives quite reasonable agreement with exper-
iment.

I. INTRODUCTION

r 1HZ spin-wave dispersion relations of several ma-
l. terials have now been studied by means of inelastic

scattering of slow neutrons from single-crystal speci-
mens. For example, the acoustic and optic spin waves of
ferrimagnetic magnetite were determined by %atanabe
and Brockhouse' and the dispersion relation of anti-
ferromagnetic manganese Quoride was observed by
Okazaki, Turberfield, and Stevenson. ' This paper re-
ports similar measurements on antiferromagnetic ura-
nium dioxide. Uranium dioxide has the Quorite structure
in the paramagnetic phase. LEach ion is situated on a
face-centered cubic lattice, and if the uranium is taken
at the origin of the unit cell, the oxygen ions are at
(xr, 4, 4) u and (—-„', —4, —4) a.j The dispersions rela-
tions of the normal modes of the atomic vibrations in the
paramagnetic phase have been reported in an earlier
publication. ' Below 30.8'K, the material is antiferro-
magnetic. The magnetic structure' 6 is shown in Fig. 1.
The ferromagnetic sheets are perpendicular to a(001)
axis, and the magnetic moments are known to lie
within the sheets, although their exact direction is un-
known. No change in ionic structure at the transition
has as yet been reported.

The studies of the spin-wave dispersion relations of
magnetite and of manganese fluoride showed that the
magnetic interactions could be described accurately by
a model including the eGects of Heisenberg forces be-
tween near-neighbor ions and weak single-ion anisot-
ropy fields. Uranium dioxide, however, is almost cer-
tainly more complex, because in contrast to these other
eases, the magnetic moment does not arise wholly from
the spin of the electrons.

' B.N. Brockhouse and H. Watanabe, in Inelastic Scattering of
Neutrons in Solids and Liquids (International Atomic Energy
Agency, Vienna, 1963), Vol. II, p. 297.' A. Okazaki, K. C. Turber6eld, and R. W. H. Stevenson, Phys.
Letters 8, 9 (1964).

3 G. Dolling, A. D. B.Woods, and R. A. Cowley, Can, J. Phys.
431 1597 (1965).

4 D. G. Henshaw and B. N. Brockhouse, Bull. Am. Phys. Soc.
2, 9 (1957).' B.T. M. Willis and R.J.Taylor, Phys. Letters 17, 188 (1965).

6$. C. Frazer, G. Shirane, D. E. Cox, and C. E. Olsen, Phys.
Rev. 140, A1449 (1965).
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Measurements of the magnetic form factor' ' suggest
that the electronic configuration of the magnetic elec-
trons is (Sf)'. In the L scoupli-ng approximation, the
ground state is then 'H4, which is further perturbed
by the octahedral crystalline field. Point-charge calcu-
lations~ 8 suggest that the lowest level will be either a
I'~ singlet or a F~5' triplet. The magnetic properties of
UO2 can then be expected to be diferent from those
of magnetite and manganese fluoride, because the ions
do not have a spherically symmetric orbital configura-
tion. Furthermore, Blume' has suggested that the I'»

singlet is also of very low energy and is responsible for
the unusual abruptness of the transition. '

In the next section, the experiment and the results
are described. The magnetic excitations have been de-
termined along high symmetry directions at 9'K by
inelastic scattering of slow neutrons. A restricted set
of experiments is also described to determine the tem-
perature dependence of the magnetic excitations, espe-
cially in the region of the transition temperature. The
theory of spin waves in UO2 is described in Sec. III.
The main difhculty in interpreting the experimental
results in terms of the theory arises because of the
domain structure present in the specimen. Since UO2
is cubic in its paramagnetic phase, each of the three
(001) axes are equally likely to be perpendicular to
the ferromagnetic sheets.

The experiments show striking examples of the inter-
action between the phonons and the magnetic excita-
tions, as previously reported. ' This interaction con-
siderably complicates the analysis of the experimental
results, and it appears to be very difficult to obtain a
completely consistent and comprehensive picture of
the system. Analyses of the experimental results by
means of conventional spin-wave theory in two difer-
ent ways are described in Sec. IV, and compared with
Allen's theory of the spin waves in VO2."

7 C. A. Hutchinson and G. A. Candela, J. Chem. Phys. 27, 707
(1957).

H. U. Rahman and W. A. Runciman, J. Phys. Chem. Solids
27, 1833 (1966).' M. Blume, Phys. Rev, 141, 517 (1966).

G. Dolling and R. A. Cowley, Phys. Rev. Letters 16, 683
(1966).

» S. J. Allen, J. Appl. Phys. 38, 1479 (196/).
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A theory of the magnon-phonon interaction is intro-
duced in Sec. V and, with the aid of the models of the
phonon spectra deduced earlier, ' and of models deduced
for the magnon spectra, it is shown to give reasonable
agreement with experiment. The large magnon-phonon
interaction arises because the distortion of the lattice
due to the presence of a phonon is able to split the
triplet ground state. In magnetic materials with an
orbital singlet for a ground state, the crystalline field
is not able to split the ground state, and there is cor-
respondingly only a weak magnon-phonon interaction,
as found in magnetite and manganese fluoride, for
example.

Finally, in Sec. VI, the results of the previous sec-
tions are summarized, and a brief mention is made of
the mechanism of the antiferromagnetic phase transi-
tion in UO2. It is hoped to give a detailed account of
the theory of this transition, together with calculations
of the temperature dependence of the magnon spectrum
and related properties in a future publication.

II. EXPERIMENT

1. Experiment Details

The single-crystal specimen of uranium dioxide was
of cylindrical shape, approximately 2 cm in diameter
and 4 cm long, with a (111)axis along the length of the
cylinder. It was selected from a large quantity of fused
uranium dioxide and then heated with hyperstoichio-
metric uranium dioxide to a temperature of 1900'K
in a stream of hydrogen to improve the stoichiometry.
(We are indebted to R. L. Stoute for assistance in
preparing the specimen. ) The mosaic spread was 0.3'.
The initial set of experiments' were conducted with a
crystal kindly given to us by H. J. Anderson of General
Electric Company, Richland, Washington.

The specimen was oriented with the L110] axis ver-
tical, and placed in a metal helium cryostat. The crystal
was surrounded by a radiation shield which was sup-
ported from the helium bath above by a thin-walled
stainless steel spacer, and the whole arrangement was

MAGNETIC STRUCTURE OF UOp
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FIG. 2. Brillouin zones of paramagnetic and antiferromagnetic
UOg.

surrounded by a radiation shield in good thermal con-
tact with the helium bath. Temperatures close to the
Keel temperature were obtained with the aid of an
electrical heater placed near the specimen. The temper-
ature was monitored with a germanium resistance ther-
mometer and was stable to 0.1'K for periods as long
as a week.

The experiments were performed with the triple-axis
crystal spectrometer at the NRU reactor. " The con-
stant-Q technique was used throughout, with scattered
neutron energies 18.26 and 15.16 meV for most of the
experiments. The experiments consisted in recording
scattered neutron energy distributions for certain se-
lected momentum transfers. The center of each neutron
group then yields the frequency v( j) of the excitation
of preselected momentum q simply by application of
the equations of conservation of energy and momentum.

2. Reciprocal Lattice

The Brillouin zone of the magnetically ordered and
paramagnetic phases of uranium dioxide differ (see
Fig. 2). In Fig. 3, the reciprocal-lattice points and
Brillouin-zone boundaries in the (110) plane are shown

for both phases. In the antiferromagnetic phase, the
zones are complicated by the domain structure of the
crystal. The ferromagnetic sheets may be aligned per-
pendicular to any of the three mutually perpendicular
(001) axes, and the orientation of the Brillouin zone
divers for the different domains. The additional recip-
rocal-lattice points (h, k, l) associated with the I 001]
domains are given by

(a) 6+k even

(b) h+l odd.

I'rG. 1. Magnetic structure of Uog below 30.8'K. Only the ura-
nium ions are shown. Their magnetic moments lie in planes
parallel to the cube faces of the paramagnetic phase, but the
direction of these moments is othervgse unky, os,

Consequently, the only additional reciprocal-lattice
points to occur in the (110) plane arise from the

I 001] domains. These domains and also those of the
L100] and L010] domains are shown in Fig. 3.

In view of the diferent zones for the different do-
niains, there is the possibility of ambiguity in assigning
experimental results to particular domains. Conse-

"3.N. Brockhonse, in Inelastic Scattering of Neutrons in Soluls
and Liquids {International Atomic Energy Agency, Vienna,
1961),p. 118.
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quently, the measurements are presented using the
wave vectors of the paramagnetic Brillouin zone, and
are then not subject to such possible errors of inter-
pretation. The assignment of the measurements to dif-
ferent domains will be discussed in Sec. IV.

3. Experimental Results at 9'K

The experimental results at 9'K are shown in Fig. 4
for the low-frequency excitations propagating along
the high symmetry directions L00$j, D $07, (gal j, and

(i f 1—fj. The measurements along (gfj were actu-
ally performed at 4.6'K, but there was no detectable
change in frequency between 4.6 and 9'K. Some of
the frequencies at high symmetry points are listed in
Table I. Also shown in I'ig. 4 are the phonon-dispersion
curves, calculated using model III of Dolling et al.'
Since this model was obtained by fitting its parameters
to give agreement with 296'K results, they do not
yield the phonon-dispersion curves at 9'K accurately.
Nevertheless they do provide a fairly reliable guide to
the shape and approximate locations of the latter
curves.

It is of interest to compare the frequencies observed
here with those obtained by far-infrared techniques.
DanieP' has observed two absorption lines at frequen-
cies of 2.955 and 2.34, whereas, more recently, Allen"
and Aring and Sievers' have observed additional
weaker lines at 0.54 and 0.69, of which the former
is split by a magnetic Geld whereas the latter is prob-
ably an impurity level. These frequencies are in good
agreement with our frequencies at q=0 and q =
(0, 0, 1)a/2rr.

Unfortunately, in the case of uranium dioxide, it is

not possible to distinguish readily between the neutron
groups obtained from scattering by phonons and those
obtained from magnetic excitations, using unpolarized
neutron beams. It is very dificult to change the direc-
tion of magnetization, while the magnetic form factor
decreases so slowly with neutron momentum transfer
that the phonons cannot easily be observed in a region
where the magnetic intensity is negligible. The only
possible way of distinguishing them is by a careful
analysis of the intensities for diferent positions in
reciprocal space which have the same reduced wave
vectors. However the effects of double-scattering proc-
esses" may invalidate even this approach.

TABLE I. The frequency (10's cps) of some low-lying excitations
in Uou at 9'K. The wave vectors are in units of (2s./a).

Wave vector

(0, 0, 0)

Frequency

2.34&0.03
2.96~0.05

(0.5, 0.5, 0.5)

0.57+0.01
2.33~0.025
2.96~0.04

2.03&0.02
2.68&0.03

4. Temperature Dependence

The temperature dependence of some of the excita-
tions has also been observed near the magnetic tran-
sition temperature, which was determined to be 30.5+

"G. Dolling and A. D. B.Woods, in Thermal Neutron Scattering,
"M. R. Daniel, Phys. Letters 22, 131 (1966). edited by P. A. EgelstaG (Academic Press Inc. , New York, 1965),
"K.Aring and A. J. Sievers, J. Appl. Phys. 38, 1467 (1967). Chap. V, p. 206.
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FIG. 4. The measured dispersion
relation for excitations in UO2 at 9'K,
propagating along four directions in
the crystal. The dashed curves show
the phonon-dispersion curves appro-
priate to 296'K. The solid curves are
the result of a least-squares Gtting
procedure in which the experimental
measurements are assigned labels
according to model AB (see Sec. IVl.
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0.5'K for our specimen. In particular, measurements
were made of the lowest frequency branch in the
Lf' f 1—l] direction and of the modes with wave vec-
tors (0, 0, 0), (0, 0, 1) X2rr/a, and (0.9, 0.9, 0) &&2~/a.
In Fig. 5, some of the neutron groups obtained for
three of these modes are shown, while in Fig. 6 the
temperature dependence of the L'f' f'1 —f] branch of
the lowest frequency is shown. The experimental reso-
lution was insufhcient to separate, at every tempera-
ture, the magnetic Bragg reAection from the neutron

groups corresponding to the lowest frequency mode at
(0, 0, 1) &&27r/a. Nevertheless, it is clear that this
frequency approaches zero at the transition tempera-
ture, as shown in Fig. 7. The temperature dependence
of the intensity of a magnetic Bragg re6ection is also
shown for comparison.

The results shown in Fig. 5 demonstrate that as the
Neel temperature is approached the intensity of the
peaks decrease, the intensity of the background in-

creases, and the peak. positions decrease in frequency

NEUTRON GROUPS IN U 0
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FIG. 5. Neutron groups observed at various temperatures in experiments corresponding to two reduced wave vectors.
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TEMPERATURE DEPENDENCE OF MAGNONS

IN UO~
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ured by Jones et a/ ".when the phonon contribution
to the specific heat is calculated using the measured
phonon-dispersion relations. '

Blume's theory' of the magnetic properties of ura-
nium dioxide requires the I'& and F»' states to be of
very similar energy. We shall brieQy discuss the appli-
cability of this theory to U02 in Sec. VI, and until
then we assume the ground state to be the F25' triplet.

It is useful to introduce an e6'ective spin Hamilton-
ian with S=1 to describe the excitations within the
F2~ triplet. Within this manifold both the spin opera-
tors and orbital angular-momentum operators of the
U+ ion are proportional to the effective spin opera-
tors. The proportionality constants are 2.5(g—1) and
2.5(2 —g), respectively, where g is the Lande splitting
factor, which for U4+ is 0.8.

0$

I

O.I

I I I

P.2 0.5 0.4 0.5
REDUCED WAVE VECTOR COORDINATE

Pro. 6. Temperature dependence of the tf f 1—fg branch of
lowest frequency.

2. Spin-Wave Excitations

The spin waves are the excitations of the system
within the triplet ground state of the paramagnetic
phase. These can be described by the effective S=i
spin Hamiltonian, which, when the spin direction is
taken along $001], can be written as

H= —-,'Q J(ij)S, 8, 'E, Q (S')'—
2&j 2

—&s Z L(~")'—(~'")'] (3 1)

a little, as shown also in Table II. The decrease in
intensity is particularly apparent for the high-frequency
upper branches, but not so marked for the lower. A
rather surprising result is that there was little increase
in the width of the peaks below T~. This behavior is
to be compared with that of manganese fluoride, as
measured by Turberfield et al. ,

' for which the spin
waves become very broad well below the Neel tern-
perature.

where J(ij) is a Heisenberg exchange interaction be-
tween neighboring spins i and j, and E& and E2 are
single-ion anisotropy constants. The ferromagnetic
sheets are taken to be perpendicular to L100]. Strictly
speaking, the spin direction within the ferromagnetic
sheets is unknown, but the results for the frequencies
of the spin waves are not dependent on the spin direc-
tion, so we will assume the spins to lie along the $001]
crystallographic axis of the crystal. The neutron-scatter-

III. SPIN-WAVE THEORY

1. Electronic Structure of U4+

0.6— 4 A

T

The measurements of the magnetic form factor of
U+ ions by Willis and Taylor' and by Frazer et al.6

suggest that the configuration of the magnetic electrons
is (5f) s. In the actinide series, the spin-orbit coupling
is stronger than the crystal field, so the ground state
is a '84 configuration. In an octahedral cubic crystalline
field, this configuration is split into four states: a singlet
I'~, a doublet I'~2, and two triplets, 2~5' and I'25'. Point-
charge calculations show that the ground state may
be either the I'~ or F25' states. ~ The more careful calcula-
tions of Rahman and Runciman, however, suggest
that F25 is the ground state. This is in agreement with
the magnitude of the specific-heat anomaly as meas-

' K. C. Turberfield, A. Okazaki, and R. W. H, Stevenson, Proc.
Phys. Soc. (London) 89, 1 (1965).
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Pro. 7. Temperature dependence of the lowest frequency mode
of excitation at q=(0, 0, 1) (a/2s. ) compared with that of the
intensity of a magnetic Bragg reflection.

"W. M. Jones, J. Gordon, and K. A, Long, J. Chem. Phys. 20,
695 (1952),
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ing cross section of the spin waves is dependent on the
spin direction but, in a multidomain specimen, the re-
sults again become largely independent of the spin
direction.

The frequencies of the spin waves may be deduced
from the Hamiltonian (3.1) by use of the Holstein-
Primakoff transformation, as described by Walker, "
for example. The details are given in the Appendix.
For a wave vector q, there are two modes whose fre-
quencies are given by

&~r(e) =L~' —(&+C)']'"

—J,—Js+2J4) 0,

Jr—Jr+2Js)0,

Jr —Jr+2Js)0.

(3.4)

(3.5)

(3.6)

Molecular-field theory can be used to obtain expres-
sions for the transition temperature T~ and Curie tem-
perature 0. The results are

stability of the L100] structure against small changes
of the propagation vector of the structure leads to the
conditions

kJrT~= p(4Jr 4Js ——4Js+2J4+2Js+2Js) ) (3.7)

k~8 =p(4jr+4Js+4Js+2J4+2Js+2Js), (3.8)

and
h~s(g) =LA' —(C—8)']'~'. (3 2) and

p= sS(S+1).

3. N'eutron Scattering Cross Section
A =4SJrI 1—cos(rr|„) cos(si,)]—4SJs —4SJs

+2SJ4L1—cos(2s f,) ]+2SJsL1—cos(2s1 „)]
+25JsL1 cos (2rrt, )]+2ErS,

The cross section for scattering of neutrons by a
magnetic system is discussed in detail by de rennes. '0

In general, for a system with both orbital and spin
angular momentum, the result is very complex, ' how-
ever, for small momentum transfers Q, the cross sec-
tion is dependent on the total angular momentum of
the system J. If the energy transfer to the neutron is
A,Q, the differential-scattering cross section is

8= —SE2,

C= —4SJs cos(st', ) cos(mf„) —4SJs cos(rrt, ) cos(sl.),
(3.3)

where the reduced wave vector t'=ay/2s. Jr, Js and
J3 are the exchange constants between nearest neigh-
bors at (0, rs, rs), (rs, ~~, 0), and (-„0, rs), while J4 Js Js
are between next-nearest neighbors at (100), (010),
and (001), respectively.

The stabihty of the magnetic structure can be dis-
cussed as described by Bertaut. '~ If the spin direction
is along L001], then Er) I Es I. The condition for the

( I
&

I / I &o I ) I (pe'/2mc') gf(Q) I'

X gpI(nI QJiexp( —zQ r;) Im)]
nnL

xL(- I Z J."p('Q'. ) I -)yL.(~.-~.)/~-»,

(3 9)

The coeKcients A, 8, and C are given by the exchange
and anisotropy constants and depend on the wave where
vector q. For exchange interactions between nearest-
and next-nearest-neighbor ions, the expressions are

Tem erature
I) (0.5, 0.5, 2.5) (0.9, 0.9, 1.1) (1, 1, 0)

21

25.3

2.02+0.03
2.67~0.03

2.00+0.04
2.66+0.04

1.95+0.05
2.51&0.06

0.83~0.02

0.71~0.03

0.53+0.03

2.34~0.03
2.95+0.05

2.31~0.04
2.93+0.04

2.28+0.04
2.72&0.04

TABLE II. The temperature dependence of some of the mag-
netic modes in U02. The frequencies are in units of 10'2 cps and
wave vectors in units of (2m/a). The modes marked —were not
detected while those marked )& were not studied.

I (Q Si'exp( —iQ r;)) I'. (3.10)

where k and ko are the scattered and incident wave
vectors of the neutron, y is the neutron magnetic
moment in nuclear magnetons (y=1.91), f(Q) is the
form factor of the ions, and Ji is the component of J
perpendicular to Q. The initial state of the crystal is
labelled m and has probability p„and energy E„, and
the anal state is denoted by m. The operator Jx can
be written in terms of the effective S=1 operators
J&=~Si. Then, for magnon scattering, the difference
in energy between the initial and 6nal states is given
by 5~, (q), and the intensity is proportional to a re-
duced structure factor given by

27.0 1.75~0.05 0.46~0.03 2.26&0.06

29.5 1.50&0.07

"L.R. Walker, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , New York, 1963), Vol. I, p. 299.' E. I". Bertaut, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , New York, 1963), Vol. III, p. 150.

This expression can be evaluated with the help of the
Holstein-Primakoff transformation and the spin-wave
coordinates. In order to eliminate the dependence of
Si on the wave vector Q, let us consider the expression
(3.10) . It is fairly readily shown for our model of Uos

~ P. G. de Gennes, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , New York, 1963), Vol. III, p. 115.
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Taaz,E III. The transformations for converting the measured
wave vectors into the wave vectors appropriate for"a'single-
domain (X, Z) crystal,

Domain
Direction of measurement

[00'] [t.tO] [lt't'] [1'1 1-y]

(x, s)
(*,~)

(x, X)

(x, x)
(y x)

[00' ] [1l'0]
[Ot 0] [Ãt]
[00$] [($0]
[~00]

[0Ã]
[OK [t01]

[m]
[nt]
[m]
[m]
Lm]
Lm]

[1',~ —
1~t']

[l Ii-Ã-1 ]
[l.'l 1]

[r1 r—~]

that the only nonzero elements are given by

F,= (1/E) l (Q S exp( —iQ r;) ) l'

ancI
F„=(1/N) l (g S,"exp( —iQ r, ) ) l'.

When the transformation to Fourier coordinates (A3)
is used the result is

F.'=-:St~ ( —q)+~ '(q) ~l:~(—q)+~'(q)]I'
ancl

F.'=2Sl~i( —q) —~ '(q) +L~'(q) —~(—q)]l'
where the upper sign is to be taken when

r» (Q —q) =2~,

and the lower when

r» (Q —q) =s.,
where z]~ is the vector distance between spins 1 and 2.
Using Eq. (AS), we then find that the mode with
frequency a»(q) has structure factors (omitting popu-
lation factors)

F,+=
l S/25(ui(q) ]Le(8+C)a& —Pi]',

F„-=LS/25~&(q) ]Lo(&+C)~&+P&]',

p ——p+ —0 (3.11)

For the mode with frequency cv2(q), the results are

F.—=
l S/2ho)p(q) ]L8(8—C) n, —P,]',

Fw+ = l:S/2~2(q) ]Lt) (&—C) ~2+P2]'
p+ —p ——0 (3.12)

The expression for a;, P, , and 8(x) are given in Eq.
(A9):

a;= LA+A(o;(q) ]'~'

P;= [A —5(o;(q)]'~',

0(*) =x/
l
x l. (3.13)

The relative intensities of the scattering from the dif-
ferent modes are then given by

f(Q) '(F.'Q*'+F.'0') .

IV. INTERPRETATION OF EXPERIMENTAL
RESULTS

1. Domain Structure

The main difhculty in obtaining the exchange and
anisotropy constants of a model of UO2 from the experi-
Inental measurements described in Sec. II arises from
the niultidomain structure of the specimen. Thus the
measurements are the sum of the scattering from all
domains, and our first problem is then to assign the
results as far as possible to the appropriate domains.

There are six different orientations of the domains
in the specimen; these will be specified by the notation
(a, P), where n is the direction perpendicular to the
ferromagnetic sheets and P is the spin direction. The
domain whose spin waves were discussed in the previ-
ous section is then labelled (X, Z). Initially, we shall
convert the experimental results into results for a single
(X, Z) domain by changing the wave vectors appro-
priately. These transformations are given in Table III.
From this table, it is seen that experimental results
in the multidomain crystal, along L00l] for example,
enable us to deduce the dispersion relations along all
three cube axes of a single domain specimen. The
difhculty lies in the identification of the particular
direction for each branch of these results.

It would be of considerable assistance if this sepa-
ration could be performed with the aid of the neutron-
scattering structure factors. However, the requirement
that the wave-vector transfer be perpendicular to the
vector F of the structure factor (Sec. III) together
with the multidomain character of the specimen result
in the conclusion that all of the modes are observable
in an experiment in a (110) plane. Of course, some
have larger scattering intensities than others, but these
can only be compared with experiment once a model
has been found for the spin waves. Such a comparison
will be discussed later. These conclusions are in agree-
ment with the experimental observation that the in-
tensity of the scattering from the spin waves is largely
independent of the wave-vector transfer Q, used to
study any particular wave vector q in the Brillouin
zone, except when the branch clearly has a strong
phonon component.

Some indications of the domains can be obtained
from the symmetry of the experimental results. In the
L001] direction, the domains (Z, X) and (Z, F) have
a Brillouin-zone boundary at the point q= (0, 0, 0.5),
and the dispersion relations belonging to these domains
must consequently be symmetric about this point. This
is clearly not the case for the branch A& of Fig. 4. This
branch must then be assigned to the other domains,
and the frequency of 0.57 at q= (0, 0, 1.0) is a zone
boundary mode frequency for the L0$0] direction (or
equivalently the LOOBY] direction) of the (X, Z) do-
main. Similar conclusions can be derived about the
branches observed in the Lg0] direction.

A comparison of the results in the Lf g] and /f1 —i]'
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directions also enables us to identify the lowest branch
of the [i' f 1—1') direction A4 as belonging to the
[i f 1—t 7 or [t 1 f—i]directions in the (X, Z) domain.
This then confirms our assignment of a [00'] zone
boundary frequency.

Further difhculties are created by the magnon-phonon
interaction. " In order to deduce exchange and anisot-
ropy parameters for the spin waves, it would be con-
venient to turn o6 the magnon-phonon interaction,
and then to treat it later as a weak perturbation. It is
dificult to do this because it is not possible to decide
on the inQuence of the phonons on the magnons un-
ambiguously. In Fig. 4, the phonon lines calculated
on the basis of a model for the phonon spectra at
296'K' are shown. The results strongly suggest that
curve B& in the [00(] direction and curve As in the
[gi) direction are of strongly phononlike character.
This is borne out experimentally, because their inten-
sity, for a given q, is very different at diferent momen-
tum transfers Q, as expected for these phonon branches.
In the remainder of this section, we describe two at-
tempts to construct models using these various pieces
of information to sort out the experimental results.

odel A (Doubly Degenerate Dispersion Curves)

In view of the number of dispersion curves observed
experimentally for a total of six di6erent domains, and
the added complications arising from the interaction
with the phonons, we attempted to fit the experimental
results by a model (A) for which the anisotropy con-
stant E& is set to zero. The frequencies ~&(q)

andrews(q)

are then equal, giving rise to only one doubly degenerate
mode for each wave vector q.

The lrst difhculty this approach meets is to explain
the two frequencies at q =0. This is overcome by as-
suming that the upper frequency arises largely from
the interaction with the [00/7 zone boundary phonon
(the [00') zone boundary is a lattice point for the
(Z, X) and (Z, F') domains) and that the lower fre-
quency is the predominantly magnetic excitation. There
is only one curve, A&, which connects this frequency
to the lowest frequency of 0.57 (10" cps), and hence
the exchange interactions of the (X, Z) model must
have at least approximately cubic symmetry about
the X axis. Consequently, we take J&=J3 and J5——J6
so that the frequencies of modes propagating along
[00&7 and [0/0] are equal. The identification of the
modes observed, Fig. 4, along [00() is then, for an
(X, Z) domain:

Ar is a magnon [00') branch. Br is As phonon
branch for small f and a magnon [F00) branch at
large t Cr is of d,s.phonon character at both ends
and magnetic-like in the middle of the branch.

In the [g0) direction, the identification is the fol-
lowing:

As is a [1f0) magnon branch. Bs is a [Og] magnon

branch. C, is a transverse phonon branch (Z4)
which is polarized perpendicular to the (110) mir-
ror plane.

In the [gi] and [f' i 1—i] directions, the identifica-
tions are the following:

As is a As phonon mode at small i and of [f'g)
magnon character at large i. Bs and B4 are [ig)'
magnon-like for small i, and of As phonon charac-
ter for large i Cs .and C4 arise from the D' i 1—i]
phonon modes. Z2 denotes a branch of phonons
polarized perpendicular to the (110) mirror plane.
A4 is the [i i 1—i] magnon branch.

The parameters of the models were found by least-
squares fitting to the magnon part of the experimental
results. The parameters of two models, AA and BB,
are listed in Table IV, and the frequencies of one of
these AB compared with experiment in Fig. 4. The
agreement with the experimental results is reasonable,
although there are quite striking discrepancies in some
regions of reciprocal space particularly near q=(0.5,
0.5, 0).

The main difhculties of this type of theory are the
following:

(1) Allen" has shown that the q=0 modes are not
split in the infrared spectrum when a magnetic field is
applied, and hence concludes they are not doubly de-
generate. This contradicts the model.

(2) Many of the branches observed in the neutron-
scattering experiments are identified as phonons polar-
ized perpendicular to the (110) plane. Cs, Cs, and C4
are examples of this. The small i region of Cr is ob-
served in experiments where the phonon-scattering cross
section is zero. Although there will be some intensity
from the interaction with the magnons, it seems un-
likelv that this would be large enough to be consistent
with the experimental results.

(3) In the [00$] direction, the measured curves Br
and Cy show a magnon-phonon interaction. However,
since the magnon curve there is present in only two
of the six domains, an undistorted phonon spectrum
would be expected in the other four domains. The ex-
perimental results, which are shown in Ref. 10, showed
no sign of an undisturbed phonon branch.

(4) Model AA violates the stability criteria (3.5)
and (3.6), while the molecular-field estimates of T~
and 0 are 37&5 and —125+5, whereas the experimental
values are 30.8 and —200'K." Model AB, on the
other hand, satisfies all the stability criteria but gives
values of T~ and 0 of 8.5&10 and —96&10'K, respec-
tively.

3. Model B (Nondegenerate Dispersion Curves)

Since Allen" has shown that the magnetic modes are
probably nondegenerate at q =0, a more satisfactory

sr A. Arrott and J. E. Goldjnan, Phys. Rev. 108, 948 (1957).
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model than model A must take this into account.
This is done by allowing the second anisotropy pa-
rameter E2 to be nonzero. There are then two dispersion
curves for each domain, giving rise to a very large
number of branches in all. The first difhculty in the
use of a model of this type is, then, to reduce the num-
ber of dispersion curves as far as possible. As will be
discussed below, it is found that in each domain one
of the branches had a considerably larger structure
factor than the other in the (11.0) plane. In view of
this, the experimental results were fitted as far as
possible to those modes with a large structure factor,
and the other modes were given much less statistical
weight in the fitting process.

The third difhculty of model A can only be overcome
if all the domains have branches with a frequency of
about 2.40&&10" cps at the point g= (0, 0, 1.0) . This
inevitably leads to the use of a model for which all the
exchange constants are different.

The assignment of the large structure factor branches
to the (X, Z) domain is then as follows: in the ($00$
direction from the low t region of A, (Fig. 4) to the
(=1 region of C~, in the t 00fj direction from the low
f' region of A~ to the i = 1 region of B~, and in the LOt 0)
direction A&. The LOil] direction modes are given by
C2, the ['g0j direction by 82, and the $|0$] direction
by A2. The large structure factor mode in the D'g)
direction is given by the low f' region of Bs and large f'

region of Aq, and in the D t 1 i j dire—ction by the low f
region of 84 and the Lt'1 —g] direction by A4. The low i
regions of the modes C~, C2, and C3 are then not ob-
served because they belong to the weak structure factor
modes, and the large l end of Ca and C4 are TA phonon
modes. The results of fitting the parameters of the
model to this assignment of the branches is shown in
Table IV. One of these models, SB, is compared with
the experimental results in Fig. 8.

The fitting errors for the 8 models in the table are
not comparable with those of the A models, because
of the changes in the assignments of the modes. In
Fig. 8, the modes with large structure factors are shown

by thick lines; those with weak structure factors by
thin lines; and the phonons by dashed lines. The mag-
netic branches are labelled to give the domains. The
agreement with experiment shown in Fig. 8 is reason-
able. The main discrepancies occur in the $00(] direc-
tion, where a strong mode from the (X, Z) and (F, Z)
domains was not observed in the experiments, and in
the region J= (0.5, 0.5, 0), where the calculated modes
have lower frequencies than the experimental ones.

These models do not give good agreement for the
transition temperature and Curie temperature. For
models BA, 33, BC, respectively, T~ is —2.1, —j..3,
and —2.7'K, while 0 is —10.7, —26, and —i8'K. The
stability criteria (3.5) are violated by all these models,
but they satisfy the other criteria.

The reduced neutron-scattering cross sections (3.11)
and (3,12) have been calculated, and the results for
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FIG. 8. The measured dispersion
curves at O'K and room-temperature
phonon-dispersion curves, as shown in
Fig. 4. The solid curves are in this
case obtained from an analysis accord-
ing to model BB (see Sec. IV).
Labels A, 8, and C indicate the
assignment of branches to domain
types a=X, F, and S, respectively.
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FIG. 9. Reduced structure factors F governing the neutron
cross sections for one-magnon scattering processes, as computed
from model BB.The scale is arbitrary, but note the scale change at
10 units. The calculated magnon frequency (in units of 10"cps)
appropriate to each branch is shown at zone boundaries and zone
center. The dotted lines correspond to F components and solid
lines to F+ components.

model BB are shown in Fig. 9. The intensities can be
deduced from these curves by considering the compo-
nent of F perpendicular to the wave-vector transfer Q.
Unfortunately, a detailed comparison of these calcula-
tions with experiment is not possible, because it is by

no means certain that the specimen had a completely
random arrangement of domains, and the relative in-
t nsities are clearly dependent on this arrangement.
There is also the possibility of spurious double-scatter-
ing processes. "Finally, the spin direction in the ferro-
magnetic sheets is unknown. In Sec. III, we assumed
it to be along a cube axis; and although the frequencies
are not altered if it were along a diferent direction,
the cross sections would be. In spite of all these uncer-
tainties, many of the calculated intensities are in quali-
tative agreement with experiment.

Allen" has used a model with one anisotropy con-
stant but has then split the degeneracy of the modes
by using an anisotropic exchange interaction between
nearest neighbors. There are two parameters describing
the exchange and one for the anisotropy; he obtains
these from his infrared measurements. This model over-
comes difhculty j. of our models of type A, but still
leaves difhculties 2 and 3.

None of the models are completely satisfactory, pos-
sibly because the exchange interactions are far more
complex than assumed here, or because our assignment
of the experimental results is incorrect. However, more
complicated its were attempted in which the nearest-
neighbor exchange constants were assumed to be aniso-
tropic and specified by parameters J„,J», and J„.
No improvement in the 6t was obtained with these
models. Undoubtedly experiments on a single domain
crystal of UO2 would be of considerable assistance in
clarifying these points.

V. MAGNON-PHONON INTERACTION

1. Origin of the Magnon-Phonon Interaction

The experimental results described in Sec. II and
earlier" show that in uranium dioxide there is a strong
interaction between the magnetic and phonon excita-
tions. This was unexpected, because no structure change
has been observed at the antiferromagnetic phase tran-
sition, and also because measurements on other anti-
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ferromagnetic materials, MnF2, RbMnF3, ' KMnF3, '
and CoF2" have failed to show any magnon-phonon
interaction. This is in spite of the fact that the magnetic
electrons are situated at the edge of the ions in the 3d
shell, but are buried well within the ion in the 5f shell
of uranium.

The origin of these eGects may be that in Mn++
ions the electronic con6guration is an s state and is
largely unaffected by the crystalline field. Consequently,
the motion of the ions will not split the ground state
but only modify the exchange parameters. These modi-
fications result in contributions to the Hamiltonian
proportional to S, S,~N~(lk), which gives rise only to
comparatively small lifetimes and shifts, as described
by Upadhyaya and Sinha. " [u(lk) is the displacement
of the kth atom in lth unit cell.) In CoI'p, the ground
state is a Krarners doublet which also cannot be split
by any changes in the crystalline field.

On the other hand, in UO2, the ground state is a
triplet which can be split by a change in the crystalline
field due to the motion of the ions. Consequently,
there will be terms in the Hamiltonian proportional
to S, Ns(lk) which give rise to the much larger effects
of the type observed in UO&. These considerations sug-
gest that a large magnon-phonon interaction will occur
whenever the ground state may be split by the crystal-
line 6eld resulting from the motion of the ions.

The theory of the interaction between magnons and
phonons at short wavelengths has been discussed by
Lord, " starting from a phenomenological form for the
magnetoelastic part of the Hamiltonian. We shall de-
duce a form from first principles. The displacement of
an ion of type k in the lth unit cell, u(lk), gives rise
to an electric dipole which sets up an electric 6eld at
all the magnetic ions. The potential at a distance R
from a dipole p(lk) is

V(lk) =p(lk) R/ i
R i'.

If the equilibrium distance between the ion (lk) and a
magnetic ion is Ro, the field over the magnetic ion can
be obtained by writing R =Rp+v, where v is the vector
specifying the unpaired electron coordinates within the
magnetic ion. Expanding the potential to 6rst order
in v leads to

&(lk) =[p(lk) v/ I
Ro I'0

—{3[p(lk).Rp)(Rp v)/ I Rp I' f. (4.1)

This term is linear in v and consequently does not
contribute within any one configuration of the ion and
can only mix diGerent con6gurations. ~~ Its contribution

2'C. G. Windsor and R. W. H. Stevenson, Proc. Phys. Soc.
(London) 8'7, 501 (1966).

2'S. J. Pickart, M. F. Collins, and C. G. Windsor, J. Appl.
Phys. 3V, 1054 (1966).

24 R. A. Cowley, P. C. Martel, and R. W. H. Stevenson, Phys.
Rev, Letters 18, 162 (1967).

"U. N. Upadhyaya and K. P. Sinha, Phys. Rev. 130, 939
(1963).

"A. E. Lord (private communication).
'7 W. Low, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc., New York, 1960), Suppl. 2.

is probably small, therefore. The second-order term is

I'(lk) = —{3[p(lk) vl(Ro v)/ I
Ro I' f

—l{[p(l» Rol(v v)/IR. I' f

+-'—,'{[p(lk) Rog(Ro. v)'/
I

Ro i' f. (4.2)

Within any manifold with J constant, the vector v can
be replaced by its operator equivalent to yield an
interaction given by

I'=s~~(~') 2 (1/ I Ro(lk) I')
lk

&&([p(lk) Rp(lk)]{5[J Rp(lk)]'/
I

Rp(lk) I'—J Jf
—2[p(lk) .J3[Rp(lk) .J3) (4 3)

where aJ is a constant given by Low" and (r') the
average radius squared of the magnetic electronic dis-
tribution. This expression then enables us to evaluate
the magnon-phonon interaction explicitly.

2. Magnon-Phonon Interaction in UO2

In the case of UO2, it is possible to simplify further
the expression for the magnetoelastic Hamiltonian (4.3)
by replacing the coordinate J with the effective spin S
in the ground-state triplet. Furthermore, we shall re-
strict the interaction for each magnetic ion to nearest-
neighbor oxygen ions. This approximation is neither
necessary nor very satisfactory, since the potential
(4.2) falls off only as 1/R4, but it is probably at least
of semiquantitative value and greatly decreases the
amount of numerical work needed. The nearest-neigh-
bor oxygen ions are placed at (e„e„, e,)a/4, where
e, „,,=+1. The electric dipole p(lk) =Zqu(lk), where
ZI, is the effective charge of the ion, and hence the
interaction with one particular oxygen ion is

Eu(lk) ~ e(lk) {g[S e(lk)]' —S S f

—2E['u(lk) ~ S)[e(lk) Sj, (4.4)

where r. (lk) is the vector e„e„,e„and

E= sv3[rrg/ [ Rp(lk) —I'j(r')(2 —g)'e'Zg, .

In the ordered structure, the spin is aligned along
S', and expression (4.4) can be evaluated for this
static structure. The result is

Eu(lk) e(lk) [-', (S')'j—2E(S')'a(lk) e,(lk). (4.5)

In order to evaluate the total force on the oxygen ion
(lk) due to the ordering of the spins, this expression
must be summed over all the magnetic neighbors of
(lk). These are a(lk) = (1, 1, 1) and ( —1, —1, 1), with
S' negative. The resultant total force on the oxygen
ions is then zero, in agreement with the failure to ob-
serve any change of the structure at the phase transi-
tion by diGraction techniques.

The most interesting terms from Eq. (4.4) are those
that involve a single spin-wave operator. These are
obtained by the formalism of Sec. III from those which
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contain a single S' in them, namely,

V (lk) =-',ES*e,(lk) {4u,(lk) S +4u, (lk) S"

+10e„(lk)e, (lk) I u (lk) S&+u„(lk) S')}

+i'rES'u. (ik) Le, (lk) S +e„(lk)S"]. (4.6)

The magnetoelastic Hamiltonian is then obtained by
summing this expression over all ions (lk) for the
nearest-neighbor oxygen ions. It is easily shown that
this expression then satisfies the condition of transla-
tional invariance because

Qe (lk) =0.
Lk

The calculation is completed by transforming to mag-
non and phonon coordinates. The former are described
in Sec. III, and the latter are given by

u(m) = Z La/2lVor (q j) )'~'e(k
I qj)

XexpLiq R(N))A(q j), (4 7)

where &„(qj) is the (qj) phonon frequency an«(k
I qg)

the eigenvector of the kth ion in that mode. The phonon
creation and destruction operators are written A(q j) =
at(q j)—a( —qj). When Eq. (4.7) is substituted into
(4.6) and the resultant summed over all the magnetic
ions k, we obtain terms

Z V(q jj') A(q j)B(qj'), (4 g)

where for magnon mode (1)

B(q1) =f ( —q) —~(B+C)f '(q),
and

V(q j1)=-,'Q ES(S/5) '~'I „(qj) (q) )—'~'
1~k~

X {e.(l'k') L2e„(k'
I q j)+Se,(l'k') e„(l'k ) e*(k I q j))

+2e„(i'k') e,(k'
I q j)} expLiq E(l'k', Ok) ]

XI,+0(B+c)p,).
Similarly, for magnon mode (2),

2l(q2) =t '(q)0(B—C) —& (—q)

V(q j2) = 3 Z ES(S/&)'"L~.(q j)~2(q) ) '"
l fkl

X{e,(l'k')
I

2e (O'
I qj)+5e, (Pk')e„(l'k')e„(k'

I q j))
+2e, (l'k') e, (k'

I qj) } expI iq R(l'k', Ok) )
XL,—0(B—c)P,].

The operators b and coefficients n, P, 8, etc., are
defined in Sec. III. These expressions then enable us
to reduce the combined magnon-phonon frequencies in
terms of the coefBcients E. The easiest procedure is
to write the equations of motion for the operators
b( —q), bt(q), a(—qj), and at(q j) in a manner similar
to that used to deduce the magnon frequencies in the
appendix. The two frequencies are then given for mag-

if V(qjj') «.(qj).
2V(qjj') (4.9)

&umerical Calculations

numerical calculations of the magnon-phonon inter-
action coefficients have been made using this model
which considers the interaction of the magnetic elec-
trons with the nearest-neighbor rigid oxygen ions. The
models for the magnon spectra described above were
used for the magnon variables and model III of Boiling
et a/. ' for the phonon modes. The parameter (r') of the
electron distribution of the magnetic electrons was ob-
tained from the calculations of Satten et al.'

The results show that the magnon-phonon interaction
is largest near the LOO|) and D f'f) zone boundaries
and with the transverse phonon modes. This is in
good agreement with the experiment results. The inter-
action with the longitudinal modes is calculated to be
weaker than with the transverse modes, except in the
I if'0) direction. The complete calculations of the cou-
pled magnon-phonon dispersion relation have not been
made but a comparison can be made for the two clear
examples of the interaction observed experimentally:
In the Q'g) direction, the splitting between the modes
is observed to be 0.22+0.05, and that calculated is
0.28 for model BB. In the

I 001) direction, the situa-
tion is more complicated because of the large number
pf different interaction coefficients for the different
dprnains. However, the calculations yield on average
0.26, while experimentally the splitting is 0.4+0.05.
These results show quite a remarkable agreement be-
tween experiment and calculation for such a simple
rnpdel. More refined calculations would need to take
account of more distant neighbors, screening of the 5f
electrons by outer electrons, the effective charge of the
pxygen ions, covalent bonding, and many of the other
imperfections in this model. Clearly, the results do
shpw, however, that the mechanism of the interaction
proposed here is essentially correct, .

The calculations also show an interaction between
the (Z, X) domain magnons and phonons at the L001')
zone boundary. Since this is a magnetic lattice point,
it gives rise to a mechanism by which the transverse
acoustic mode is observable in the infrared spectrum,
as found by Allen. "
"R. A. Sat ten, C. L. Schrieber, and E.Y. Wong, J.Chem. Phys.

42, 162 (1965).

non mode j' and phonon mode j by the equation

~'=5(~u'+~~') ~ 2 (~as+~„)L(~~—~„)'+4(U/ti) ']'",
where

~~=~J (q)

~.=~.(qj),
and

V= V (qjj ').
The splitting between two modes that are degenerate

in the absence of the interaction is then
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Similar calculations have been made for the type A

magnon models, AA and AB. In these cases, the pho-
non interaction splits the degeneracy of the magnon
branches giving rise to two branches in each direction.
This arises because the phonon introduces a crystal-
Geld distortion of low symmetry. Although the actual
numerical results differ from those of model BB, the
results are very similar in magnitude.

VI. SUMMARY

The dispersion relation for magnetic excitations in
antiferromagnetic uranium dioxide has been measured
at very low temperatures by neutron inelastic scatter-
ing methods; the temperature dependence of selected
modes has also been investigated, particularly near the
Keel temperature. The results and subsequent theoret-
ical analysis show that the magnetic interactions in

UO2 are considerably more complex than those in sev-
eral other antiferromagnets whose magnon spectra have
been studied, and also that there is a strong magnon-

phonon interaction which arises because the triplet
ground state of the U'+ ion may be split by distortions
of the crystal Geld produced by phonons.

A few comments regarding the validity of Blume's
theory' for UO2 may be useful at this point. An im-

portant postulate of this theory is that in the para-
magnetic phase the I"& singlet lies just below the I'»'

triplet. In the antiferromagnetic phase, the triplet is
split by the internal Geld generated by the magnetic
order, and the lowest of these three states is then
below the I'~ level. The first-order character of the
transition is readily visualized as the thermal excita-
tion of electrons into the nonmagnetic F~ level that
reduces the triplet splitting, thus increasing the I'&

population, and so on. The two most prominent lines
in the infrared absorption spectra are then interpreted
as triplet-singlet transitions, " even though the transi-
tion probabilities for such transitions would be ex-

pected to be very low." The corresponding neutron

groups observed in our experiments were similarly much
more intense than would be expected on this basis.
The large scattering cross section of the low-frequency
mode (0.57&& 10" cps) which exhibits a strong temper-
ature dependence near the transition point would ap-
pear to be inconsistent with Blume's theory.

In this paper, we have adopted the approach of
Rahman and Runciman, that the I'~ singlet level is
so far above the I"»' triplet as to play a negligible part
in the low-lying excitations of the system. This ap-
proach seems adequate for a description of the excita-
tions, including the unusually large magnon-phonon
interaction.

The transition in UO2 is unusual, ho~ever; it appears
to be Grst order, ' it is associated with an anomaly in
the elastic constants, "and the temperature dependence
of the magnons is surprisingly weak. These properties

» 0. Q. Brandt and C. T. Walker, Phys. Rev. Letters 18, 11
(1967).

are believed. to arise from the strong magnon-phonon
coupling in UO2.

The lowest triplet state of the uranium ions will
tend to be unstable at low temperatures against a dis-
tortion of the lattice which splits the degeneracy. The
process is that involved in a Jahn-Teller instability. 't
This distortion is undoubtedly very small but could
give rise to the unusually large anisotropy constants
found in the magnon spectra. It is also comparatively
easy to understand the behavior of the elastic constants
on this model. A distortion of the structure splits the
degeneracy of the triplet, which at low temperature
reduces the energy required to produce the distortion
until a spontaneous distortion sets in. The phase transi-
tion is then a cooperative Jahn-Teller distortion involv-
ing not only the Jahn-Teller effect but also the coupling
between the magnetic moments. It seems likely that
such an approach is capable of explaining the abrupt
nature of the phase transition and also the tempera-
ture dependence of the magnetic excitations. It is hoped
to discuss these matters further in a later publication.
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APPENDIX

Antiferromagnetic Syin-Wave Theory for UO2

The Hamiltonian for the spin waves in UO2 is given
by Eq. (3.1) as

H = —Q J(ij)S, S; K'& Q—(S *)'
~ ~

—K~ Z E(S'*)'—(S'")'j (A1)

The spin direction is taken to be along L001j, and the
ferromagnetic sheets are perpendicular to $100]. It. is
convenient to introduce new local axes with the spin
direction along (+z). For site 1, these axes coincide
with the crystal axes, but for site 2, the transforma-
tion is x—+x, y—+—y, s—+—s. In terms of the operators~ and S referred to these local axes, the Hamiltonian
becomes

I
H = —-', g J(ij) f-', (S;+S, +S; S,++2S *S *)$

—-', Q J(ij) L-,'(S~+S;++S;—S——2S *S'))
'b2

—Kg Q (S;*)'—-', K2 p (S~+S;++S; S; ). (A2)

The g~ means summation over all like spins, and
gD means summation over all unlike spins. The spin-
wave spectra are then obtained by use of the Holstein-
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Primakoff transformation, which in Fourier represen- This equation shows that the &A~;(q) are the eigen-
tation is values of the matrix

S~+=(2S/E)'~' g exp( i—q r~)a, (q),

S;—= (2S/Ã)'" g exp(iq r~) u&t(q),
q

S *=S—(~/&) Z-p['(q —q') '] "(q) .(q')
qq~

(A3)

where suKx k denotes the spin type. When these ex-
pressions are substituted into Eq. (A2), the result is
a Hamiltonian which can be written as a constant term
and a sum of terms dependent upon the wave vector g.
The partial quadratic Hamiltonian is then

~,= Z~-(q)[" (q)" (q)+"(q)" (q)]
kk~

+Ax(q) [~a'(q) ~"(—q)+~.(q) ~s ( —q)], (A4)

where for our model of UO2

A» (q) =A =8». I
—P SJ(Oj) [exp(iq ~ ( r;—ro) )—1]

—S Q J(Oj) —2SE&},

&»(q) =8=—SEg,

A~ (q) =C= —S g J (Oj) exp[iq (r;—ro) ]

peak'.

The spin-wave operators are linear combinations of the
operators a&(q) and e&t( —q), namely,

b;t(q) = Pe(k, qj)a&t(q)+ pe(k, qj)a&( —q),

f»( —q) = Z~(~, qj)~"(q)+ Z~(~, qj)~.(—q)

The Hamiltonian (A3) in these new operators is then

&.= Z~ (q)f '(q)b'(q) (As)

The solution for the co;(q) and for the matrices of co-
e%cients e~, e2, e3, and e4 can be deduced by comparing
the Heisenberg equations of motion for the b and a
operators. For the b operators, the equation is

[&., »'(q) ]=~ (q) f»'(q),

[&., f ( —q) ]= —~ (q) b (—q).
Combining this with the corresponding equation for
the a operators gives the matrix equation

(ha;(q) I ) (e& es)

—duo;(q) I) (e3 e4)

(ei e2)( &
(A6)

(e, e)E-Il -A)

Z 9 (&, q j)' e.(&, q—j)']= —&.

This enables us both to determine the sign of ~, (q)
and also to associate the eigenvector with either g;t(q)
«&&(—q). In the case of our model of U02, the ma-
trix is

A 0

0 A —C

8 C —A 0

C' 8 0 —AJ

and the eigenfrequencies are given by

Ms(q) = [A' —(8+C) 'J"
fio)2(q) = [A2—(8—C) ~]~~2 (A7)

The expressions for the new spin-wave operators are

b'(q) =-,'[r (q)]-'~'~e(a+C) [~&~(q)+a,t(q)]

+P~[~~(—q)+o ( —q)]},
f (q) =-:[ (q)]-'"te(~+C)P L '(q)+~'(q)]

+ [~(—q)+~( —q)]},
b '(q) =-',[~(q)]—'~'[e(B—C) ~2[a&'(q) —et(q) ]

+P~[~~(—q) —~(—q) ]},

f.(q) =i[ .(q) ]-'"le(&—C) A[~ '(q) —~'(q)]
+~.[~i(—q) —~(—q)]}, (Ag)

where
n =[g+~ (q)]'/2

P~ =[~—~~(q) J"
e(*) =x/

I a!.
(A9)

(A ar

(—B —Aj

and that the e's are given by the eigenvectors. The
requirement that the b operators should be Bose opera-
tors enables us both to distinguish between the differ-
ent eigenvalues and to normalize the eigenvectors. It
is fairly readily shown that these conditions give

Z [~(&, qj)' —~(& qi)']=&


