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Quantized Phase Effect and Josephson Tunneling
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By using properly defined sine and cosine phase variables, a model is proposed which yields a rigorous
quantum-mechanical derivation of Josephson tunneling with exact current eigenstates. The model predicts
that for dc tunneling the coherent Auids on both sides of the junction must be in the same state, and the
"phase is quantized. "This prediction can in principle be investigated experimentally, and may aBord a fun-
damental test of quantum mechanics.

WINCE Josephson first predicted coherent tunneling
for superconductors, ' this tunneling has been ob-

served both in superconducting junctions' ~ and in
superQuids. ' However, the standard derivations of the
eGect~ ~ are all "semiclassical" in the sense that they
consider a classical phase variable that is conjugate to
the number operator, X, such that

fN, ebs= i (WRONG) .

DeQning the total number operator (N) by

N=Nt+Ns,

we obtain the commutation relations

fN, Stsj= [N, Cia]=0

fNi, Cis) = iS(— (10)

S—= (E=E+)/(2i)

C= (E-+E+)/2

E+=E t= at(N+1) —"'

(2)

(3)

(4)

The E+ (E ) are raising (lowering) operators and at
is the creation operator. In the classical limit, (2) and

(3) become sing and cosp.
If one has two coupled systems with number operators

E1 and E2, one can similarly define phase difference
operators:

Sis ———Sat ——(Et Es+ Et+Es—)/(2i)»n(4 i—4s) (5)

C,s ——Cat ——(E, E,++E,+E, )/2~cos(gt —tjs). (6)

But it is known that (1) is true only in the classical
limit, N»1. (It obviously is wrong if N((1 as this
implies that for a coherent Quid, AP»1.) Instead of @
one should use sine (S) and cosine (C) variables. '~"

In the above, ((Pv&)1, is a number state projection
operator for the type k particle.

((P"')e=
f pe)(ge f. (12)

r=1, 2, ~ ~ ~, n+1, (14)

with eigenvalues e and cos8 „respectively. The eigen-
states of X and S12 are

Equation (8) is very important, for it tells us that
we can have states which are eigenstates of both total
number and cosine or sine of the phase difference,
even though X1 and S2 are not conserved individually.
The normalized and complete eigenstates of X and C12
arell, 13

1/2 n

f
cose, )= g sill(m/1) 0„,

f m) f
rt —m) (13)n+ 2 m=0
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( 2 ) 1/2 n

f sing„, )=
f f g( —i) sin(m+1)e,

f
m) f

n —m),4n+2) m=o

with eigenvalues e and sin&„„respectively. We see that
cose „and sing„, are discrete phase eigenspectra with
n+1 values, t,hat become quasicontinuous for n»1.

Usually the starting point for deriving Josephson
tunneling is a Hamiltonian of the form

H =cotNt+ossNs+ VNi+ Tatb+ T*bta& (16)

where at (bt) creates a particle on side one (two) of

387 "P. Carruthers and M. M. Nieto, Rev. Mod. Phys. (to be
published) .
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iNr= [Nr, Hj=—2ZS», (18)

which is valid at t=0. To find S~2 as a function of t we
commute S~2 with H twice to get

Et ((p")2
—Et+((P")2

612 (~1 a2+ V) S12
2i

((PM) rE2 —((p") rE2+.
(19)

The last two terms can be considered to be the sine
phase correlations with the vacuum, since they con-
tribute only for those parts of the states which relate
to the vacuum on one of the sides of the junction. For
a relatively small value of e these terms become in-
significant, and we will drop them. (This should not
change our later conclusions. ) From (18) and (19) we
then have

S&2(t) =
I Et E2~ exp[ i (~2+—V ~2) tj

Er+E2 exp[i(~~+—V—
&o2) tj I /2i, (20)

Nt —ZS»(t) .—— (21)

We can now draw our first conclusion. For the dc
JosePhson egect (V= 0), cot ——&os. If this were not the case
we would have ac current immediately. Thus, if the two

regions are in phase correlation, the coherent fluids must
be iN the same energy state. With co&=~2 and V&0 the
ac Josephson condition is obtained.

Although there exist views that the phase concept is
nonessential, " we feel otherwise. Our belief was first
based on the necessity of a quantum operator to serve
as the conjugate variable to the well-understood num-
ber operator. If phase is physical, a coherent Quid
tunneling through a barrier will have diferent trans-
mission characteristics than the ordinary quantum-me-
chanical wave.

A way of looking at this is from the concept that time

~4 In this discussion ere are considering true bosons instead of
the pairs in superconductivity. Also, all of the coherent particles
on one side of the junction are taken to be in a single-energy state.

'2 Y'u. M. Ivanchenko, Zh. Eksperim. iITeor. Fiz. 51, 337
(1966) LEnglish transL: Soviet Phys. —JETP 24, 225 (1967)g.

the junction. ~& (&o2) gives the zeroth-order energy
(A, =1) on side one (two). The middle term is the
potential (V) applied to one side of the junction and
the last two terms are the tunneling Hamiltonian with
tunneling matrix element T."

What we propose is the Hamiltonian

H=&urNr+co2N2+VNt+ZC», (17)

where Z is the new tunneling matrix element, taking
the place of T and T*.Eq. (17) is similar in structure
to Eq. (16) and implies that the tunneling is a quantum-
phase-correlation phenomena.

In the Heisenberg representation the current ¹ is
given by

can be thought of as a phase variable. " In ordinary
waves one looks for the t—+~ solution. But if phase is
physical, in a coherent Quid it will be locked in, and this
solution does not arrive. So to speak, each region of the
superconductor does not "see" the other sections (phase
change, i.e., time for the region being stopped) and the
t~~ solution is not set up. Similarly, one might discuss
a coupling energy locking the phases" or think of
reflected waves not being able to be observed. " (We
add that Kao'~ is currently conducting an experiment
that has an important bearing on this point. )

In any event, given phase operators, we have from
(20) and (21) our second conclusion that the dc current
oPerator is quantised with ei genvalues —Z sing„„.'2 Thus,
according to this model the dc currerIt is not contienols,
but has a structure, and is excited from level to level. The
excitation comes from a temporary small potential
which produces an ac current until the next level is
excited, removing the potential.

An objection that might be raised over the existence
of phase quantization is the possibility that strong
outside forces not considered in the model (electro-
static in the superconducting case) would wipe out the
proposed quantization. However, although the electro-
static energies are intrinsically larger than the phase-
quantization energies, that does not necessarily mean
that the quantization is unobservable. Coherence seems
to average out external influences (the aforementioned
phase locking). An example of this is the existence of
Cooper pairs. Naively one would expect correlation or
electrostatic energies to overcome the small energy gap
binding the pairs.

Nevertheless, this point is certainly pertinent, and
deserves further investigation. However, if indeed the
above objection can be disregarded, then even though
the particular phase eigenspectra may be model-de-
pendent, the existence of phase quantization should
not be.

We then have a prediction that may afford a funda
mental test of quantum mechanics As with .the number
operator, the properly defined phase difference operator
is meaningful, and it should exist and be subject to
quantization. Given a sufficiently small number of
particles this quantized phase e8ect is in principle
accessible to experiment.

An interesting possibility is the CP-violating inter-
ference from coherent regeneration of E8 by EJ.. From
Eqs. (8) to (11) we see, for (N)=1, that N, C», S»,
and (N& —1V2) correspond to the T= -', system of SU (2),

26 B.D. Josephson, Advan. Phys. 14, 419 (1965)."Y. H. Kao (private communication).
'2 One should realize that the Hamiltonians (16) and (17)

ignore the particles leaving and entering the normal states at
opposite ends of the superconducting region. This introduces a
character that can prevent the ( cosa„„) states from being the
eigenfunctions in time of B. (See Ref. 13.) However, if we truly
have a dc current, then we can use Eq. (15) for current eigen-
functions.
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transforming as I, T, T„, and T„, respectively. This should be small, perhaps a dilute helium gas. Rut in
correspondence holds only for (E)=1 (T=ra) because any case, it would certainly be of great interest if
the projection operators on the right-hand side of Eq. attempts could be made to observe quantized phase-
(11) complete the group structure only for this case. difference phenomenon in a coherent boson-type me-
Unfortunately, it is just the CI' violation that destroys dium.
the SU(2) syrnrnetry of the EB, Ez, system. Even Finally, we would like to express our gratitude to the
worse, the mass difference of E8, El., which would many colleagues with whom we have had discussions on
correspond to the potential term of (16), is not small the subjects of phase and Josephson tunneling. Special
with respect to the E~ lifetime. These facts, and the thanks are due to Professor P. Carruthers for a long
unknown details of the strong interactions make it collaboration on the question of phase, to Professor
dificult to 6nd new results here. Y. H. Kao, who has kept us informed of his experi-

It seems then, that at present it would be more mental results and their implications, and to Professor
fruitful to think about low-energy systems for possible C. N. Yang, for a number of penetrating exchanges on
applications. Because of the number factor, the system —the Josephson effect.
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New experiments demonstrating macroscopic coherence and quantization in partially resistive super-
conducting rings with point contacts are described. These include: (1) the observation of quantized magnetic
transitions for frequencies pp &pp& =P/l. , where R is the resistance and I. the inductance of the ring, and (2)
the measurement of coherent oscillations at frequencies limited by thermal noise fluctuations, Skrp TR/C p &

where kz is Boltzmann's constant, T the absolute temperature, and Co the Qux quantum. These results
are interpreted by introducing into the phenomenological model of weakly connected superconducting
rings a continuous time dependence of the quantum states,

E describe new experiments which demonstrate
macroscopic coherence and quantization in

partially resist& e superconducting rings. Two principal
effects are displayed with the use of a superconducting
point contact in series with a small inductance I. and a
small normal resistance R. First, for frequencies cu) co&=

R/I, there are quantized magnetic transitions as
previously reported for superconducting rings. ' ' The
classical decay exp( —a»f) in the flux-screening current
can be represented as a continuous exponential shift in
the quantum number of the state. Second, any constant
voltage across the resistance generates an oscillating
currentP similar to the Josephson ac effect' and this
oscillation has been detected' at frequencies much below
co&, in fact, the lower frequency limit is approximately"
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4 J.E. Zimmerman, J. A. Cowen, and A. H. Silver, Appl. Phys.
Letters 9, 353 (1966).' B. D. Josephson, Rev. Mod. Phys. 30, 216 (1964).' A. H. Silver, J. E. Zimmerman, and R.A. Kamper, Appl. Phys.
Letters 11, 209 (1967).

7 R. A. Kamper, in Symposium on the Physics of Superconduct-
ing Devices, Charlottesville, Va. Ofhce of Naval Research Report
No. NONR (6)00015—67.

Sk@TR/C'p, where k~ is Boltzmann's constant, T the
absolute temperature, and Co the Qux quantum.

These properties can be described by an extension of
the phenomenological model of weakly connected super-
conducting rings. ' ' The primary modish. cation for
resistive rings is to permit a continuous time dependence
of the macroscopic quantum states; hence, the integral
quantum numbers, k, for the London Quxoid become
continuous variables. However, transitions between
quantum states, which occur when the current in the
weak contact equals the critical current i„satisfy the
selection rule

i
hk

i
=1. The picture which emerges is

that of a discrete set of macroscopic states all moving
ln unison.

The general equivalent circuit of the system is shown
in Fig. 1, where C represents an applied magnetic field
in terms of the intercepted magnetic Qux, i is the loop
current Qowing in R, I., and the point contact, ii and
i2 are branch currents, and t/'g is the voltage across the
point contact. Construction of such circuits has been
previously detailed. 4 8 For R=—0 we have demonstrated'
the complete equivalence of an input current I and
applied magnetic field, C,. Such an equivalence no
longer applies for resistive circuits and the two external
6elds, C, and I, must be considered separately.

8 A. H. Silver and J.E. Zimmerman, Appl. Phys. Letters 10, 142
(1967).


