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or an 811/o decrease in the gap at H, b I.f, however,
Eqs. (12) are averaged over the superconducting half-

space, weighted with a factor exp( —2x/) z) to represent
the penetration of an electromagnetic field, the decrease
at Hgb is 6.6%.Our value of 7% is thus in fair agreement
with these predictions. It would perhaps be unwise to
expect more exact agreement on this point; the applied
field cannot be made exactly parallel to the sample
film at all points, and the perpendicular component
will result in Aux penetration in the form of quantized
vortices. "Such vortices are characterized by position-
dependent order parameters, so that it can become
quite difficult to characterize the entire sample by a
single gap value; we then no longer have the clean
situation to which the theory pertains.
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We consider the nucleation of superconductivity at a 8-function plane barrier in a free-electron super-
conductor. We calculate the exact kernel of Gorkov's linear integral equation for the order parameter 6,
and compare it with the kernel derived by de Gennes for a similar model on the basis of a correlation-func-
tion argument which has not been rigorously justified as yet. The two kernels are not the same, particularly
near the barrier, but the difference oscillates with wavelength n/h» and is negligible for the purpose of
calculating asymptotic boundary conditions on the order parameter. We thus confirm for our model the
boundary condition predicted by de Gennes, p+=|t + ( (1—t )/(t )) fed'/d& ~o.

I. INTRODUCTION
" N this paper, we study the functional form of the
. . order parameter A(r) near a plane tunneling barrier
in a pure superconductor.

We restrict our attention to the neighborhood of a
second-order phase transition, where the order param-
eter A(r) obeys Gorkov's equation' '

satisfy the Schrodinger equation'

L
—(P/2m) + (tt/rtt) 3 (x) ]f„=E„f„,

G„(r, r') = g P„(r)P„*(r')/( etoe„) (3)

which can be solved exactly.
In Sec. II, we calculate the thermal Green's functions

t1(r) = X(r, r') 2 (r') d'r'. (1) from the exact wave functions. We then calculate the
kernel of Gorkov's equation'

In particular, we assume T=T, and H=O. Gorkov's
equation then has one-dimensional solutions t), (x).

We represent the superconductor with the BCS free-
electron model with pairing interaction of strength V.
We represent the barrier with the repulsive 5-function
potential (tt/rrt) 3(x). The electron wave functions f„

E(r, r') = VT, g G„(r, r') G„*(r',r). (4)

We have not found an exact solution to Gorkov's
equation. Instead, we proceed approximately by sub-

stituting zero-order solutions As (x) in Gorkov's

'L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
/English transl. :Soviet Phys. —JETP 9, 1364 (1959)j.

'A. A. Abrikosov, L. P. Gorkov, and I. K. Dzyaloshinski,
Methods of Qnantnm Field Theory in Statisticat Physics (Prentice—
Hall, Englewood Cliils, N.J., 1963), Chap. 'j.

Natural units A =c=k~ ——1 are used throughout this paper.
4 See Ref. 2, Chap. 3. Here e„=E„—p.' See Ref. 2. The sum is over ca=2nT, (n+ ', ) from n= —ab-

to +co ~
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equation Equation (12) gives the average transmissivity seen by
a current normal to the barrier (represented by a
displaced Fermi sphere) .

On substituting the wave functions Eq. (8) in Eq.
(3), we obtain the thermal Green's function for the
normal state in the form of a sum of a barrier part and
a barrier-free part

G„(r, r') =G„'(R)+G„'(R'),

r4(x) = f Ic(r, r )s's(x')or' (5)

to obtain first-order solutions d,r(x) in Sec. III.
In the absence of a barrier, Gorkov's equation has the

even solution tI('(x) =1 and the odd solution LV(x) =x.
In the presence of a barrier, we assume a zero-order
even solution t))p'(x) =1 and a zero-order odd solution
&p'(x) =x+a sgnx. We determine the intercept a for
the odd solution by requiring the average difference
between t4'(x) and t)p'(x) for positive x to vanish;
we let

where

G„(R)= P exp(ik R)/(ico e—«), (14)

I ~, (x) —~;(x))d*=o.
Here

and

(6)
G„P(R') = i«—Q exp(ik R')/(kr+i(() (i(o—e,). (15)

For de Gennes's model' of a barrier, this requirement
leads to the same intercept a as de Gennes' found by
another method.

dig/dx
I ()+ dP/dx I,=p—=2«i)t

I
p. (7)

The Schrodinger equation has even and odd solutions
which satisfy the boundary condition:

)t'r,&(r) =%2 expLi(ksy+k()s) ) cos(
I

ki
I
x—() sgnx),

II. GORKOV'S KERNEL

The electron functions P are free-electron wave
functions of form exp(ik r) everywhere except at the
barrier, where their derivatives are discontinuous.
We integrate Eq. (2) with respect to x over a small
interval including the barrier, obtaining the boundary
condition

R'=(l*l y I*'l, y-y', s-s').
G„' is the Green's function in the absence of a barrier.
For free electrons,

G„'(R) = —(m/27rR) expl (iks sgn(o —
I

(o
I /t)t:) R).

(16)

We may express the barrier part of the Green's function
G„as an integral over G„':

o.'(s') = — «p( &) f «p( 'po. "((p'+—t) )s~

(17)
where

)t'r.&(r) =v2 expLi(ksy+kps)) sin(kix). (8)

The phase shift 8 is given by

«»=./ I
k, I.

and
t '= (y —y') '+ (s—s') ',

~= lxl+ Ix'I.

The transmissivity of the barrier for Fermi electrons
incident at angle g is

t((t) =kt' cos'(t/((('+ks' cos'Q). (10)

Some variously weighted averages of t(p) over angle
which will be needed later are

t((t)) d(cos(t) =1—()t/ks) tan-'(ks/«), (11)

t(P) 2 cosgd(cos(t)) = 1—(«/ks)' 1nL1+ (ke/)t)'),

(12)

Li —t((t) )3 cos'gd(cosp)

=3( /k )'I 1—( /k ) tail '(k /K)). (13)
' P. G. de Gennes, Snpercondncttptty of Metals and Alloys (W.

A. Benjamin, Inc. , New York, 1966), p. 238.
' 9'e have corrected some typographical errors in de Gennes's

book, and quote his correete(i result in Kq. (40) .

We consider the asymptotic limit for 8' large. Let t=
tc+e. We expand the radical

(p'+ P) 'ts R'+No/R'—

and carry out the integration, getting

«R'G„P (R')

KR+L I(ol/vp' zks'sgn(o)(
I xl+ I

x
I )

(18)

G„'(R')——

This expression is valid for

Since we shall be interested in values of ~&k~ and
distances E'))Xp, the approximation is a good one.
Hereafter we shall neglect the term ( I

(o I/r)s) ( I
x

I +
I

x'
I ) in the denominator, since it is much smaller than

KR .
We now substitute the thermal Green's function

from Eqs. (16) and (18) in Eq. (4) to obtain Gorkov's
kernel

E(r, r') =EP(R)+E'(R')+E'(r, r'),
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E'(R) = VT, Q I
G„'(R) I',

K'(R') = VT, Q I
G„'(R') I',

E'(r, r') = VT, P [G„(R)G„s*(R')+ccj.

E is Gorkov's kernel in the absence of a barrier.
Explicitly

K'(R) =(VT.) (srs/2~)'R ' P exp[ —(2 I
~ I/»)Rj.

The sum on co is cut off at coD. It can be performed
immediately:

Ze pL —(2I I/ )R3=
1—exp[ (2o)&/») R3

sink 27rT» R

E'(R') =[1—t(y) jE'(R'). (21)

Here t(p) is the transmissivity of the barrier for a
Fermi electron incident at angle p=arccos[(I x I+
I

x' I) IR'g. The reRectivity is

1—t(4) =[I+ (&~/x)'( I
x

I + I
x'

I
)'/R"3 '.

The third term in E is much messier:

( sss ' 1—exp[ —(2eor)/») R]E' R = VT. —, (20)
&2sr R' sinh[(2sr T,/») Rj

We may easily verify' that

f E'(R) d'R = 1.

The second term in E can be evaluated immediately:

E'(r, r') = —2[1—t (p) g [cos4 (R—R') + (4/)r) L( I
*

I + I
*'

I ) /R'3»»r (R—R') ]
)t r)s'is 1—exp[ —(o)r)/») (R+R') j
i,2s j RR' sinh[(~T, /t), ) (R+R') j '

However, it simplifies when r, r' are on opposite sides of the barrier, for then E.=E', and

E'(R) = —2K'(R) . (23)

Collecting these results, we get the complete kernel

E(r, r') = [8(x)8(x')+8( —x)8( —x') $[E'(r, r') + (1—t(g) )E'(r, r') +E'(r, r') j
+[8(x)8( —x') +8(—x) 8(x') ]t($)E'(r, r') . (24)

Here 8(x) is the unit step function, and r' is equal to
r', except that x' has the opposite sign.

We note that of the two separate terms in the kernel,
the erst is nonzero when x, x' are on the same side of the
barrier, while the second term is nonzero when x, x' are
on opposite sides.

According to de Gennes, ' the kernel E(r, r') is
(in a sense) proportional to a correlation function

path length. This argument' yields de Gennes's kernel
K, which is identical to the kernel given in Eq. (24, )
except that it lacks the oscillatory term E2 for r, r'
on the same side of the barrier. de Gennes also let the
transmissivity t be independent of angle.

IIL GORKOV'S EQUATION

We substitute the zero-order even solution t))e'(x) = 1
in Eq. (5), getting (for x)0)

which represents the probability of 6nding an electron
at r' at time t after it was injected at r with the Fermi
energy. Following de Gennes, we might have con-
structed the kernel E for our free-electron super-
conductor by summing E' over all classical electron
paths connecting r and r', weighted by the probability
of the path:

Ar'(x) =1+ E'(r, r') d'r'. (25)

Hence for de Gennes's truncated kernel K (from
which E' is omitted) the zero-order solution is exact.

If either x or x' is zero, then our kernel E has the
simple form t(p) Ks(R) . The value of Ar' on the barrier
is therefore

E(r, r') = QI'„K'(R„), L;(0) = f t(g) d(t:o~),
0

(26)

where I'„ is the probability of the path, and E„ is the independent of the functional form of t. All angles are

' I. S. Gradshteyn and I. M. Ryzhik, Tables of INtegrals Series aml Prodaets (Academic Press Inc. , New York, 1965), Eq. 3.541.2.
' See Ref. 6, p. 215. See also G. Liiders, Z. Natnrforsch. A21, 680 (1966); A21, 1415 (1966); A21, 1425 (1966); A21, 1842 (1966).
'OSee Ref 6
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weighted equally in this average. If t is constant as in de
Gennes's model, then the integral is simply t. The value
of the integral is given in Eq. (11) for the 8-function
plane barrier.

In order to evaluate the integral in Eq. (25) for x
nonzero, we let 3 be constant. The integral can then be
simplified by the substitution p=~(E—E'), s=2(E+
R'), and we get

{(1—«) sin (2k») +P (1—«) $'«'{ 1—cos (2k» x) jIa,'(x) =1— X (NV)
2kpx 27rTcxlv g

1—exp — Q sinhu. (27)

When x=0, the integral has the value (NV) '. Hence, for small x«v»/2~a,

«4'(x) —1—{(1—«) sin(2k»x) +L«(1—«) g'«'(1 —cos (2k») )I/2k».
For large x))],, the integral can be performed immediately:

«4'(x) —1—2NV expL —(2irT /v») x){(1—«) sin(2k»)+L«(1 —«) 3' 'L1 —cos(2k») jIl2k». (29)

for x»A&, because part of the kernel varies smoothly,
and the rest oscillates out of phase in the region where
the oscillatory term is large; either way, the contribu-
tion of the oscillatory term is averaged nearly to zero
(to order li»/to) .

We now substitute the zero-order odd solution
60'(x) =x+a sgnx in Eq. (5), getting (for x)0)

6;(x) =x+a+2 (1—«) E'(r, r') x'd'r'

«Eo(r, r') d'r'+ E'(r, r') (x'+a) d'r'
~~&o z/~

(30)
Since the kernel E is continuous at the barrier, «4'(0) =
0 on the barrier.

de Gennes's kernel E, however, is discontinuous at
the barrier:

E(o+, r') E(o , r')——
=2 (1—«) $0(x') —0( —x') ]E'(o, r') . (31)

Consequently, the odd solution of Gorkov's equation in
de Gennes's model is discontinuous at the barrier, with
limiting value

A0(0+) 2

These asymptotic forms for zero $ agree with those
found by Falk" in a similar calculation.

Note that the oscillatory term dies o6 in a few Fermi
wavelengths; it cannot contribute appreciably to the
value of

A;(x) = fE(r, r')6, '(x')d'r'

a= 8~'(N V) L(1—«)/«](~ /2~T. ), (34)

which is of order 3/0/«. Hence for small «, we have
a))$0.

We shall now look at the asymptotic form of «40(x)
for x))$0. Each of the integrals in Eq. (30) is cut off
exponentially as E increases more than $0 beyond x.
Consequently, the angular part of the integration
contributes only for ~0. Therefore we inay set
«(p) =«(0) and remove it from under the integral signs.
The relevant integrals have the asymptotic forms

E'(r, r') d'r' —(N V) (v»/2mT, )

XexpL —(2s-T,/v») x$/x,

E'(r, r') x'd'r™(N V) (v,/2~T, ) 2

Xexp{ —(2s.T,/n») xg/x,

K'(r, r') d'r' ——(N V) k» ' expL —(2s.T,/e») xj

within a few Fermi wavelengths of the barrier. The
oscillatory term contributed by E' dies off in a few
Fermi wavelengths, and thereafter Ap(x) changes
much more slowly. de Gennes's model therefore
correctly represents the behavior of «4'(x) on a scale
much larger than a Fermi wavelength, since, as we
noted earlier, the oscillatory part of 8,i'(x) does not
appreciably affect the behavior of «4'(x) for x))X».

Since the volume integral of E is unity, it is con-
sistent with Eq. (32) to assume 6' constant within a
distance &o of the barrier with fractional error of order
« On subst. ituting Ao'(x) in Eq. (32) on both sides, we
And the estimate for u

Actually, Ai'(x) has the form (for «small)

~i'(x) =aL1—sin (2k») /2k»3

Xsin (2k» x) /x,

(33) E'(r, r') x'd't'= (NV) k» ' exp—t
—(2rT,) »») xj

~«'&o

' D. S. I'alk, Phys. Rev. 132, 1576 (1963). Falk calculated 6
at equilibrium, not at nucleation, so it is not u priori obvious that
his results and ours should agree.

Xsin(2k») . (35)
We display the E' and E'x' integrals only for zero
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If t is collstailt aild t&)Xr/&p we remove t from under the integral signs, neglect IC', and find the intercept to be

a =0.501((1—t)/tf&p,

a =0.501

which agrees with de Gennes's result Eq. (40) .
If t is variable and t&)Xr/gp, we neglect E' and find the intercept to be

1 I
(1—t) 3 cos'&t d (coslt ) t2 cospd (coslt )

0 0

(44)

The averages of the transmissivity and reHectivity are
given in Eqs. (12) and (13), respectively, for the 8-

function plane barrier. The averaged transmissivity
is that seen by a current normal to the barrier.

If the transmissivity t((Xr/)p, we set t=0 in Eq.
(41) and find

a =$7t (3)/3irg(N V) kp(ep/2+T, )' )p'/Xp (46)

for the intercept. This agrees with de Gennes's calcu-
lation" of the boundary condition on the order param-
eter at a plane interface between a superconductor
and an insulator. For the purpose of calculating a,
we may ignore EP if and only if t))Xi/Pp.

IV. CONCLUSIONS

We have calculated the exact kernel E of Gorkov's
equation for the model of a 6-function potential barrier
in a free-electron superconductor at T=T, LEq.
(24) j. The kernel can be written as the sum of two
terms, one of which is present in the absence of a barrier
(call it the free kernel), and the other of which dis-

appears when the barrier disappears (call it the barrier
kernel). The barrier kernel decays exponentially at
distances greater than gp from the barrier.

de Gennes's correlation-function argument' yields
all of the free kernel and part of the barrier kernel. The
missing term E' LEq. (22) ) is as large as the remainder
of the barrier kernel, and it is necessary to include it if
we wish to represent correctly the behavior of D(x)
within a few Fermi wavelengths of the barrier. How-

ever, the behavior of 6 at greater distances from the
barrier is not signihcantly a6ected by the missing term

"See Ref. 6, p. 229.

IC'. This is because E' oscillates with wav:length
Qr/k~ off the barrier, while 6 is an average over EA
$Eq. (1)), in which the oscillatory part of E is aver-
aged out. Hence the correlation-function argument
does yield A(x) in the region

~

x
~
)&Xr, even though it

does not yield the entire kernel E.
We therefore confirm for our model the boundary

condition on the Ginzburg-Landau order parameter
P given by de Gennes' i for a barrier in a pure super-
conductor:

+(&1 -t)I «)) b—(4/d*) Io, (47)

subject to the minor restriction «)))Xz/$Q. Here

P+, P are the intercepts on the barrier of the two linear
asymptotes of 0 for positive and negative x, while
dig/ds jp is the slope conunon to both asymptotes. The
appropriate averages of the reQectivity and the trans-
missivity are written explicitly in Eq. (45) . The trans-
missivity (t) is that seen by a current normal to the
barrier (represented by a displaced Fermi sphere).
We have taken the liberty of replacing the numerical
coeffi.cient 1.002 with unity.

Note added im proof. Recently an abstract appeared
which reported work similar to this tB. Goodman,
Bull. Am. Phys. Soc. 13, 75 (1968)j. Professor Good-
man concluded that the correlation-function argument
gives the correct kernel except for interference terms,
in agreement with our conclusions.
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