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Earlier derivations of simple Wick's theorems for operators of spin —,
' and 1 (in units of fi) using the

drone-fermion representation are applied to the Heisenberg model. The resulting diagrammatic-perturba-
tional approach (Green s functions) is carried out in both the high- and low-temperature domains, where
the expansion criteria of Stinchcombe et al. are closely followed. The present work electively reexpresses
the semi-invariant analysis of these authors in a much simpler manner, and many of their results are straight-
forwardly reproduced. The use of standard quantum-field-theory techniques enables renormalization to
be undertaken in a simple, systematic manner. At low temperatures the present fermion analysis gives
Dyson's T' contribution to the free energy from the first Born approximation to spin-wave scattering.
Higher-order spin-wave contributions give a damping term, which, upon evaluation in the lowest approxi-
mation, is identical to that found by ter Haar and Tahir-Kheli.

1. INTRODUCTION

N this paper the powerful techniques of quantum-
„.field theory' are systematically applied to the
Heisenberg model, which has been the focus of spin
problems for over 30 years 2 Previously, these methods
could not be used because of the absence of a Wick-
like theorem' for manipulating products of spin opera-
tors. This obstacle has been overcome by the author
in two earlier papers, 4 for the two cases of S=~~ and
S=1, using the drone-fermion representation of the
spin operators. Before proceeding with the present
method, a brief summary of earlier work would be
useful to establish the context of the present paper
among such diverse approaches.

Dyson5 first gave a rigorous theory of the low-tem-
perature thermodynamic behavior of this model when
(inter alia) he justified spin-wave theory at low tern-
peratures and showed that spin-wave scattering eGects
are negligible as the temperature goes to zero. This
work provided the theoretical justification for the
neglect of the so-called kinematic eGects in this tem-
perature regime for many subsequent theories, such
as Oguchi's' approach via the Holstein-Primako6 trans-
formation~ of the spin operators. This low-temperature
justification of spin-wave theory will again be demon-
strated in Sec. 3 from 6rst principles. Bloch' used the
Holstein-Primakoff transformation to retain all the
diagonal terms in the Hamiltonian up to 4th order in
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7 T. Holstein and H. Primako8, Phys. Rev. 58, 1098 (1940).
8 M. Bloch, J. Appl. Phys. 34, 1151 (1963).

167

the resulting annihilation and creation operators. The
validity of this approximation was assumed through
the whole temperature range, to give the spin-wave
renormalization results by a self-consistent calculation,
using a variational argument on the free energy.
Szaniecki, in a series of papers, approached this prob-
lem starting from Dyson's (equivalent) boson Hamil-
tonian at low temperatures and then using quantum-
field-theory techniques for a diagramatic boson analysis
of the free energy.

A new approach was taken by Tahir-Kheli and
ter Haar, " using double-time temperature Green's
functions. In their first paper, the decoupling procedure
of Bogolyubov and Tyablikov" for S=~ was gen-
eralized to all S, although explicit results were only
presented up to 5=3, because of the increasing com-
plexity of their equations. In a second paper, the
Green's functions resulting from Dyson's Hamiltonian
were decoupled, giving the spin-wave renormalization
obtained by Brout and Englert, " and a higher-order
decoupling resulted in a damping coefficient in the spin-
wave energies. In a certain approximation these results
are recovered in Sec. 4. Callen" developed (using S=-',
as a guide) a method for solving the equations result-
ing from his decoupling approximation to the equations
of motion for general spin-operator averages. Un-
fortunately, this introduced a spurious T' error in his
results for S=-,'but not for higher S. However, Morita
and Tanaka, ' by extending the decoupling scheme for
S=-,' to the next order and using an analogy based on

' J. Szaniecki, Acta Phys. Polon. 21, 3, 219 (1962); 22, 379
(1963);22, 381 (1963).

'0 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127', 88 (1962);
127', 95 (1962).

"N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk,
SSSR 126, 53 (1959) t English transl. : Soviet Phys. —Doklady 4,
589 (1959)3."R.Brout and F. Englert, Bull. Am. Phys. Soc. 0, 55 (1961).

"H. B. Callen, Phys. Rev. 130, 890 (1963).
'4T. Morita and T. Tanaka, Phys. Rev. 137, A648 (1965).
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the exactly soluble two-spin problem, were able to ob-
tain the famous Dyson T4 contribution to the mag-
netization at low temperatures. This is also obtained
in Sec. 4 of the present paper.

Haas and Jarrett" attempted to unify these Green's-
function theories and also that of Bloch by a generalized
form of the decoupling approximation, involving two
variable parameters chosen to give the original expres-
sions for the magnetization. However, in all such equa-
tions-of-motion methods the justification of the actual
decoupling chosen is always a posteriori, rather than
a priori, as in the approximations used in other theories.

All the above-mentioned methods have concentrated
on the low-temperature or spin-wave region. The work
of Englert, " Brout'~ Stinchcombe et al " and Lewis
and Stinchcombe, " amongst others, has resulted in
theories which are applicable in both the high- and
low-temperature domains. The present work hts into
this category. In fact, the present work is a fermion
Green's-function theory, which bears a very close
similarity to the quantum-mechanical semi-invariants
introduced by Stinchcombe et ul. , and it electively
introduces dynamical substructure into their semi-
invariant averages. However, because of the Feynman-
diagram nature of the present work, renormalization
of the propagators and vertices is greatly simpli6ed,
in comparison with analysis due to Stinchcombe et al, ,
although their treatment is closely followed.

In Sec. 2, a high-density classification in powers of
1/Z is introduced, for the high-temperature region
(above the critical point T,) where Z is the number of
spins interacting with any given spin. The 0(1) results
are those of the well-known molecular-field theory,
rigorous in the limit as Z goes to infinity. In Sec. 3,
the lowest-order corrections to the two-particle propa-
gators are of O(1/Z) and give simple corrections to the
transverse and longitudinal spin correlations. A low-

temperature ordering is then introduced in Sec. 4 for
the case S=-', (for simplicity), which extends the
previous results to this region, where the transverse
spin correlation takes on the form of simple spin-wave
theory in a Green's-function (boson) formulation.
The use of equivalent vertices in this section facilitates
comparison with earlier spin-wave treatments, and the
two lowest-order self-energy scattering graphs (eval-
uated in the low-temperature approximation) give the
famous T4 correction to the free energy in the first
Born approximation. The corresponding graphs give
the equivalent results for spin-wave renormalization,
while the next graph introduces the spin-wave damping
term. In both cases, explicit approximations are made
which exhibit the limitations of such results.
"C. W. Haas and H. S. Jarrett, Phys. Rev. 135, A1089 (1964).

6 F. Englert, Phys. Rev. 129, 567 (1963)."R.Brout, Phys. Rev. 122, 469 (1961)."R. B. Stinchcombe, G. Horwitz, F. Englert, and R. Brout,
Php s. Rev. 130, 155 (1963).

"W. Lewis and R. B. Stinchcombe (unpublished).

2. MOLECULAR-FIELD THEORY

so the above restriction on I becomes

g J(k) =0, (2 5)

where the sum is over all momenta k in the first
Brillouin zone. Substituting in Eq. (2.1) for the spin
operators' (S=-',), i.e.,

Sl =cd C2
—

2 S.+=c,tq;, (2.4)

using the notation of the previous paper, referred to as
I, we obtain

II= —,XL,yV(O) j+P.,+ J(O) 3 g c,tcf,

—-', g I(R,—R;) (c;tc,c;tc;+c;tc;q;y,). (2.5)

Introducing the Fourier transforms of these new opera-
tors by

c;t=(Ã) 'I' P exp(ik R)c~t,

q = (X)—'I' g exp(zk R,) (pe,

because of the real nature of q;, we have p~~ ——q i,. The
complete result of these substitutions and transforma-

In this section the Heisenberg Hamiltonian will be
transformed by means of the drone-fermion representa-
tion to a form convenient for a diagrammatic analysis
of its structure. This will initially be done in terms of
the representation for S=-'„and the analogous result
for S=1 will just be written down. A simple high-
density classification of the resulting diagrams is pre-
sented, valid for temperatures above the Curie tem-
perature T„' this follows the analogous arguments of
Stinchcombe et at. The simplest form of renormaliza-
tion of the lowest-order self-energy in the evaluation
of the magnetization (S') (which is also consistent with
this classification) results in the Weiss molecular-field
model. We shall see later that these results are also
valid in the low-temperature region and include the
Ising model, '6 which only involves the longitudinal
component of the Heisenberg model used in this result.
The well-known model of the Heisenberg ferromagnet
for Ã equal spins, each localized on lattice sites R;,
in the presence of an external field (giving a Zeeman
splitting &es) is

II=~es Q S ——', QI(R, —R;)S; S;. (2.1)
~ ~

~t 2

Since the interaction integral is only nonzero between
different sites, the two sums over lattice points are
complete. Moreover, because of translational sym-
metry, we can introduce its spatial Fourier transform

J'(k) =g I(R;—R;) expLzk(R; —R,) $, (2.2)
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a)

b)

FIG. 1. Diagrammatic representation
of the free "field" propagators (the
drone fermions), involving tempera-
ture variables; (a) the C propagator
Cp (r—r'), (h) the D propagator
D'(r —r').

with

(2.13)

tions can be written in a separable form:
with

D;(r) = 2/ir—. (2.14)
H =Hp+Hi. (2 6)

with

&=~p+p J(0) (2 &)

The interaction term, which conserves momenta, can
be further separated into a transverse part H~~ and
a longitudinal part (or Ising term) HP. :

Hir ———(1/2X) Q J(k+q)ektck (p,p, 'b(k —k'+q —q'),

Hi = —(1/21V) g J(k—k')ektck cptca 8(k —k'+q —q').

(2.8)

The sum in each case is over all four momenta variables.
In terms of the interaction picture for these operators
we have

ekt(r) =exp(Hpr)ckt exp( Hpr) =e "—ekt,

p" (r) =p, (2.9)

The latter result implies that the temperature label 7.

is only used to order the p operators. Thus the thermal
averages for the unperturbed Hamiltonian become

(&k ~k')0 ~kk'(e +1) '=~kk f =~kk (1—f+), (2.10)

where f is the usual Fermi function, as in (I.12).
This enables a free propagator for the C field to be de-
fined as C(r), with r = r r'. —

Ck'(r) = (T-(ek(r) ek '(r') ))p

=Bkk exp( —Br) (8(r)f+—8(—r)f ); (2.11)

The unperturbed Hamiltonian is diagonalized with
respect to all the C momentum operators (we also drop
the constant term because it gives no net effect)

Hp=B g ektek

The variables are defined by r = (2m+1) (s/P), and the
sum is taken over all (positive and negative) integer
values of v. These functions will eventually be ana-
lytically continued into the whole of the complex ~
plane with pi=ir The .exact propagators (in the Heisen-
berg picture) are related to the averages in the inter-
action picture by the Dyson development operator'

P

U(tt) =re p(x— d &H&( ) ~.

0 )

As we have established a Wick theorem4 for the drone-
fermion operators, we can invoke the standard proof
of the linked-cluster theorem, ' giving, for example
(with superscript Ld for restriction to unique linked

diagrams),

Ck(r) =(& (ek(r)ek'(r') ))

The propagators are illustrated in Fig. 1; the directed
solid line represents the propagator C'(r), while the
dotted line represents a D field propagator Dp'(r).
(In the case of S=1, they will involve an additional
index o..) The interaction can be represented by the
two types of vertex, as illustrated in Fig. 2. The first
vertex represents a spin-Rip transition, while the second
corresponds to Ising scattering.

We are now in a position to evaluate the thermal
average of any product of operators, i.e., m-particle
Green's functions, through the following correspondence
rules between linked diagrams and their algebraic ex-
pressions:

(a) Associate propagators with their corresponding
lines, and a factor (1/2N) J(k—k') b(k —k'+q —q')

similarly,

D.'(r) = (2'-(p. (r) p-p (r') ))p=~.p e(r) (2.12)

The effect of the temperature Wick-ordering operator
is illustrated in Eq. (2.11), and e(r) =8(r) —8(—r),
where 8(r), is the usual Heaviside-unit step function.
The periodic nature of these functions with respect to
r enables their (odd) Fourier series transforms to be
written down immediately:

Ck'(r) = (1/&) Z;"exp( —ipr) Ck'(p)

FIG. 2. The simplest interaction
vertices for the Heisenberg model
(S=s): (a) the transverse scattering
or C-D scattering, (b) the longi-
tudinal (Ising) scattering or C—C
scattering, (c) extra vertex, to prevent
overcounting for 5=1.
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with each longitudinal vertex and a factor

(1/»)I(&+q) ~(&—&'+q —q')

with each transverse vertex.
(b) A factor (—1)'/r2r for each diagram, where r

is the symmetry factor for that structure (this prevents
overcounting), p is the number of pairs of equivalent
lines between vertices, and l is the number of closed
loops (excepting C Geld self-energy loops on the same
vertex).

(c) Finally, a complete summation is carried out
over all internal variables and integration over all r;
from 0 to P.

Fxo. 4. Higher-order graphs
involved in C-6eld renormaliza-
tion, which are all of 0(l ) .

for the first-order propagator,

c}

The high-density classification' arises from the ob-
servation that each vertex has a factor J(k) (or I;;
upon transforming) and a label r;, which is eventually
integrated from 0 to P, so we approximate its contribu-
tion by PI, where I is some average value of J(k).
Now only the lr dependence arising from the J(k)
factors as in Eq. (2.2) is important since all C' and D'
propagators are actually independent of their mo-
mentum labels. Subsequent summation over k intro-
duces a Kronecker 8 reduction in the site summation

Cgi (r) =C& (0r')+Cz'(r)Z& u(lP)C& o(r), (2.16)

we include all reducible terms of the type illustrated
in Figs. 4(a) and 4(b). Both of these involve no ex-
plicit }r dependence in the vertex factors J(0), i.e.,
I.=O, so that all these graphs give a contribution O(1)
in inverse powers of Z. However, so do all "cactus"
graphs of the type illustrated in Fig. 4(c), so these
too must be included. This is quite trivial and involves
only converting C lines in the self-energy from free
averages to full self-consistent ones. This is shown in
diagrammatic form in Fig. 5, i.e.,

Zj«'& (C')~Kg'(C'),

FIG. 3. The simplest C-field
self-energy diagrams: (a) the
direct excitation; (b) the exchange
excitation.

k
G.

so that

Thus

~'()=I(0)( ' ) =I(0)(-'+&~')) (21&)

C~'(p) = (8—i~—Z,'(p) )-'= Lppp
—J(0) (S*&i—ivj-'.

(2.18)

(i or j), so a diagram involving V vertices, I. of which
appear with explicit k dependence, will give V-L in-
dependent site summations on Fourier transforming.
This produces a numerical factor of order (PI) vZr ~,
where Z is the number of spins interacting with any
other. But from molecular-Geld theory (as we shall
see) the critical temperature is given by —,'P+(0) =1,
or approximately ZI=AT„. so such a diagram will
then contribute a factor (T./T)rZ ~. Thus, for tem-
peratures above T„ the order of the graph in the high-
density expansion is Z ~. In general, there will be several
explicit k factors due to momentum conservation, so
we obtain an expansion in inverse powers of Z.

The lowest-order self-energy correction to the mag-
netization is illustrated in Fig. 3(a). This gives for
the magnetic (C field) self-energy Zj,&'&(r) a total
contribution

where

discCq'(pp) =Cq'(co+is) —Cq' (pp —is)

=2prthLcop —Rtl (0) —coj,

~ =(~'*) =(~.*)

(2.19)

so that

C)P (r) =e(r) (2xi) —' OO dcoe "'
discCq'(~),

1+exp/ —Pppe(r) j
(2.20)

where we have converted the Fermi contour from

This just introduces a real shift proportional to the net
magnetization. In terms of its analytic continuation to
above and below the real tp axis (i.e., ir +rp&is), —

ol
Z,"'(r) -I(O)f-S(r)

&~"'(&)=I(0)f .
FIG. 5. TheDyson equation for molec-

ular-field renormalization of the C
propagator.

Note that the exchange term in Fig 3(b) give.s a zero
contribution using Eq. (2.3). Using Dyson's equation'
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) LZ
FlG. 6. Two second-order dia-

grams illustrating the counting
correction procedure for on-site
coincidences: (a) independent
sites, (b) correction diagram for
2=J.

around the imaginary o~ axis (except the origin), to
surround the pole on the real co axis. This results in
just replacing 8 in Eq. (2.11) by (dp RiJ(0). In the
limit r~0+, along with Eq. (2.4), we obtain

site index. Now in any of the graphs with I.-site sum-
mations there will be terms corresponding to coinci-
dences on some of the sites, and these will give a lower
power in the counting factor I'. As usual, these are
represented by diagrams with c dotted lines converging
at the same cross. However, these correction diagrams
are always 0(Z '), relative to the same diagrams with
independent summations. For example, the second-
order diagram in Fig. 6 illustrates an 0(J ) term, in-

cluding the correction diagram Fig. 6(b). The diagram

6(a) gives a factor LFJ(0)]', while the correction
term 6(b) leads to a factor (I'—7') g;IP(R, —R,).
In calculating the magnetization to 0(Z') all these
correction terms can be neglected. The self-energy is
then

Ri ———-', tanh'—,Pgorp —J(0)Rij. (2.21) (2.26)

IIi Hi'+Hi +Hi—— (2.22)

This is the usual molecular-field result for S=—,
' and

only has a nonvanishing self-consistent result in zero
field &up

—+0 for temperatures below T„where 4T, =J(0),
so at low temperatures Ri~ ——', sgn(&pp). Since this re-
sult is correct to 0(1), we can always renorinalize all
future results involving C lines by changing 8 to
Pppp

—J(0)Ri) in its Fourier transform. This treatment
can be seen to be the dual of the method of semi-
invariants used by Stinchcombe et al.

The corresponding result for S=1 is more difficult to
obtain because of the overcounting factor I' (s-) F') 1) .
This necessitates the retention of the site indices, as
one must handle site coincidences very carefully. The
result is to introduce additional diagrams to correct
for such coincidences. The C-space substitution is now
only carried out after the expansion of the Dyson de-
velopment operator U(P) in terms of sums of products
of the original spin operators. The average of each
product of these spin operators with m different site
labels may be calculated as I' times the corresponding
C-space average. The interaction part of the Hamil-
tonian can be written as

Note that the counting factor is just sufficient to intro-
duce the spin-averaged magnetization E,' and not the
C-space average RP. The 0(1) magnetization is then

R,.~u = —Y tanh-. ', PE~p —R,oJ(0) j. (2.28)

In the same manner as for 5=-,' we can use the re-
normalized fermion line for the internal "molecular-
field" loop with the result

R,' = —F' tanh-', Pt cop —R,'J (0)j. (2.29)

Apart from the counting factor 1' (of order unity),
this is directly analogous to Eq. (2.22) . The difhculties
with this S=1 method occur equally in the Yolin-
Abrik. osov technique, even for 5=-,', which demon-
strates the advantage of the present spin- —,'method.

3. TRANSVERSE AND LONGITUDINAL
CORRELATIONS AT HIGH

TEMPERATURES

or, in a reduced notation, using Eq. (1.17),

&; n'( ) =I'(2f —1)J(0) =J(o) (~') ' (227)

with

Hio=-,'Q I(R; R;) c;xtcg, —

H, = ——', Q I(R;—R,)c, xy;g, .xgc,

Hiz= ——,
' Q I(R; R;)c,i,tcg,c,g tc,y, —

ijg,i

In this section we shall extend the calculation to the
(2.23) next order in the high-density classifi. cation, that is,

to order 1/Z. This will now include all diagrams with
only one explicit k dependence, e.g. , J(k) ";accordingly,
all these will have L=1, giving a contribution of
0(1/Z). Figure 7 shows that these are the simple
repeated scattering graphs for the two-particle propa-

(2.23) gators, corresponding to the transverse and longitudinal

where the two 'spin indices' X, X'=1, 2.
The term H& cannot be incorporated with the Hp

term as in Eq. (2.7), as it involves two site summations,
not just one. It is represented diagrammatically in
Fig. 2(c), where the labelled cross indicates the second b)

FIG. 7. Renormalization
graphs for two-particle prop-
agators, which are of Oll/Z)
in the high-density classifica-
tion.



HEISENBERG FERROMAGNET 439

correlations (S S+) and (S*S*), respectively. In the
next section we shall show that this class of graphs
chosen by the simple high-density classification and so
strictly valid only for T) T, (as shown earlier) are
also the same as those corresponding to the low-order
terms in the expansion in powers of the temperature,
so the present results will also be valid in the whole
temperature regime (apart from the critical region),
and the transverse correlations will reduce to the re-
sults of low-temperature spin-wave theory.

The case for S= 2 will again be taken, for simplicity,
and the generalization for 5=1 indicated. We will
define a spin-wave propagator F(k, r) in terms of the
Fourier transforms of the transverse correlation func-
tions. Let

S,= (&) '~o g exp(ik. R;)Sj„

then

Pro. 9. The O(1/Z) self-energy for the
"free" propagator &(lt, r r')—; repeated
scattering of this type lead to Il (k, T T ) ~

drtdrsFq (k, r rt) Z—qq~ (k, rt —ro) Fq~ (k, Ts) .

Upon evaluation this gives

-"- '"(» r) = (1/2&) J(k) &(r),

(3 &)

„~'~(k, a) = (1/2$) J(k). (3.8)

The appropriate Dyson equation for this series (in-
cluding the free summations in the intermediate states)
1s

trated in Fig. 9 and defined by a general correction to
Fq. (» r):
F„(k,r)

so that

(S+)g——(Ã) '' g cg+q q q,

F(k, r) = (TLS g-(r) Sg+(0)].

Fqq ~" (k, a) =F„'(k, a)

+Q Fq'(k, «r) -qq-&'&(k, a) F;,q ~'&(k, n) (3.9)
g//

(3 2) or

This even periodic function will be analyzed in terms
of its components

F(k, r) = (1/&) Z F- (k, r), (3.3)

"q.'(» r) =4'D'(r) (=~+'(r)

e s'$e(r)f++e( r)f ] —(3.5).
This is illustrated in Fig. 8, and its (even) Fourier
transform is given by /with n= (2s./P) «r, «r are all in-
tegers

F '(k r) = (p) ' Q exp( —sar) Fq'(k) a),

Fq'(k, «r) = tanh-', pB/(B —in) . (3.6)

The 1/Z series is generated from the lowest-order self-
energy of this propagator, qq (k, r), which is illus-

Pro. 8. The "spin-Qip" or
spin-wave propagator: (a) the
"free" (no true fr dependence)
propagator P'(k, T—T'), (b)
simple spin-wave propagator
(with k dependence), in a sim-
plified notation'P(lr, r r'). — k~ ere ~ ~ ~awe

where

F '(k, )=(T-(o (+)s+ ( )s+ '(0+)p- (0))).
(3.4)

The zeroth-order form of this propagator has the simple
structure

F,q'(k, a) = —
bqq 2R'/L« —~'J (0) —&«rj. (3.12)

Upon including the transverse self-energy, we finally
obtain

where

(3.13)

«o(k) =«—&'IJ(0) —J(k) j. (3.14)

The appropriate correlation functions can be calculated
immediately by converting the a summation to the
'Bose contour, ' which encircles the whole of the imagi-
nary 2 axis in an anticlockwise direction, with s=ia.
This results in

—«(r) 2R' exp I
—co(k) r jF'k, r =

1—exp f
—p«o(k) «(r) j

So the lowest-order t 0(1/Z) j transverse interaction
eGects a k-dependent energy shift with no damping.

= (P'(k, )j ' —&"'"(k ) )-'. (3.10)

Substituting for Fo(k, n) and Z&'&(k, «r) by Eqs. (3.6)
and (3.8),

tanh —' 8tanh-, PB
«+—', PJ(0) —J(k) tanh-,'PBj—iu

However, first-order renormalization of the constituent
C propagators will not change the order of 1/Z of
these graphs, so by Eq. (2.21) the molecular-field
transverse propagator becomes
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The analogous result for 5=1 cannot be so simply
obtained because of the resulting complexity arising
from the counting factor. An equation similar to Kq.
(3.9) can be written down in terms of the following
propagator and in the site-index representation:

(r) = (TI4'~(r+) c'~(r) c&'(0')4% (o) })', (3 16)

with

-;;gg. (a) =-,'I(R;—R;).
This equation can be formally solved in terms of the
momentum Fourier components, but this introduces
compensation complications which destroy the ele-
gance of the 5=—, result. In other words, the corre-
spondence between the spin-space and C-space trans-
verse propagators depends on whether or not the site
indices are equal:

(Tts-( )S+(0)})'—I&+~ (F'—F)}F '( )

{3.17)

The other series of graphs which are also of order 1/Z
are the longitudinal graphs, Fig. 7. However, in this
case, because of the identity of the four operators, a non-

propagated part must first be subtracted. Thus for
(S S *) we have

(S S )=(c;tc~c;tc;)—-'(S,*)—-,'(S;*)—~. (3 1&)

'We consider the two-particle propagator E;,(r) a,nd
its triple Fourier transform (assuming an homogeneous
system) E«(k, r), defined by

E,;(r) =(TIc (r )+c;(r)c;t(0+)c;(0)})'
=N ' g exp} zk. (R;—Ry) jE«(k, r) . (3.19)

Then

E„.(k, r) =(TIc, (r+)c,(r)c, (o+) (0) })'.
(3.20)

This can always be decomposed into two parts —a self-
interaction and a propagated term K:

E„(k,r) =E«(k, r)+by, e(c,"c,)(c, tc, ). (3.21)

This separation is just sufhcient to give the usual form
for the longitudinal correlation:

The self-energy terms 0 (1/Z) in the high-density
expansion are illustrated in Figs. 10(b) and 10(c) ~

Explicit evaluation of the 'exchange' graph, Fig. 10(c),
demonstrates that it gives no net contribution, as it
involves a self-contained interaction sum Eq. (2.3).
However, the 'direct' graph Fig. 10(b) gives a non-
vanishing self-energy contribution

~pp (k) =(1/N)N(k)
This series is summed by using the Dyson equation

E«(k) =E..'(k)+Z E-'(k)~- (k)E.' (k).

(3.24)

The temperature variables r have been dropped in
this equation, as each component of the equation (to
this order) has no explicit r dependence; we obtain
immediately an algebraic equation. Summing over the
indices q and q' and substituting Eq. (3.23) for E«0(k)
leads to the final result

exp$zk (R,—R,)jf+f
( & J ) ( & ) ( 9 ) Z t-1 Z(k)f+f

(3.25)

Thus, the complete O(1/Z) result is obtained by re-
normalizing the individual C propagators. This is
equivalent to the substitution f+—+-,WR., giving"

(S'*S *) (S**)(S*)

explzk (R;—R;) j(-', —EP)=N ' Q—,' ' . (3.26)1-P~(k) (l-&t')

4. LOW-TEMPERATURE EXPANSION AND
SPIN-WAVE SCATTERING

At this stage we shall extend the calculations to low
temperatures for S= ~~, and extend the validity of the
above results to temperatures below T'„as well as re-
covering the low-temperature spin-wave results found
by other methods. In this temperature regime the
graphs can be classified by their contributions to the
free-energy F in powers of the temperature (in fact,
the reduced tempera, ture T/T, ). In order to do this
systematically, we must analyze the contributions of
each individual type of element in the graphs. Upon
summation over r of Co(p) there will result a factor

(S"S')—(S') (S,")
=N ' Q expLzk (R;—R;) jE«.(k,'„0+). (3.22)

kqq~

The lowest-order component graph of the propagated
type is the simple particle-hole pair of noninteracting
C fields. This is illustrated in Fig. 10(a), and is given

by the simplest contractions:

E«'(k, r) = &g', t+gCa (r)C&+q ( r) =~a'»+sf f .

{3.23)
c)

k+ t1

q

q-tc

FIG. 10. The longitudinal-cor-
relation propagator, &«(k,
r r'): (a) the free pro—pagator,
Z~~. (k, r r'), (b) the O(1/Z)—
direct-scattering graph leading to
lt&'&(1t r), (c) the O(1/Z)
exchange-scattering graph.
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f+ or f which, with simple molecular-field renormaliza-
tion, becomes f~s&Et. Then, in the two limits T—4
and ops—4+, these become f+-+1—exp( —PJ(0)/2j and
&=+expL —PJ(0)/2j, or, in the corresponding limit of
nis~0, the roles of f+ are reversed as E-+ ', s—gn-(ois),
so at low temperatures, in zero magnetic Geld,
with ferromagnetic interactions J(0))0, the factor
exp/ —PJ(0)/2j is negligible compared with any finite
power of T. This implies that any "particle-hole" pair
of C propagators occurring between any two vertices
will introduce a factor f+f upon integration over the
internal temperature variables, so all such graphs vill
be exponentially small and can be neglected. D propa-
gators always give a finite contribution of O(1), as
do unpaired C propagators in the correct limit. The
next contributing element is the simple spin-wave
(i.e., with k dependence introduced through one trans-
verse vertex). Since at low temperatures Kq. (3.13)
gives

F(k =) =t:-:(J(0)-J(k) )-~&-'
or

(4.1)

F (k, 7 ) = expL —
o& (k) rjL8(r) bi++ e(—r) bi, j, (4.2)

a)

„(k)=-',
t J(0) —J(k) j,

f,+=1+&;=(1--pt:—P (k) 3)-' (4 3)

This is represented by a simple line as in Fig. 8(b).
%e can now simplify all graphs by isolating all spin-
wave lines which then interact via equivalent vertices
V represented by Fig. 11(a); these vertices will con-
tain only C and D substructure and correspond ex-
plicitly to the kinematical corrections in ideal spin-wave
theory. As we are now dealing with a standard type of
quantum-Geld theory, the contributions to the change
in the free-energy Ii due to the interactions are given
by the usual sum of distinct connected graphs:

-~»= (U(p) )"-. (4.4)

Again we will follow the low-temperature classification

Fro. 12. The two lowest-order
contributions, in the low-tempera-
ture series, to the change in the
free energy nF: (a) the Ising loop0(1), (b) the transverse (spin-
wave) loop, O(P'i').

method used by Stinchcombe et a/." for their semi-
invariant analysis and And a very close correspondence
for the present Green's-function approach. The equiv-
alent vertices only involve functions of J(k) and poles
of the form (8—in) ", which lead to exponentially
small corrections at J3, but are converted to PJ(k))"
at the spin-wave poles in=&a(k) and so only result in
one power of P per vertex as a result of equivalent
energy conservation at this "vertex. "Consider a graph
with E spin-wave lines interacting through V equiv-
alent vertices and resulting in S-independent k and
cx summations. Each of the S sums over cx; is converted
into a Bose contour around the whole of the imaginary
co; axis, where co;=ia.;. This is then distorted in the
usual manner to pick up the residues of the poles from
the product of the spin-wave denominators. The net
result is a product of spin-wave Bose occupation
factors bi, multiplied by a product of (1V—S) de-
nominators, each of the form g,es(k;) . The contribu-
tion of such a graph to —P» has the form (retaining
only temperature-dependent factors)

(P) V N+$ g —
(b -)S(~)S N—

which is proportional to g&@»~—&.

However, in all but the simplest cases, this rule needs
two modifications. The first exception occurs when
there are D-degenerate spin waves in the graph, i.e.,
with the same momentum and energy (k, n). Then
the pole from this will give a contribution obtained by
differentiating (D—1) times the rest of the integrand
with respect to n, so reducing the power of co in the
denominator from (E—S) by a further (D—1). This
gives a contribution to —P» of the form

p(v N+s& g (fi„—)$(-~) N+s+D r——

FIG. 1j.. The equivalent ver-
tex, V: (a) complete diagram-
matic graph, (b) 4th-order
equivalent vertex, (c) 5th-
order equivalent vertex.

I I
I II
I I

which is proportional to 2-yj2)s—v+a—i The second case
arises when the frequency of one spin wave appears
with opposite sign in the frequency of another because
of frequency (or energy) conservation at the vertices.
Effectively, there exists particle and hole spin-wave
states between some of the vertices. These two poles
contribute to the sum over this frequency: one yielding
b~—,leading to the usual T3~' contribution; the other,
b~+, which involves no temperature-dependent cutoG,
and so fails to give an O(T@') contribution. However,
it does still give a factor co in the denominator, so for
S' spin-wave holes the contribution to PhF will be—
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c)

I'ro. 13. The O(T') contri-
butions, from spin-wave scat-
tering to the change in the free
energy: (s) the first Born
approximations, giving Dy-
son's T4, (b) and (c) higher
Born approximations, leading
to damping in the spin-wave
excitations.

—(3/F(g g' V N ) Z'(s(z(& 8)+8 &+&D&D—(D t)] —(4 5)—
Since S)V+1, the lowest-order graphs are those

Pv(b);+/P(o) '(b), ) '(Po)) + ' ~, which is propor-
tjona] to P(3/2) (s—sf)+s~—v So jn general a graph jn
volving S-independent spin waves, of which S' appear
both with positive and negative sign in the energies,
interacting through V equivalent vertices and with

AD groups of D-degenerate resulting spin waves, will
contribute to PhF a t—erm

with V and ED small. All graphs with E~&0 are at
least of O(T (') and increase rapidly with ND, similarly,
one must minimize the number of independent spin
waves. The only diagrams which give a contribution
to AF of T3 or less are those illustrated in Figs. 12
and 13.

Thus the two lowest-order diagrams in powers of T
are also the same as those classified in powers of 1/Z,
so the results of sections (4) and (5) are also valid at
low temperatures.

We shall now evaluate the low-temperature diagrams
involved in spin-wave scattering to exhibit the degree
of correspondence with earlier theories. This will involve
calculating the effects of the vertices illustrated in
Figs. 11(b) and 11(c) in the first diagram of the Born
series, Fig. 13(a). Since the spin waves involve a C
and D pair, then the structure of the simple interaction
vertices, Fig. 2(a), indicates that the lowest-order
spin-wave interactions will occur in 4th order. This
vertex will be denoted by V(') (the diagram obtained
by interchanging the D-on pair will be included in this) .
If we denote the contribution of the two spin waves
by W(kist, ksrs, ksrs, k4r4), then the contribution of
this graph to PhF is given—by

P

(2N)4 ),;
dri dr4W (ktrt ~ k4r4) V( ) (ktrt k4r4)) 7 7 ) 7 (4.6)

which, on Fourier transforming with respect to the r labels and integrating, gives (in terms of the reduced vertexV)

fN'/2 (2N) 'j Y J'(k) J'(k') (1/P') W F(k, n) F(k', n') V(4) (an'; n'a), (4.7)

where V(4'(n;) is the transform of V(4) (r;), which is given by

V(4)(1 2. 3 4) —NCo(14)Co(23)(Do(12)Do(34) oD( 31)Do(24)]

NCo(24) Co(13) I"Do(12)Do(34) +D (14)oDo(23) j (4 g)

The simplified notation C'(14) =Co(rt v4) has been u—sed here for convenience, and the factor N comes from one
net internal momentum summation; the Fourier transform is given by

V(4) ((rtas , usa4) ='Q M(1+2—3—4) Co(at —r) D'(r) I D'(a4 —ctt+r) t Co(as+r) —Co(ns —r) j
-((-D (ns —n, +v) LC'(ms+a) —C'(n4 —v) )I. (4.9)

This is evaluated in the usual manner of converting the
sum to an integral over s=ip, involving the Fermi
contour around the imaginary s axis (except for the
origin). In the low-temperature approximation this
only picks up the residues at the origin and those poles
which result in f+ factors (the f ones are exponentially
small and can be neglected) . Within this approximation

V(4) (a)4rs, cxsu4)

sum over n and cx' picks up the residues only at the re-
spective spin-wave energies o)(k;), and, using 8—(0(k;) =
-',J(k;) Wo,

(1/Pz) Q F(k, n) F(k' (r') V(4) (an' a'a)

= —O'PNb& b& L(J(k) +J(k') )/J'(k) J'(k') $.

(4.11)

Thus, the simple 4th-order ternls result in a contribu-
2N 8(1 2 —3—4) —(8—zai 8—z(rs)

(4 10) tion
(8 iat) (8 ins) (8— zns) (8—itr4)— —

PhF(') = —(8/2N) g—b), b),. P(k)+ J(k') j. (4.12)
Again in the low-temperature approximation the double
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Similarly, for the 5th-order vertex V& & we have

(&'/2(»)'P') Z J'(k) J'(k')

X[J(k—k')+J(0)]F(k, n)F(k', n') V&'&(nn'n'n),

(4.13)
with

This gives a contribution

P—hF&'&= (P/2$) Q b&, b&, [J(k—k')+J(0)].

So to O(T') in contributions to hF we have

AF&4+@= (1/2E) Q b&, b&,

(4.17)

P
V( &(r~) gr&go(15)co(25)go(53)co(54)Do(14)Do(23) X[J(k)+Jk') —J(k—k') —J(0)]. (4.18)

This is the well-known result for spin-wave scattering
in the 6rst Born approximation at low temperatures
obtained by Dyson, ' who also showed the cancellation
to 0(T') giving the famous O(T') result.

If we define the sum of these two vertices as V, then
we can derive all the relevant low-temperature spin-
wave results directly, so

V(1, 2; 3, 4) = V('& (1, 2; 3, 4) +EU&'& (1, 2 3 4)

(4.14)

The Fourier transform of this, at low temperatures, is

Pb (ay+ay —n» —n4)
tnyn2j n3n4) =

~ ~ ~ 7(8 ing) —(8 in2) —(8—ins) (8 in4)—
(4.15)

so

(1/P2) Q F(k, a) F(k', a') V('& (an', n'a)
(4.19)

=24Pb& b&, /J'(k) J'(k') . (4.16) In the low-temperature region this has the transform

-,'pM (pi+ p2 —p3 —p4) J(k&) ~ ~ J(k4) [J(k&.—k4) —28+ia&+in2]
V(P~P2, PSP4) =

(8 ial)—(8 in/) —(8 ia3) (8 —in4)— (4.20)

where we have used the 4-dimensional notation p;=
k;, a,. VVe can now renormalize the simple spin waves
F(k, o&) through the vertex V to the renormalized form
F"(k, ~) by means of a Dyson equation directly anal-
ogous to the one for C-propagator renormalization in
the molecular-Geld approximation, i.e., as illustrated
in Fig. 6. So upon taking into account all possible exit
and entry vertex points, we obtain for the spin-wave
self-energy ."(k, cu):

="-"(k,n) =[&i(»)'p'] Z F(k', n') (V(PP', PP')

+V(PP' P'P)+V(P'P, P'P)+(P'P, PP') ), (421)

which, in the low-temperature approximation, becomes

(2g) —2[J(b)~/(8 —in) 2] g b,—

X[J(0)+J(k—k') —J(k') —2 (8—in) ]. (4.22)

Thus, by Eq. (3.10)
F"(k, n) =[E(k) —ia]-',

with

&(k) =l[J(0)—J(k)]—(1/&) Z b'

(4.23)

X (J(0)+J(k—k') —J(k') —J(k) ). (4.24)

This is the usual Hartree-Pock spin-wave renormaliza-
tion result, ' in this case obtained by approximating
«."(k, n) by "«."[k, co(k)] or self-consistently by

&(k).
The damping term is introduced into the first self-

energy graph which has dynamic" spin-wave contri-
butions in the intermediate states as in Fig. 13(b) in
distinction to Fig. 13(a), which only has a "static"
intermediate spin wave. The equivalent self-energy
diagram corresponding to Fig. 13(b) gives a self-energy
contribution

[&'/4(2&) p'] z F(P2)F(P8)F(P4)J'(k)" J'(k4)b(p+P2 —Pa —P4)
928394

[J(k—k4) +J(k2 —k4) —48+2in+2inu][J (k» —k) +J(ka —km) +J(k4 —k) +J(k4 —k2) —88+4i (n8+n4) ]
(8—in) '(8—inn) '(8—in3) '(8—in4) '

(4.25)

Instead of evaluating this rigorously, we shall make the low-temperature substitutions in;=~(k;), which, in fact,
violates the b function on the frequencies 8(p,) .

Thus
- (k, a) = (1/E'p') Q G(k, k2, kg) F(p2) F(pa) F(p+ p2 —p3) i (4.26)

where

G(k, kmi k3) = 2[J(k) +J(k2) —J(k3—k2) —J(k3—k) ][J(k3)+J(k+k2 —k3) —J(k~ —k) —J(k3—km) ]. (4 27)
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The 6nal result for the damped spin wave, in this ap-
proximation, is

F~(k, n) =LE(k) i—a —"~(k n)] '

with

(4.28)

with I'(kk'q) =J(k) +J(k') —2J(q) . So

aF ""=(1/4E) g I'(kk'q)
kkq

X (ak a]c' ok—q+k'+q)spin waves (4 32)
or

AF ~-"=(1/2Ã) g bg-b], —

1 G(k; k„k,)M(k; k„k„P)
g&(k cx) =-

E' i ), E(k3) +E(k+k2 —k8) —E(k2) —~'n '

(4.29)
where

m(k; k, k„p) =b-(k, ) Lb-(k, ) —b-(k+k2 —ka) ]
+b

—
(k2) b+ (k+k2 —k3),

where we have used the renormalized notation b (k) =
fexppE(k) —1] '. In terms of the analytically con-
tinued values iu=&a+is, with s—+0+, we obtain the re-
sults of Tahir-Kheli and ter Haar, " for the damping
coeKcient y(k, ip) and the real shift E(k, qi),

-"(k, qiais) =E(k, ~p) mid(k, ~) . (4.30)

The results in this section well illustrate the ideal spin-
wave methods of Dyson and others. ' The T' contribu-
tion to the free energy is obtained from the Dyson form
of the Heisenberg model by considering only the first-
order terms in the interaction operator.

Thus, in terms of the ideal spin-wave boson opera-
tors aj, and uj, ~, the interaction Hamiltonian is

Hin'-"= (1/4$) Q I'(kk'q) ag'ag tag qag+q, (4.31)

the present notation before spi.n-wave interactions can
occur. Consequently one can always identify graphs in
t.he present method with any resulting from spin-wave
theory. The advantage of the present method is that
it is well defined throughout the whole temperature
regime (in distinction to spin-wave theory, which is
strictly valid only at low temperatures,

expL —(-', )PJ(O) ]&&1,

as Dyson has shown). Moreover, the kinematic restric-
tions are built directly into the present theory through
the dynamical nature (C and D fields) of the equiv-
alent vertices and can, in principle, be evaluated at
any finite temperature.

S. CONCLUSIONS

The Green's-function methods (derived in earlier
papers) have been used to investigate the Heisenberg
model of ferromagnetism incorporating all the standard
diagrammatic techniques of quantum-6eld theory.
The usual high-density classification carried out to
zeroth and first order in 1/Z resulted in molecular-
held and spin-wave theory, respectively. A low-temper-
ature classification similar to that of Stinchcombe et al.
has also been carried out, which extends the validity
of the above high-density results throughout the whole
temperature range and which systematically accounts
for the kinematical eGects of ideal spin-wave theory.
Further terms introduced spin-wave scattering effects
as the next important contribution to the free energy
at low temperatures, and the cancellation of the T'
term was demonstrated leaving Dyson's T4 term in the
first Born approximation. Higher-order terms in the
interaction resulted in spin-wave renorma1ization and
damping, which indicated the nature of the approxi-
mation in other methods, such as decoupling of the
equations of motion. It is hoped that these effects will
be evaluated at finite temperatures in a later paper.

Xt J(k)+J(k') —J(k—k') —J(0)]. (4.33)

This is identical with Eq. (4.18). The correspondence
occurs because of the method of representing "Bose-
like" operators S+ by pairs of fermion operators. This
necessitates 4th-order graphs (or their equivalent) in
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