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The neutron paramagnetic scattering function for a Heisenberg system is evaluated in the high-tempera-
ture limit and in the cluster model. The numerical results for several diGerent cluster con6gurations are
presented for various values of scattering vector. The scattering function for a simple cubic lattice with
spin —, is compared with the frequency distribution functions derived from the method of moments by
de Gennes and by Collins and Marshall.

for the ith atom, and the second expression on the right
is the result of the cluster-model approximation. ' Here
Sp is the spin of the central atom and S~ is the total
spin of the 2 nearest-neighbor atoms to the central
atoms to the central atom (that these nearest neighbor
atoms are not nearest neighbors to each other is
assumed). The cluster model as described by Eq. (1)
reduces a Heisenberg system effectively to a two-spin
system, and for a two-spin system there exists a com-
plete quantum-mechanical description. That is, the
eigenvalue problem can be stated as

ECENTLY there has been much work, theoretical
as well as experimental, on the scattering of

neutrons from paramagnetic media. Van Vleck' intro-
duced the method of moments in the frequency distri-
bution function to calculate the form factor for forward
scattering of neutrons by paramagnetic media. This
work was later related by de Gennes' to the time-
dependent spin-correlation functions introduced by
Van Hove. ' Collins and Windsor were able to evaluate
the scattering function for an Ising system from the
spin dynamics at high temperatures, and their results
for a simple cubic lattice with spin —, checked favorably
with the de Gennes's Gaussian distribution derived
from the method of moments. Still later, Collins and
MarshalP modi6ed de Gennes's Gaussian distribution
by expanding in terms of moments of frequency up to
fourth moment for the Heisenberg Hamiltonian and for
the high temperature. Their new expression for the
scattering function showed an improvement over the
Gaussian distribution for the Ising system evaluated
previously. 4

Inasmuch as an Ising system represents an idealized
mathematical model, while a Heisenberg model is
generally thought to describe paramagnetic insulators
reasonably well, a reasonable test for the neutron-
scattering theory seems to lie in a Heisenberg system.
This paper aims to provide this test by evaluating the
neutron-scattering function for a Heisenberg paramag-
net in a manner diferent from the method of moments
advanced hitherto.

The Heisenberg Hamiltonian per pair of atoms in a
paramagnetic insulator is given by

IJ
I spsysm)= E(sps~sm) I sps~sm), (2)

with the eigenvalues given by

E(sps~sm) = —JI s(s+1)—s~(s~+1) —sp(sp+1) $, (3)

where sp is the total spin of the central atom, s2 can
assume the values of 0, 1, 2, ~ ~ ~, ssp and s takes on
quantized values between

I
sp —sq

I
and sp+sq. The

eigenfunctions
I sps~sm) are given in terms of individual

spinors by the relation7

I
sps&sm )= g I spsqmomq) (spsqmpm&

I spasm ), (4)
mpm1

where mp, m~, and m are the magnetic quantum numbers
corresponding, respectively, to sp, s2, and s.

The magnetic neutron cross section for a rigid crystal
at high temperatures, according to Van Hove, ' can be
written as

d 'p/dQd(u= A (k;, kf) S(K-, pp), (5)

where A (k;, kf) is a known function of scattering
parameters and S(K, pp) is the scattering function

(1) defined byH= —2J Q S; S;——2JSpsg,

S(K, pp) = L2s-sp(sp+1) ] '
where J is the exchange integral, 8; is the spin operator
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90, 1015 (1967).
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92) 390 (1967).

X dte '"' P exp(sK R) (Sp(0) Sg(t) ). (6)

Here K=kf—k, and or=Sf—E; are the momentum

' P. R. Weiss, Phys. Rev. 7'4, 1493 (1948).
7 E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, London, 1935), p. 73.
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FIG. 1. The envelope of the scattering function for a simple
cubic lattice with spin —, evaluated in the high-temperature limit
and in the cluster model is shown as a function of frequency at
three different values of the scattering vector: (a) E=v/2a,
(b) Z=v/a, r and (c) E=3v/2a. Solid line, Kq. (10c); short
dashed line, Gaussian distribution by de Gennes (Ref. 2); long
dashed line, modi6ed Gaussian distribution by Collins and
Marshall (Ref. 5).
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and energy transfers from neutron to crystal in a sys-
tern of units for which' is unity, and the brackets around
the spin vectors signify thermal average. In the cluster
model under consideration Eq. (6) may be rewritten
in a more workable form as

S(K, co) =I"Zss(so+1)] 'g exp( —E;/kBT)
ej

xL' s,,(0)+ s,, (K) j~( +z,-z;),

with

s,,(o) =
I &i I s,*(o) I j) I'+-,'(i I s,+(o) I j)

x(j I
s (0) Ii)+—(iI so (0) Ij)(j I so+(0) Ii),

S@(K)=L(sinXu) /Eu] I (z I Se'(0) I j)(j I St*(0)
I
i )

+(i I
s'(o) I j)(jI s (0) Ii)} (8)

The states i and j are the stationary states determined

TABLE I. The amplitude of the S-function singularities f(K, a&) of the scattering function S(K, co) evaluated for several different cluster
con6gurations.

Cluster
con6gur ation f(0, (o) f(7r/2a, ca) f(v/a, o)) f(3n/2a, (a).

a=2 linear chain

a=4 quadratic layer

z= 6 simple cubic

0
&3J

0
&3J
&5J

0
+3J
&SJ
w7J

1.00
0

1.00
0
0

1.00
0
0
0

0.839
0.081

0.807
0.060
0.049

0.793
0.045
0.045
0.013

0.556
0.222

0.467
0.167
0.010

0.428
0.125
0.125
0.036

0.461
0.270

0.357
0.202
0.121

0.307
0.152
0.152
0.043
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l. 2 for s=6 (simple cubic)

S(K, to) =~$9+12((sinEa) /Eu) jb(ra)

0.8- +s'$1 —((sinEa) /Eu) jb(r0+3 J)

+;P1—((sinEa) /Eu) j)(~~5m)

+—,
'
—,$1—((sinEa)/Ea) 18(F0+7I). (10c)

2'
Ko

Fro. 2. The parameter n=t'((cd)/3(cps)') —1) from second and
fourth moments is shown as a function of scattering vector for a
simple cubic lattice with spin —,.

in Eq. (2), and Z is the partition function. The scatter-
ing vector was averaged over angular variables as it
appears in Eq. (8). In the high-temperature limit the
Soitzmann factor in Eq. (7) reduces to unity and the
partition function merely represents the number of
states for the system including the degeneracy of
cluster quantum number sz given by the expression
(for ss ——-', )

(2n)! (2n)!
St

(n —st)!(n+sr)! (n st —1)!(—n+sr+1)! '

(9)
where 2n=s.

The scattering function as given by Eq. (7) is
evaluated in the high-temperature limit for several
diBerent cluster configurations. These results are
summarized as follows:

For a=2 (linear chain)

S(K, a)) = —s,L5+4 ((sinEa) /Eu) $8 (a))

+—,'$1—((sinEa) /Ea) jb(&a&3J); (10a)

for s=4 (quadratic layer)

S(K, re) =TrsL7+8((sinEa)/Ea)$8((e)

+-,'(1—((sinEa) /Eu)$8(u&+3 J)
+—,', t 1—((sinEa)/Eu)fb(&v+5/); (10b)

The numerical results for the coefficients of the b func-
tions in Eq. (10),f(E, &u), for various values of E are
tabulated in Table I.The result for a simple cubic lattice
with spin —, is compared graphically in Fig. t. with the
results derived from the method of moments —the
Gaussian distribution by de Gennes' and its modifica-
tion by Collins and Marshall. ' Here in Fig. 1 curve a
represents connection of points with straight lines,
while curve b represents the smoothed-out version of
curve a. The unsmoothness of curve a, argues Van
Vleck, ' is due to the over-simplified character of the
idealized cluster model; namely, all states with same s
(total spin quant:um number) have the same energy
with a high degree of degeneracy given by Zeeman
factor 2s+1 plus the degeneracy of st (cluster quantum
number) given by Eq. (9). If, however, the influence
of the atoms outside the cluster is taken into account,
this degeneracy wiB be lifted —resulting in a "smearing-
out" of these states and thus in a "smoothing-out" of
curve a not too diferent from curve b.

Several observations can be made from Table I and
Fig. 1. As the scattering vector E increases, the fre-
quency distribution changes its shape from that of
Lorentzian to that of Gaussian, in complete agreement
with de Gennes' and with Collins and Marshall. '
Furthermore, the modification by Collins and Marshall
appears to give a better description for small E, but
for large E the correction seems negligible. This seems
natural from the fact that (a) the factor (cv4)/3(&a')' is
not sensibly different from unity for large E (E&a),
as pointed out by de Gennes, and (b) the parameter
rr = $((&o')/3(oP)') —1$ determines the effect of the cor-
rection term due to Collins and Marshall (see Fig. 2).


