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or an 8.1%, decrease in the gap at Hg. If, however,
Egs. (12) are averaged over the superconducting half-
space, weighted with a factor exp(—2x/Az) to represent
the penetration of an electromagnetic field, the decrease
at Hgis 6.69,. Our value of 7% is thus in fair agreement
with these predictions. It would perhaps be unwise to
expect more exact agreement on this point; the applied
field cannot be made exactly parallel to the sample
film at all points, and the perpendicular component
will result in flux penetration in the form of quantized
vortices.® Such vortices are characterized by position-
dependent order parameters, so that it can become
quite difficult to characterize the entire sample by a
single gap value; we then no longer have the clean
situation to which the theory pertains.
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We consider the nucleation of superconductivity at a §-function plane barrier in a free-electron super-
conductor. We calculate the exact kernel of Gorkov’s linear integral equation for the order parameter A,
and compare it with the kernel derived by de Gennes for a similar model on the basis of a correlation-func-
tion argument which has not been rigorously justified as yet. The two kernels are not the same, particularly
near the barrier, but the difference oscillates with wavelength #/kr and is negligible for the purpose of
calculating asymptotic boundary conditions on the order parameter. We thus confirm for our model the
boundary condition predicted by de Gennes, Y. =y¢_+4 ({1—2)/{t)) Lad/dx |o.

I. INTRODUCTION

N this paper, we study the functional form of the
order parameter A(r) near a plane tunneling barrier
in a pure superconductor.

We restrict our attention to the neighborhood of a
second-order phase transition, where the order param-
eter A(7) obeys Gorkov’s equation'?

A(r) = f K(x, 1) A(r) 7. 1)
In particular, we assume T'=T, and H=0. Gorkov’s
equation then has one-dimensional solutions A(x).

We represent the superconductor with the BCS free-

electron model with pairing interaction of strength V.

We represent the barrier with the repulsive é-function
potential (x/m)58(«x). The electron wave functions yu

11,, P. Gorkov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl.: Soviet Phys.—JETP 9, 1364 (1959) 1.

2 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Englewood Cliffs, N.J., 1963), Chap. 7.

satisfy the Schrodinger equation?

L= (v2/2m) + (k/m) 6 (%) Wn=Exln,

which can be solved exactly.
In Sec. I, we calculate the thermal Green’s function*

Ga(r, ') = 2o ¥m(0)¥n*(r') / (o —ex) 3)

(2)

from the exact wave functions. We then calculate the
kernel of Gorkov’s equation®

K(r,t)=VT: D Gu(r, 1)G*(1', 1). (4)

We have not found an exact solution to Gorkov’s
equation. Instead, we proceed approximately by sub-
stituting zero-order solutions A¢(x) in Gorkov’s

3 Natural units A=c=Fkp=1 are used throughout this paper.

4 See Ref. 2, Chap. 3. Here e,=E,—pu.

5See Ref. 2. The sum is over w=2rTc(n+3) from n=—c
to 4.
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equation
Ay(x) = / K(x, ) Ao(x) 7 (5)

to obtain first-order solutions A;(x) in Sec. III.

In the absence of a barrier, Gorkov’s equation has the
even solution A¢(x) =1 and the odd solution A°(x) =x«.
In the presence of a barrier, we assume a zero-order
even solution Ay(x) =1 and a zero-order odd solution
AP (x) =x+a sgnx. We determine the intercept @ for
the odd solution by requiring the average difference
between A°(x) and A¢°(x) for positive x to vanish;
we let

|7 [ae() — ) Jaw=0. (©)
0
For de Gennes’s model® of a barrier, this requirement
leads to the same intercept ¢ as de Gennes’ found by
another method.

II. GORKOV’S KERNEL

The electron functions ¢ are free-electron wave
functions of form exp(7k-r) everywhere except at the
barrier, where their derivatives are discontinuous.
We integrate Eq. (2) with respect to x over a small
interval including the barrier, obtaining the boundary
condition

d\b/dx [z=0+—'d¢/dx la:=0=2'“l/ [a:=0~ (7)

The Schrodinger equation has even and odd solutions
which satisfy the boundary condition:

Ve (1) =V2 exp[i(koy+Eksz) ] cos( | by | x—8 sgnx),
Yo (r) =V2 exp[¢(key+ks2) ] sin (k). (8)
The phase shift § is given by
tand=x/ | k1 |. 9

The transmissivity of the barrier for Fermi electrons
incident at angle ¢ is

1(¢p) =kp? cos?p/ (k> kr® cos?p). (10)

Some variously weighted averages of #(¢) over angle
which will be needed later are

/ " {6)d(coss) = 1— (k/ks) tan—t(kn/x),  (11)

[ @2 cospi(coss) =1 (e/ke)* I 1+ (ke/)7],
0
(12

/1 [1—12(¢) 13 cos?pd (cosep)
0

=3(x/kr)[1— (x/kr) tan~ (kp/x)]. (13)

8 P. G. de Gennes, Superconductivity of Metals and Alloys (W.
A. Benjamin, Inc., New York, 1966), p. 238.

7 We have corrected some typographical errors in de Gennes’s
book, and quote his corrected result in Eq. (40).
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Equation (12) gives the average transmissivity seen by
a current normal to the barrier (represented by a
displaced Fermi sphere).

On substituting the wave functions Eq. (8) in Eq.
(3), we obtain the thermal Green’s function for the
normal state in the form of a sum of a barrier part and
a barrier-free part

Go(r, 1) =G (R)+GL(R'),
where

GL(R) = ;exp@k-R)/(m—ek), (14)

and
G(R) =—ix Y exp(ik-R’)/(ki+ix) (iv—e). (15)
k

Here
R=r—r,
and
R=(|z|+ 5], y—y,2—7%).

G0 is the Green’s function in the absence of a barrier.

For free electrons,

GL(R) = — (m/2wR) exp[ (ikp sgnw— | w | /vr) R].
(16)

We may express the barrier part of the Green’s function

G.? as an integral over G.”:

G (R') = — exp (i) / " exp(— k) GL((P4-2) 1) dL,

(17)
where
p=(y—¥)*+(s—2)%
and

u=|x|+ ||

We consider the asymptotic limit for R’ large. Let =
u+e. We expand the radical

(P*+8)P=R'+ue/R’
and carry out the integration, getting
R'GL(R
GHR)=— — N . (R) /
KA Lo |for—ikr sguol( [ 2]+ 17 1)

(18)
This expression is valid for

kR’>>1.

Since we shall be interested in values of x2>kr and
distances R">>\r, the approximation is a good one.
Hereafter we shall neglect the term (| w |/vr) (| % | +
| %’ |) in the denominator, since it is much smaller than
kR’.

We now substitute the thermal Green’s function
from Eqgs. (16) and (18) in Eq. (4) to obtain Gorkov’s
kernel

K(r,r') =K(R)+ K (R)+K*r, 1),
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where
K (R)=VT. D | GA(R)

KYR)=VT. D |G (R) |,
K1, r) =VT, D [GL(R)GY*(R") +cc].

K° is Gorkov’s kernel in the absence of a barrier.
Explicitly

K°(R) =(VTs) (m/2r)*R* 3~ exp[— (2| @ |/vr) R].

PURE SUPERCONDUCTOR (T =T,.) 409
Hence
m\? 1— exp[ — (2wp/v#) R]
K(R)=(VT,) |— .
(B)=( )<27r> R2sinh[ (27 T./vr) R] (20)

We may easily verify® that
/KO(R)d3R=1.

The second term in K can be evaluated immediately:
KY(R') =[1—1(¢) JK*(R). (21)

Here #(¢) is the transmissivity of the barrier for a

The sum on w is cut off at wp. It can be performed Fermi electron incident at angle ¢=arccos[(| x|+

immediately:

— exp[ — (20p/vr) R]
sink[ (27T ./vr) R]

3 expl—(2al/m)R]=- (19)

| 2" [)|R"]. The reflectivity is
1—i(¢) =[1+(kr/0)*(| x| + |2’ | )¥/RT™

The third term in K is much messier:

K2(r, ') = —2[1—1(¢) J[coskr (R—R')+ (ke/0)[ (| x| + | &’ | ) /R"] sinkr (R—R') ]

m\? 1—exp[ — (wp/vr) (R+R’)]
X{(VTC) (ﬂ) RR’ sinh[ (7 T./vr) (R‘i-R')]}' (22)

However, it simplifies when r, r’ are on opposite sides of the barrier, for then R=R’, and
» P ) PP

K*(R) =—2K'(R).

Collecting these results, we get the complete kernel

(23)

K(r, 1) =[6(x)6(2) +0(—2)0(—=") ITK*(x, ') + (1—1(¢) )K(r, ') + K*(x, 1') ]

Here 6(x) is the unit step function, and 1’ is equal to
', except that &" has the opposite sign.

We note that of the two separate terms in the kernel,
the first is nonzero when «, &’ are on the same side of the
barrier, while the second term is nonzero when x, &’ are
on opposite sides.

According to de Gennes,? the kernel K(r, r’) is
(in a sense) proportional to a correlation function

@Lr—r(0) Jo[r'—r(?) Dep

which represents the probability of finding an electron
at r’ at time ¢ after it was injected at r with the Fermi
energy. Following de Gennes, we might have con-
structed the kernel K for our free-electron super-
conductor by summing K° over all classical electron
paths connecting r and 1/, weighted by the probability
of the path:
?
K(x, r)= Z P,K°(R,),

where P, is the probability of the path, and R, is the

+[0(x)6(—=2")+0(—2)60(«") k(6) K°(x, ). (24)

path length. This argument? yields de Gennes’s kernel
K, which is identical to the kernel given in Eq. (24,)
except that it lacks the oscillatory term K2 for r, r’
on the same side of the barrier. de Gennes also let the
transmissivity ¢ be independent of angle.

III. GORKOV’S EQUATION

We substitute the zero-order even solution A¢f(x) =1
in Eq. (5), getting (for x>0)
s =1+ [ K, ), (25)
/>0
Hence for de Gennes’s truncated kernel K (from
which K2 is omitted) the zero-order solution is exact.
If either x or &’ is zero, then our kernel K has the
simple form #(¢) K°(R). The value of A on the barrier
is therefore

200) = [ (8)d(coss), (26)
0

independent of the functional form of ¢. All angles are

81, S. Gradshteyn and I. M. Ryzhik, Tables of Integrals Series and Products (Academic Press Inc., New York, 1965), Eq. 3.541.2.
9 See Ref. 6, p. 215. See also G. Liiders, Z. Naturforsch. A21, 680 (1966); A21, 1415 (1966); A21, 1425 (1966); A21, 1842 (1966).

10 See Ref. 6.
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weighted equally in this average. If { is constant as in de
Gennes’s model, then the integral is simply ¢. The value
of the integral is given in Eq. (11) for the é-function
plane barrier.
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In order to evaluate the integral in Eq. (25) for »
nonzero, we let ¢ be constant. The integral can then be
simplified by the substitution p=%(R—R’), s=1%(R+
R’), and we get

X ) [

Ar(x) =1— 2op

[1—exp(— e u)]/sinhu. (27)
orT cx|vp 7I'Tc

When =0, the integral has the value (VV)~. Hence, for small ¥&Kvp/2wp,

A (%) =1 —{ (1—1) sin(2kpx) +[¢(1—1) J¥2[1—cos(2kpx) 1} /2kpx.

(28)

For large 4>>&, the integral can be performed immediately:

A (2)=1—2NV exp[ — (2xTe/vr) x1{ (1—1) sin(2kpx) 4-[1(1—1) J*2[1—cos(2kzx) 1}/ 2kpx.

These asymptotic forms for zero ¢ agree with those
found by Falk! in a similar calculation.

Note that the oscillatory term dies off in a few Fermi
wavelengths; it cannot contribute appreciably to the
value of

A (%) = /K(r, ') A (%) &3

for 22>\, because part of the kernel varies smoothly,
and the rest oscillates out of phase in the region where
the oscillatory term is large; either way, the contribu-
tion of the oscillatory term is averaged nearly to zero

(to order Ap/%).
We now substitute the zero-order odd solution

A¢(x) =x+asgnx in Eq. (5), getting (for x>0)

Aye(x) =x+a+2 /M (1=K (r, 1) x'd%'

—2a f IKO(x, ¥) dr'+ f K (x, ¥) (/+a) d.
z/>0 />0
(30)

Since the kernel K is continuous at the barrier, A,°(0) =
0 on the barrier. ~
de Gennes’s kernel K, however, is discontinuous at

the barrier:
K(o+,r)—K(o—, ')
=2(1—-8)[6(«') —6(—2')]K°(0,1'). (31)

Consequently, the odd solution of Gorkov’s equation in
de Gennes’s model is discontinuous at the barrier, with
limiting value

2°(0+) =2 / (=00, 1) 8@ . (32)

Actually, A;°(x) has the form (for £ small)

A (x)=a[1—sin(2kpx) /2kpx], (33)

1D, S. Falk, Phys. Rev. 132, 1576 (1963). Falk calculated A
at equilibrium, not at nucleation, so it is not @ priori obvious that
his results and ours should agree.

(29)

within a few Fermi wavelengths of the barrier. The
oscillatory term contributed by K? dies off in a few
Fermi wavelengths, and thereafter Ar(x) changes
much more slowly. de Gennes’s model therefore
correctly represents the behavior of A;°(x) on a scale
much larger than a Fermi wavelength, since, as we
noted earlier, the oscillatory part of Ae(x) does not
appreciably affect the behavior of Ae(x) for x>Ap.

Since the volume integral of K° is unity, it is con-
sistent with Eq. (32) to assume A° constant within a
distance & of the barrier with fractional error of order
2. On substituting A’(#) in Eq. (32) on both sides, we
find the estimate for a

a=3n*(NV)L(1=1)/t](ve/2x T), (34)

which is of order 3&//. Hence for small #, we have
Ll>>§0.

We shall now look at the asymptotic form of Ae(x)
for a>>&. Each of the integrals in Eq. (30) is cut off
exponentially as R increases more than £ beyond .
Consequently, the angular part of the integration
contributes only for ¢~0. Therefore we may set
1(¢) =¢(0) and remove it from under the integral signs.
The relevant integrals have the asymptotic forms

/ K2, ¥) @2 (V) (ur/20T)
-~ Xexp[— (2xT./vr) ]/,
KO(x, V)N (on/ 20T
- Xexp[ — (2xT,/vr) %]/,
[ K )= (V) ke expl = (2T 0)]
Xsin(2s) /1,
KX (1, 1) &' d'=— (NV) by exp[ — (2w T.) vr) x]

/>0

Xsin(2kpx). (35)
We display the K2 and K%' integrals only for zero
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transmissivity. The K?x’ integral is much smaller than
the K%' integral, except for x> £?/Ap, when the ex-
ponential factor is zero. Hence we discard the K2x'
integral. The K2 integral is negligible as a coefficient of
a, except for transmissivity {<Arp/f, which is quite
small.

On substitution of Egs. (35) in Eq. (30), we get the
asymptotic form

AL (%) =x+a+ (NV) (vp/20Tox) exp[— (2xT./vr) %]
X {(1—1(0))(vr/27T,) —a[t(0)
+sin(2kpx) (wTe/vrkr) 1}.  (36)

The volume which dominates the contribution of the
barrier to the asymptotic form is located within a
distance £ of the point on the barrier closest to the
point of observation r, so it is natural that the trans-
missivity which enters Eq. (36) should be that for
electrons travelling in a straight line between the two
points (normal to the barrier). Note that if we choose
a=[(1—1%)/t](vr/27T,), then the coefficient of the ex-
ponential in Eq. (36) vanishes to lowest order in
x™ (if we neglect K?); this affords another estimate of
the order of magnitude of a. The asymptotic form of
Ay is given correctly by the truncated kernel K so
long as the transmissivity > Ar/%.

We shall now sketch the method by which de Gennes
determined the intercept a. Acting on the presumption
that A° is nearly constant near the barrier for small ¢,
de Gennes? wrote Gorkov’s equation in the form

A+ (x) — / Ko(r, t') AH(x) &'
=—0(=2) [ Ko(a, ) At ()’

4 (1—200(x) f Ko(x, V) A+ () &, (37)
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where
At(x) =8(x) A(x).

He took the double-ended Laplace transform of Eq.
(35)

g(p) = / er7g(x) dx,
where p<2xT./vr, and let p—0, getting

Ko(r, r")d%,

/>0

lima*+(p)[1—K°(p) ]= —2ia [ "
>0 —00

(38)

where A*(«’) is assumed to have the constant value a
within & of the barrier. If At(x),.,—%4a, then
A* () pro—p~% In this same limit,

1=K(p)>—4pL,
where the integral
L= [ K02 =[75(3) [1(NV) (/26T
while the integral on the right-hand side of Eq. (38)
/_om dx . K'(1, 1) &% =2em®(NV) (vp/2xT.).  (39)

Upon substituting this information in Eq. (38), we
find the value of the intercept
a=(14¢(3) /37*)(1/¢) (vr /27 T:;) =0.501%/1.

We get this same result if we require that

(40)

fm [Ar(x) — A (%) Jdx=0.

We substract x+a from both sides of Eq. (30), inte-
grate over x from 0 to o, and then set the result equal
to zero. We solve for a, getting

1 0 _
/ (1—1)3 cos’éd (cose) / da f Koz, V) '’
0 [} />0

a=

and

(41)
1 o) _ 1 [
/ 12 cos?pd (cosg) / dx Ko(r, 1) d% — = / dx K*(r, v')d?’
0 0 />0 2 0 z/>0
One of the integrals is given in Eq. (39). The other two are
[Tas [ mow @ywan =[75(3) /241V) (ur/20 T (42)
0 z/>0
/ 7w K*(r, v') &% = —u/4kp, (43)
0 z/>0

where we assume /=0 in the K? integral.

12 See Ref. 6.
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If ¢ is constant and £>Ap/&, we remove ¢ from under the integral signs, neglect K2, and find the intercept to be

a=0.501[ (1—12) /#]%,

which agrees with de Gennes’s result Eq. (40).

(44)

If { is variable and £>\p/, we neglect K2 and find the intercept to be

1 1
a=0.501 [ / (1—1) 3 cos’pd (cose) / / 12 cos¢d (cose) ]50.
0 0

The averages of the transmissivity and reflectivity are
given in Egs. (12) and (13), respectively, for the é-
function plane barrier. The averaged transmissivity
is that seen by a current normal to the barrier.

If the transmissivity <K\p/f, we set ¢t=0 in Eq.
(41) and find

a= [7?(3)/371':] (NV) kF<7)F/27rT¢) 2%&2/)\1# (46)

for the intercept. This agrees with de Gennes’s calcu-
lation® of the boundary condition on the order param-
eter at a plane interface between a superconductor
and an insulator. For the purpose of calculating a,
we may ignore K? if and only if £>Ap/k.

IV. CONCLUSIONS

We have calculated the exact kernel K of Gorkov’s
equation for the model of a é-function potential barrier
in a free-electron superconductor at T'=7, [Eq.
(24)]. The kernel can be written as the sum of two
terms, one of which is present in the absence of a barrier
(call it the free kernel), and the other of which dis-
appears when the barrier disappears (call it the barrier
kernel). The barrier kernel decays exponentially at
distances greater than & from the barrier.

de Gennes’s correlation-function argument® yields
all of the free kernel and part of the barrier kernel. The
missing term K2 [Eq. (22) ] is as large as the remainder
of the barrier kernel, and it is necessary to include it if
we wish to represent correctly the behavior of A(x)
within a few Fermi wavelengths of the barrier. How-
ever, the behavior of A at greater distances from the
barrier is not significantly affected by the missing term

13 See Ref. 6, p. 229.

(45)

K2, This is because K? oscillates with waveclength
w/kp off the barrier, while A is an average over KA
[Eq. (1)], in which the oscillatory part of K is aver-
aged out. Hence the correlation-function argument
does yield A(x) in the region | | 3>\, even though it
does not yield the entire kernel K.

We therefore confirm for our model the boundary
condition on the Ginzburg-Landau order parameter
¥ given by de Gennes®” for a barrier in a pure super-
conductor:

Ya=y_+ ((1=1)/{1)) &o(d¥/dx) |o, (47)

subject to the minor restriction (¢)>>Ap/&. Here
¥, ¥ are the intercepts on the barrier of the two linear
asymptotes of A for positive and negative «, while
dy/dx |y is the slope common to both asymptotes. The
appropriate averages of the reflectivity and the trans-
missivity are written explicitly in Eq. (45). The trans-
missivity (/) is that seen by a current normal to the
barrier (represented by a displaced Fermi sphere).
We have taken the liberty of replacing the numerical
coefficient 1.002 with unity.

Note added in proof. Recently an abstract appeared
which reported work similar to this [B. Goodman,
Bull. Am. Phys. Soc. 13, 75 (1968)]. Professor Good-
man concluded that the correlation-function argument
gives the correct kernel except for interference terms,
in agreement with our conclusions.
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