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A Wick Theorem for Spin-One Operators*
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A generalization to all spin magnitudes of the drone-iermion representation (previously known for
spin —,), is presented, and the resulting eigenstates investigated. Linear combinations of products of fermion
operators acting on a vacuum state can always be found which correspond to spin states which are eigen-
vectors of S' and S'. It is then shown that for the case of spin 1 (units of fc) it is possible to construct a
Wick theorem which is analogous to the usual temperature form for standard fermion creation and destruc-
tion operators.

1. INTRODUCTION

INCR the establishment of the principal pertur-
b

~

~

~

bation techniques of quantum field theory by
Feynman, Dyson, and others, it has been natural to
try to extend them to the range of problems in solid-
state physics. These have been notably successful
everywhere, except in those problems where it is neces-
sary to manipulate spin operators explicitly. The crux
of these difficulties is the absence of a simple analog of
Wick's theorem. ' This is the step which reduces multiple
products of operators in a thermal average over the
free eigenstates of the individual operators to products
of pairs of operators (these are normally just creation
and destruction iield operators) .

Several attempts at this problem have been made,
especially around 1960.Davis' used Schwinger's coupled-
boson representation of the spin operators (valid for
all S) to derive a useful linked-cluster theorem without
the use of diagrams. However, the method must care-
fully take into account the finite number of spin states,
as the bosons, of course, have an infinite number.
Indeed, this is the major problem in almost all attempts
at a spin Wick theorem.

Mills ef; al.' in their treatment of the antiferromagnet,
for spin ~, introduced operators which had fermion
properties on the same site but boson properties with
respect to different sites. This involved the use of
diagrams with additional partially overlapping lines,
producing rather unconventional structures. 4 In fact,
Wang et al.' have rederived these results in establishing
a theorem for spin ~ at zero temperature, leading to
retarded spin propagators.

*This work done during the preparation of a Ph.D. thesis, to be
submitted to the University of London.

t S.R.C. Postdoctoral Fellow.' G. C. Wick, Phys. Rev. 80, 268 (1950) ~ Recently, T. Arai and
B. Goodman )Phys. Rev. 155, 514 (1967)g have shown that this is
a cumulant (semi-invariant) expansion.

~ H. L. Davis, Phys. Rev. 120, 789 (1960).' R. L. Mills, R. P. Kenan, and J. Korringa, Physics 26, S204
(1960).' In iact, R. P. Kenan LJ. Appl. Phys. 37, 1453 (1966)]has also
treated the antiferromagnet using the drone-fermion representa-
tion with the drones playing the role of the "contracted lines" in
Ref. 3, rather than by the general method established in Ref. 12.' Yang-li Wang, S. Shtrikman, and H. Callen, Phys. Rev. 148,
419 (1966).
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In 1965, Yolin' used a spin Wick theorem, again for
spin ~, and involving the coupled-fermion spin represen-
tation, to investigate spin-phonon interactions in para-
magnets. Again the anomalous states were responsible
for complications. This time they were in the form of
weighting factors which limited its application to re-
taining the site index; i.e. in general, no Fourier mo-
mentum transform was possible. Indeed, this normali-
zation difficulty occurs in the present work for 5=1
but rot for S= &.

Abrikosov7 generalized the last method to all spin
values by introducing the 2S+1 coupled-fermion repre-
sentation in an investigation of the Kondo problem of
anomalous resistivity behavior in dilute metallic alloys,
and he overcame the difficulty of the anomalous states
(of which there are now a large but finite number),
but there were still normalization difficulties. Doniach'
also investigated the Kondo problem with the aid of a
new Wick theorem for general spin operators at zero
temperature. This was a generalization of the usual
Wick approach and resulted in special diagrams corre-
sponding to commutators of more than one pair of
operators. The central point here is that techniques like
the linked-cluster theorems are not readily available.
A form of Wick's theorem for spin operators has been
introduced in the work of Giovannini et al. , which
involves "remembering" all the previous commutations
which have been carried out. This appears to be a
finite-temperature method related to the zero-temper-
ature theory of Doniach. Although a linked-cluster
theorem was established, their diagrams lacked the
elegance of the Feynman graphical technique.

Very recently Lewis and Stinchcombe' generalized
the work of Wang et al.' to finite temperatures for the
case of S= ~ and applied their new techniques to the
Heisenberg ferromagnet, again resulting in a somewhat
unconventional diagrammatic formulation.

The first purpose of the present paper is to generalize

E. M. Yolin, Proc. Phys. Soc. (London) 85, 759 (1965).
~ A. A. Abrikosov, Physics 2, 5 (1965).' S. Doniach, Phys. Rev. 144, 382 {1966).
B. Giovannini, M. Peter, and S. Koide, Phys. Rev. 149, 251

(1966).' W. W. Lewis and R. B. Stinchcombe, Proc. Phys. Soc.
(London) (to be published).
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the drone-fermion representation, introduced by
Mattis" for S=—'„ to all spin values. This is done in
the next section, and the resulting eigenstates are in-
vestigated. The main section will demonstrate that
averages over the spin states for S=1 are directly
proportional to averages over the corresponding C space.
This then results in a Wick theorem for spin-one oper-
ators.

2. GENERALIZED DRONE REPRESENTATION

In an earlier paper" it was shown that a simple
Wick theorem for spin--', operators resulted from an
analysis of the drone-fermion representation for S=-', .
In this section this representation is generalized to all
spin values S. The result is slightly less elegant than in
the previous case, and its principal use is to demonstrate
that numerical coefficients in certain expressions take
the value S rather than 2, which might result from
only using the simplest form.

The drone-fermion representation is generalized by
associating with each localized spin operator S, (sites
labeled i, j, etc.) 25 spin- —', operators S; each of which
can be represented algebraically by a pair of fermion
operators c, and d, (and their adjoints).

5;+=c; tP;;

4 to= dra+dra'

The complete anticommutation rules are

[c*- c p'3+= I:d'-, dt's'j+=~' ~-s.

All other pairs of operators anticommute.
Each site (and representation, u) is associated with a
vector space spanned by four basic vectors

where the entry on the left in each ket of the C space
is the c occupation number, and that on the right is
the d occupation number (the site label has been
omitted for the present). The joint vacuum state

l 0, 0)
is defined by

..l o, o&= d. l o, o)=o. (4)

Because of the drones, the S '= ——', state for each 0.
corresponds to two independent "vacuum" states

l 0, 0)
or

l 0, 1), while the S '=+-', state corresponds to the
two independent states with one c present, i.e., l 1, 0)
and

l 1, 1). For each spin S, we now associate the
direct-product space (C) for a= 1, ~ ~ ~, 25 of the four-
dimensional space Eq. (3). Corresponding to the origi-
nal spin operators are the C-space operators

2S

S,=PS,.
a=1

"D.C. Mattis, Theory of Magnetism (Harper and Row, New
York, 1965).

'e H. J. Spencer (to be published).

The spin computation rules

[S;+,5, ]=28,tS;*; [S,*, S;+j=8,,5,+ (6)

are preserved [this may be checked directly using
and (P, )'=1);without the P operators these

would be anticommutation rules. A basis vector in the
larger C space (for each site) can be written in the
following manner

l cssdss' ' ' csdscldl)y

where each c or d is either 0 or 1. This convention for
their normal order is necessary to preserve the sign of
these vectors as the operators are fermions. Now any
one of these states with all c =0 is an independent
eigenstate

l S, —S) of S' and 5', and defines a 25+1
multiplet

l S, M) by repeatedly using the following
equation to generate the complete multiplet.

S+
l 5, M)= I(5—M) (5+M+1) }'t'

l S, M+1). (8)

It should be emphasized that this procedure assigns all
the states specified by Eq. (7) to the same

l 5, M)
multiplet in the form of 2' independent spin-equivalent
series —unlike the 2S—fermion representation, which
forms all multiplets for S'=0 to S(S+1).The square-
root coefficient in Eq. (8), which is a direct consequence
of the general spin commucation rules, is also the re-
quired normalization of the states in the C space.

Tr,X(S') = —,'Tr,X(S')—X(0).

The factor 4 arises from overcounting the four inde-
pendent triplets, and the operators on the right-hand

3. WICK THEOREM FOR S=1
In order to demonstrate the Wick theorem for S= 1,

the complete set of C-space states for S= 1 are needed.
There are now four independent operators, namely,
ct, cs, dt, ds (again the site label will be dropped for
the present). The four independent triplets, which are
normalized and satisfy Eq. (8), are listed in Table I.
It is at this point that one can see the difFiculty of
deriving a general Wick theorem for finite-temperature
averages, for although they all contribute to the same
multiplet, some of these states are only present in
linear combinations and so have diferent normalization
factors. This means there cannot be a general corre-
spondence between a trace over spin states and a trace
over the states in C space, each of which, by definition,
has the same statistical weight. This difFiculty can be
avoided for the case of S= 1 by noting that the "under-
weight" states in each triplet only occur for M=O,
so the two spaces will only be related by a simple
constant I". The crucial property here is that for all
these states 5'

l
c)=0. Then if X(S*) is expressible as

a power series in S',



TAnLE I. The four independent sets of C states for one site corresponding to the three spin states [ S, M) for 8=1 and M =+1, 0.
The notation of Eq. (7} of the text is used.

The spin
states

The equivalent C-D states
2 3

[ 0000)

2 '"([0011)+[1100))

[ 1111)

[ 0001) [ 0001)

2 i"([0010)+ [ 1101)) 2 'n([ 1000)+[0111))

I
1110) I

1011)

[0101)

2 '"([1001)+[0110))

[ 1010)

with

Z,'= ~Z,O—1

Z,o= 4[exp(Pore) +exp( —Poie) +27

side take their C-space form (5). This latter result is
also true for exponential functions, in particular, the
partition function Z, evaluated in the interaction repre-
sentation of the two spaces. If the Hamiltonian is
diagonalized with respect to 5' in the usual form
II'0=~05', with oro a nonvanishing constant, then Z'=
T«xp( —PoioS*), where P'= AT-The . corresponding
equation is then

spaces can now be related by using Eq. (9):

(S*).'= (Z,') ' Tr, {exp(—PoisS*) S'I

= (4Z, ) ' Tr, {exp( —P&esS*) S*I . (16)

Then, multiplying and dividing by Z, and using Eq.
(15), one may introduce the normalization factor
I'(ops),

(5*)e'= 1'(~o) (5*)s',
where

1'(~o) =Z.'(4Z.') '= {f'f Z'I '

—
4[ezp (Pais) +17[ezp( P&s) +17 ( 11) Moreover for 5= 1, one can always use the following

closure relations for products of 5', (for any integer rs)

This latter factorization is crucial to the whole argu-
ment, for it helps to cancel out the Fermi factors (Sz) 2«+1—Sz or (Sz)2«(Sz) 2 (19)

f+= {exp(+Prus)+1I '. (12) So if X(0) =0, then

Moreover the factor -', in the C form of 5' is just suK-
cient to introduce an inverse Bose factor in the (5*)s'-
type averages. This eventually mill relate the fermion
anticommutation rules of the C operators with the
bosonlike commutation rules of the actual spin oper-
ators. (The term "bosonlike" is used to indicate that
the spins obey commutation rules rather than anti-
commutation rules. ) Now, as can be checked by either
explicit calculation or cycling one of the C operators
around the trace (see later), one has

(X(S*))s' ——I'(X(5') )s'. (20)

[5», 5 «7=2@5* and [5* S»7= pS». (21)

This is the equation which restricts the proof to 5= 1

and 5=-', . In the latter case I'= 1 "
The next stage of the proof is to generalize this to

products of the raising and lowering operators 5&

(remembering 1i=+1). So, on rewriting Eq. (6) for
one site in the useful form,

Tr,[exp( —PoisS*) c tc„7=4[1+exp( —Poio) 7 (13)

So, upon defining averages with respect to the C space
by

(c tc )s' ——(Z,') ' Tr, {exp(—PoisS') c tc
I =f (&os),

(14)

Since spin averages are diagonal in 5', there must be
an equal number of 5& and 5 & operators. The general
proof is inductive, so one starts out with the simplest
products (S+5 )s' or (5 5+)s' and uses the property
of cyclically transferring the operators around the trace,
then "passing" them through the operator exp (—Po~pS )
using

using Eqs. (14) and (6) for S=1, we get exp(XS*) 5" exp( —),5') = e"&5«, (22)

( )
then finally commuting them back to their usual po-

(5*)&'——2f (co&)
—1=p . (15) sition in the product. The final result is

1—exp p &us

1+exp(pPoip)
'

(23)
In the last form, the notation p, = %1 has been intro-
duced for later use. The magnetization in the two This approach can be equally well applied to the spin
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operators in their C-D form since the trace now covers
the complete representation of the C-D states and so
maintains the cyclic property; so immediately

(S»S»)s' ——2ts(S') 'L1—exp(tsPro&) ) '. (24)

Upon multiplying by the factor Y and using Eq. (17),

Moreover as the fermions in this representation occur
in pairs, the P-ordering can be immediately converted
to a T-ordered product (minus sign for each permu-
tation) of the individual fermion operators so that

P'X(S» S" S*))o'=Y(TX(S" S" $*))s' (30)

(S»S-»), = Y(S»S »);.-

The same argument gives

(S"S "S*)'=2 ((S*)')'/I:1— p(tP )j

(25)
After establishing this fundamental correspondence be-
tween the two spaces, the usual proof of Wick's theorem
can be applied to the C and D operators since they are
averaged with respect to a complete set of their states.
The easiest method is that of Gaudin, "who used the
cyclic argument employed above for the individual
operators.

and an identical form for

(S»S-»S') '

Using Eqs. (20) and (25) one gets

(S»S-»S ),'= Y(S»S-»S*), . (27)

So it has been shown that a product of e spin operators
can be reduced to ones involving (tt —1) spin operators.
Then the rest of the proof is simply inductive and need
not be stated here; this immediately leads to the central
result of this paper for a general product of spin
operators

(X(S», S-», S*)), = Y(X(S», S-», S*))e', (28)

where the operators on the right-hand side take their
C Dform for S= 1 -(Eq. 5) . The corresponding result
for a product of spin operators referring to S different
sites is to convert Y to V~ on the right-hand side of
Eq. (28).

This equation also holds for P-ordered products of
spin operators (no sign change) written in the inter-
action representation, that is by Eq. (22),

S»(t) = exp(iHot) S"exp( —iHst) = exp(itsrost) S». (29)

4. CONCLUSIOÃ

%e have established a very simple procedure for
handling thermal averages of spin operators for S=1,
which mav be further manipulated through the tech-
niques of quantum 6eld theory. '4 It must be emphasized
that, apart from the additional multiplicative factor I',
the present method is a direct extension of such tech-
niques to S= 1 operators and does not necessitate any
specialized manipulation or diagrams in contrast to
most other spin-%'ick treatments.

The present result is applied, along with the simpler
result for S=-,'previously established, " to the problem
of the Heisenberg model of the ferromagnet in the
following paper.
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