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Characteristic Parameters of a Granular Superconductor*
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Starting from a simple microscopic model of a granular superconductor (cubic grains of superconductor
weakly coupled by Josephson junctions separating adjacent cubes), a calculation is made of the characteristic
parameters 3 and C of the continuum model of a granular superconductor, 3 being the proportionality con-
stant of the tunneling energy, and C the proportionality constant of the electrostatic energy density. From
these are calculated the characteristic frequency co for the onset of electromagnetic oscillations, the char-
acteristic length (, the Ginzburg —Landau coherence distance (GL, and the magnetic penetration depth ).
The last two are identical with the corresponding quantities for a dirty superconductor in the vicinity of the
superconducting transition temperature. In the limit of weak magnetic 6elds, the identity of ) holds for all
temperatures.

I. INTRODUCTION Here
XK= —2 g esses (2)

~

CONSIDER a system composed of many microscopic
& grains of homogeneous superconductor, with each

grain boundary being an insulating layer that is thin
enough to allow appreciable tunneling by the Cooper
pairs of the superconductor. In other words, adjacent
grains are separated by Josephson junctions. ' Such a
system, a so-called granular superconductor, has been
the subject of a number of experimental investiga-
tions. ' ' The writer's has recently developed a theory of
some of the properties of a granular superconductor.

In the present paper we wish to calculate two
phonomenological parameters 3 and C that enter the
theory. These two parameters are, respectively, the
coeKcients of the tunneling energy density and the
electrostatic energy density of the granular super-
conductor. To see how 3 and C enter the theory, we
consider the Hamiltonian density X(R) .It is convenient
to express X in terms of isospin operators' ss(R),
spin-up representing absence, spin-down presence, of a
Cooper pair of internal momentum Ak in a grain
located in space at R. The Cooper-pair annihilation and
creation operators are equal to the isospin angular
momentum step-up and step-down operators, re-
spectively. X(R) can be written

X(R) =Xx(R)+Xv(R)+Xs (R)+Xs(R). (1)

is (aside from an ignorable additive constant) just the
one-electron Hamiltonian of the BCS theory, ' with
~I, being the one-electron energy, and s» the s component
of ss. (The x and y components will be designated by
subscripts 1 and 2, respectively. ) In terms of

S—= g ss, (3)

we can write

(4)Xr = —VI Sr'+ Ss'f
and

Xr =+~L(~tt Sr) '+ (~ttSs)'], (5)

Xy being the electron —electron interaction Hami]. tonian
of the BCS theory, and X& resulting from tunneling of
Cooper pairs at grain boundaries. The sums over k in
Eqs. (2) and (3) are restricted to the region of k space
where

I
ee

I
(jt&u, this being the region over which there

is an attractive electron-electron interaction in the
BCS theory. Defining a (complex) order parameter

6—= V(St+i Ss), (6)

we can rewrite Eqs. (4) and (5) as

Xv= —(1/V) I
~l', (~)

x,=+(o/v) I v.~l . (8)* A portion of the work reported here was carried out at RCA
Laboratories. The author wishes to express his appreciation for
the hospitality shown him and for the stimulating interaction
with his colleagues there.
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Here we have made use of the fact that S may be
treated as a macroscopic, classical quantity with
components that commute. This follows from the very
large number of isospins s~ which go to make up S.
Finally,

Xs=1CZ'

results from the electrostatic energy associated with the
junctions when the surfaces of the grains are electrically
charged. From the macroscopic point of view, there can
be a finite density of electric Ckpoles, although the
electric charge density must always vanish. The electric

atIon
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Comparing Eqs. (4), (5), and (9), we see that 3 is the
phenomenological parameter for Xg and C is that for
X~, in much the same way that the 8CS matrix element
V is for Ky.

In situations where there are real magnetic fields
present, we must replace Vs by V&—(2e/fsc)A in Eqs.
(5) and (8), and we must add a term c'(dA—/dt)
to Eq. (11).Here A(R) is the magnetic vector poten-
tial. At finite temperatures, the k sums of Eqs. (2) and

(3) must be modified by multiplying the summands by

(1—2f~) = tanh —',PE&, (12)

fj, being the Fermi factor associated with the quasi-
particle excitation energy Ez.

In the following section we will calculate 3 and C for
a very simple idealized model of a granular supercon-
ductor, namely, a regular array of stacked cubes, each
of dimension a, with identical tunneling junctions
separating adjacent cubes. In addition to being weak,
the one-electron tunneling is assumed to be a diGuse,
rather than a specular, process (i.e., there is no con-
servation of transverse momentum during the tun-
neling). Having found 3 and C, we will calcula, te
three characteristic lengths g, goL, and X, and one
characteristic frequency ~, associated with the granular
superconductor. The characteristic length t is defined

by the relation

P =3/V. (13)

The quantity $«, proportional to $, is what corresponds
to the coherence distance of the Ginzburg-I. andau
phenomenological theory of superconductivity. ' The
length X is the e6ective magnetic-penetration depth of
the material. The frequency co is the characteristic
threshold frequency for electromagnetic oscillations of
the type analogous to those discussed by Josephson' for
a single Josephson junction. We will find that goL and )
(considered as functions of temperature T and con-
ductivity mean free path l) are identical with the
corresponding expressions for a dirty type-II super-
conductor, at temperatures near the superconducting
transition temperature T,. In the limit of weak magnetic
fields, the identity of X holds over all temperatures. As
has already been emphasized by the writer, '" this
suggests a strong analogy between a granular super-

~ V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).For an English translation of this work, see the
commentary and reprint volume by D. ter Haar, hfea of Physics:
L. D. Latm (Pergamon Press, Oxford, England, 1965), Vol. I,
p. 138."R.H. Parmenter, Phys. Rev. 158, 314 (1967).

field E, appearing in Eq. (9), is related to the phase of
the order parameter. Defining $ such that

(10)
then

conductor and a conventional dirty superconductor.
This behavior of PoL is in agreement with the calcula, -

tions of Cohen, ' who used a very diGerent model of a
granular superconductor. " This is circumstantial evi-
dence that the calculations of the present paper are
model-independent.

Here we shall ignore one rather striking property of
a granular superconductor, namely, the tendency for the
material to have a higher transition temperature than
that of the corresponding pure superconductors. A
number of suggestions have been made as possible
explanations. Examples are: (1) Ginzburg's theory"
of surface-enhanced superconductivity; (2) attractive
coupling between pair states on opposite sides of a
junction" induced by the Josephson tunneling; (3)
pairing of electrons on opposite sides of the junction via
virtual phonons passing through the junction"; and (4)
enhancement due to energy quantization of the one-
electron orbitals in each grain. "For the purposes of the
present paper, we may assume any such enhancement
to be equivalent to having an effective V slightly larger
than the BCS value associated with bulk material.

SsrC= (u/d). (15)

The characteristic velocity for electromagnetic radiation

"Cohen's model consists of barriers that are easily tunnelable
(in the sense that the barrier potentials represent weak pertur-
bations on the situation of an ideal bulk superconductor). The
barriers are specular rather than diffuse.

's V. L. Ginzburg, Phys. Letters 13, 101 (1964).
'4 See footnote 14a of Ref. 'l.

~ M. H. Cohen and D. H. Douglass, Jr., Phys. Rev. Letters 19,
118 (1967)."R.H. Parmenter, Phys. Rev. 166, 392 (1968).

II. MATHEMATICAL ANALYSIS

We think of the grains of superconductor as cubes of
length u, all stacked together without gaps. Separating
adjacent grains are barriers of thickness d, where d&(a.
We first calculate the parameter C, this being very easy
to do. From the form of Eq. (9), we see that SsrC

plays the role of an effective dielectric constant. Since
our assumed model is cubic, the dielectric constant
must be isotropic, so there is no loss of generality in
assuming that the macroscopic electric field E is
parallel to one of the three symmetry directions (say
along the x axis). Since the microscopic field must
vanish in each superconducting cube, there is a micro-
scopic electric field (u/d) E across each junction lying
in the ys plane. For simplicity, we assume a microscopic
dielectric constant of unity associated with the insu-
lating material composing the junction. Thus there is a
total electrostatic energy of

(1/Ssr) (u/d) '8'(u'd) = (8'/Ssr) (u'/d), (14)

associated with each junction in the ys plane. Since
there is one such junction per cube, the average electro-
static energy density is (14) divided by u'. It follows
that
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is Lsee Eq. A (5.13)]
n =c/(8sC) '"=c(d/a) 'I' (16)

(m, , vR, and EI& having their usual meanings), we get

r =3(a/uk)'(1/ts). (22)

where c is the velocity of light in vacuum.
In order to express the parameter 3 in terms of the

conductivity mean free path L, we 6rst must relate the
one-electron tunneling probability to the normal-state
conductivity. Let T» be the one-electron tunneling
matrix element coupling one-electron state k in one
cube with one-electron state k' in an adjacent cube.
The one-electron tunneling probability per unit time
from state k to state k' is

z„,= (2~/jl) asm(o)! Tkk ! ', (17)

where a'X(0) is the density of one-electron states per
unit energy, for a given spin, at the Fermi surface in the
cube of normal metal. Thus N(0) is the corresponding
quantity Per unit volume of metal, in agreement with
BCS notation. We are, of course, only interested in
tunneling at energies close to the Fermi energy in the
metal. It is convenient to define a tunneling time to,

to= 1/(Fkk ), (18)

where the averaging of Pkk, which amounts to the
averaging of! Tkk I

', is over all possible orientations of
lr and k'.

We assuage the dc normal-state conductivity 0. is
limited by the tunneling junctions of the granular
superconductor. Just as with the dielectric constant, o.

must be isotropic because of the assumed cubic sym-
metry, and we can put the macroscopic electric field E
parallel to the x axis, one of the symmetry axes. Since
there is a voltage drop of uB across each junction in the
yr, plane, the Fermi levels on the two sides of any such
junction are separated by an energy aeE (e= charge of
the electron). Thus there are 2a'E(0)faeEj states
occupied on one side of a junction which are isoenergetic
with empty states on the opposite side. Here we are
talking about a junction of area u' separating two cubes.
(The above factor of 2 results from spin. ) This cor-
responds to a current density

J= (e/a') L2a'$(0) j!acEj (Fkk ). (19)

In writing Eq. (19), we are assuming diffuse tunneling
of electrons through the barrier. It is reasonable to
assume no conservation of transverse k vector during
the tunneling process for junctions far from geometrical
perfection, undoubtedly true in practice. Since the
normal conductivity is

(r= J/E= nse'r/m, (20)

= ';(rro/Ek)

= (3rks/2msz') (21)

where no is the conduction-electron density and 7 the
conductivity lifetime, and since

X(0) = ,'(dno/dE&)-

If we prefer to write the conductivity in terms of mean
free path

L=vpr,

then (22) becomes

(t/a) =3(a/opto).

(23)

(24)

Following Wallace and Stavn, " who first treated
Josephson tunneling by means of the isospin formalism, s

the Josephson tunneling Hamiltonian for one of our
elementary junctions is

Xr Q Gkk' (slkLslk'R+$2kLssk'R) i (25)
kkt'

where

~kk'=4a'I Tk' I'(Ek+E') ' (26)

The subscripts I. and R on the isospin operators
designate the two superconducting cubes separated by
the junction in question. E& and Ek are the quasi-
particle excitation energies, as in Eq. (12) . The factor
of a' in (26) arises for the same reason that the factor
a' occurs in (17). We wish to follow the BCS con-
vention that pk is a summation over states in k space
(of a given electron spin) having a density appropriate
to a crystal of unit volume. Thus we must multiply
each k sum by the factor u' to account for the fact that
we are talking about one-electron states in a cube of
volume a'. Comparing (26) with the corresponding
expression in Wallace and Stavn I Eq. (A9) of Ref. 17$,
we see an extra factor of 4 in the former. This is a result
of the fact that in Ref. 11, all sums are over both k
and electron spin, unlike the sums in the present paper.

At finite temperatures, the junction-tunneling Hamil-
tonian becomes

Xr' ———g 3kk '(srkLs, k R+sskLssk R) (1—2fk) (1—2f„.),
kkt'

(27)
where now

(1—fk) (1 f') fkfk &- —
r-jklc'

t~

~
r

(1—2fk) (1—2fk ) Ek+Ek

+ (28)(
fk(1—fk ) fk (1 fk)— —

L:k—&)

The dependence of Gkk '(1—2fk) (1—2fk ) on the f's and
the E's can be checked by inspection of Table III of
the BCS paper. "Equation (28) can be rewritten

4a'
I

Tkk I

' (Ek(1 2fk ) —Ek (1——2fk)
~kk'

(1—2fk) (1—2fk ) & Ek' —Fk'

(29)
"P. R. Wallace and M. J. Stavn, Can. J. Phys. 43, 411 (1965).' The terms of Table llI (using the upper sign) that are pro-

portional to (sz'/EL&'} are those that contribute to the junction
pairing energy.
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In A, it was assumed that 3».' (and thus 5) was the
same for all junctions in the granular superconductor,
and the same for all time. However, whenever the
quasiparticle excitation energy E~ is a function of time
f and/or position R in the superconductor (as it in
general will be for the solutions to the isospin equations
of motion discussed in A), actually 3».' (and thus 3)
will be a function of f and/or R. Thus, in order to
maintain consistency with the original derivation of the
isospin equations of motion, we will evaluate 3» only
for the two time- and position-independent solutions to
the equations of motion, namely the time- and position-
independent superconducting solution (BCS ground
state) and the time- and position-independent norinal
state (referred to as cases I and. II, respectively, in A).
For these two cases, we have

(e 2+/I1 2) 1/2 (30)

where Ao ——eo(T) (the BCS half-energy gap at tem-
perature T) for case I, and Ao ——0 for case II. Which of
the two resultant values of 3».' (and thus of 3) we
insert into the isospin equations of motion will depend
on which of the two time- and position-independent
solutions more closely approximates the solution of
interest. "

We now replace 3» ' by the average

In order to evaluate Il, we rewrite it as

tanh[-,'))( "+6')'&'if" "d
Jl= lU11 (P A'

(e 2+A 2)1/2 e2 e 2

(36)

where (P indicates that the principal part of the integral
of e past e' is to be taken. 'o In (36), we may safely
replace both upper limits Ro by inanity, since the
integrand drops off rapidly enough as e and c' increase.
Since de, , c'+ b'))

, =(2e') '»
e'—e" e' b—

we get

tanhLrp(e"+6 ') '"$ (e'+b)
Ii lim d——c'

2e (e +Do) 4 b&

tHnh(-', t)a,) "d ' e'+))
lim —,ln

26p ~p

where, in the last step, we have used the fact that the
entire contribution to the ~' integral comes from values
of o' comparable with b (which is approaching zero).
Defining y=b/e', we can rewrite (38) as

&'—= (&o2 '), (31)

where I T» I' is averaged over orientations of k and k',
whereas the rest of 3~I,

' is averaged over energies e~

and e~ . In performing this latter averaging, we use the
weighting factors (1 2f~)/Eo and (1—2' )/Eo, thes—e
being the two energy-dependent factors multiplying
3» ' in XT', Eq. (27). Furthermore, we restrict the
energy averaging to be over the energy range where the
BCS electron —electron interaction is attractive. Thus

t han( PA12) o' dy /1+y)
Il.= —ln

2&o o y )1—yJ

= (2r2/8A ) tanh (-',PAo) .

= (2r/4) 2(1/knT), if ~o=O

I,= (2r'/8eo) tanh(eo/2knT), if Do=so(T)

(39)

(40)

where

~'=«'(I T» I')I,/I2', (32)

0 0

tanhL1P (e"+6 ') '/2]
dede' '. . . (33)

(e2 o~2) (o)2++ 2) 1/2
where

XT ~ (S1LSIR+S2LS2/2)

S= Q sg, (1—2f),), (42)

Once we replace 3» '
by 3' in (27), we can rewrite XT'

as

tanhL1P(e2+A, 2) «2j

(e2+A 2) I/2
(34)

In writing (32), we have made use of Eqs. (12) a,nd
(30) . I, is immediately evaluated:

Is=1/1V(0) V,

=in(T,/T)+1/$(0) V,

if /))o ——eo( T)

if dp=0. (35)

' Actually, EJ„and thus 3'I,&. and 3, are t- and ¹independent
for that R-dependent solution to the equations of motion which
was considered in Ref. 11 (the case of a steady uniform current
&ow in a granular superconductor having dimensions small
enough for magnetic eQ'ects to be ignored) . The zero-current BCS
and normal-metal solutions are the two limiting cases for this
solution. Because of the functional form of Es Lsee Eq. A P3l J
for this solution, the integral determining 5' cannot be evaluated
analytically. We will not consider this case further here.

the sum running over the range
I e& I

&M, just as in

Eq. (3). S is the total isospin for a given grain. In-
voking the continuum approximation 2' we consider S
to be a continuous function of R, S(R) being the total
isospin of the grain situated at R. Thus we can rewrite
the isospin factor in Eq. (41) as

(S1LS1/2+S2LS2/2) = Si(R) S1(R+a)+S2(R)S2(R+a).
(43)

2 Essentially the same method was used by BCS in evaluating
an integral in Appendix C of Ref. 9."For the analogous discussion of the continuum approximation
in ferromagnetism, see, e.g., C. Kittel, in I.om Temperarere
Physics, edited by C. De Witt, B. Dreyfus, and P. G. de Gennes
(Gordon and Breach Science Publishers, Inc. , New York, 1962),
p. 459.
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The vector a (of magnitude a) connects the centers of
the two adjacent cubes whose common junction we are
describing. As previously, consider an elementary
junction in the ys plane, so that a is along the x axis.
Expanding in a power series, we have

Sr,s(R+a) = Si,&(R) +g(&/&x) Sr,s(R)

+-'a'(8'/ctx') Si,s(R) + ~ . (44)

The first term on the right-hand side of (44) contributes
to (41) a term —3'(Sir+ Sss) having the same form as
3C&, so that we may assume this term subsumed into
the electron-electron interaction, "as has already been
discussed in the previous section. The second term of
(44) contributes to (41) a term which vanishes when
we add contributions from adjacent junctions. The
third term of (44) contributes to (41) a term of the form

—-'g'g'[S, (c)'/r) x') Si+ Ss (cj'/cjx') Ssj.
By doing an integration by parts with respect to R,
this term transforms into

+Tz=+ gsg [(c)Si/c)x) 2+ (r)Ss/r)x) 2j (45)

(The summation over different junctions corresponds
to an integration over R in the continuum limit, so
that the above partial integration is justified. )

Equation (45) is the contribution to the Hamiltonian
from an elementary junction in the ys plane. There is
one such junction for each elementary cube in the
crystal. Similarly, the contribution from each elemen-

tary junction in the xs plane is

T=O) for the pure superconducting metal composing
our granular superconductor, we have

where

8= p~[sN(0) Uj'"(Sl) '"Fi(T), (51)

Xp
——(ntc'/4srrtpe') ", (56)

the T=O London penetration depth for the pure-bulk
superconductor, we can rewrite ) as"

) = s~[sN(0) Uj'"()ipb/t) L«(0)/~pj (57)

For case I, where Ap
——ep(T), this becomes

Fi(T) —= I [«(o)/«( T) j«nh[«( T) /2&it T ]I "'~

if Dp ——ep(T) (case I), and

Fi(T)—:[1+N(0) U ln( T,/T) j [«(0)/2ktt Tj't (53)

if Ap
——0 (case II).

At T= T„both forms of Fi(T) take on the value

Fi( T.) = (-,'ore )r't'=0. 939. (54)

(y= 0.5772 =Euler's constant) . Thus the characteristic
length $ remains finite" as T~T,. For case I, $ changes
only slightly as T is reduced, since Fi(T) approaches
unity as T~O. For case II, however, $ and Fi diverge
as T 't'[ln(1/T) j ' as T~O.

In Sec. V of A, it was shown that the magnetic
penetration depth for a granular superconductor is

X= ( U/27r) 't'(Sc/4egAo) .
In terms of

5t T +2g23 [(dS—1/cjy) 2+ (c)S2/cjy) 2] (46)
X=Xp(fp/l) 't'Fs( T), (58)

and the contribution from each elementary junction
in the xy plane is

XTe=+ gsg [(c)S1/cjs)2+ (c)S2/c)s) sj (47)

Thus the total tunneling Hamiltonian per unit volume
(i.e., Hamiltonian density) is given by Eq. (5),
provided we take

q = (-,'a'3') /a'. (48)

With the aid of Eqs. (17), (18), (24), (32), (35),
(40), and (48), we can now evaluate the parameter 3.
For our purposes, it is more convenient to evaluate the
characteristic length $, defined in terms of 3 by Eq. (13).
%e get

p = [2I'1ps/Ii/3srN (0) UIssj. (49)

Notice that (49) depends on our model of a granular
superconductor only through the conductivity mean
free path l. The other quantities in (49) depend on the
superconducting metal being used in forming the
granular superconductor, but not on the model itself.
In terms of

&p [hp/ «F(0——)srj, , (5o)

the BCS form of the Pippard coherence distance (at

where

Fs(T) —= ([«(T)/«(0) jtanh[«(T)/2k&T]I 't'. (59)

Equations (58) and (59) are equivalent to the results
of Abrikosov et al. '4 for the penetration depth of a dirty
superconductor in the weak-magnetic-field limit (this
corresponding to case I) . This equivalence holds for all
temperatures. Near T= T„we can write"

«(T) = 2sr[2/7f (3)] t Itis To[1—(T/T )]et (60)

[t (z) being the Riemann zeta function], so that

=0.615[1—(T/T, )] "'. (61)

At T=O, we have Fs(0) = 1. For case II, where Ap ——0,
X is in6nite at all temperatures.

"In Sec. VII of A, it was stated incorrectly that & diverges as
T~T'

"Equation (57) corrects Eq. A (5.17), the latter having in-
advertently dropped the factor (2e) '" appearing in Eq. (55) and
Eq. A (5.&4~.

'4A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
3fethods of QNaxtlra Field Theory &t Statistical Physics (Prentice—
Hall, Inc. , Englewood Clips, N.J., 1963),p. 341.

"See, e.g., Ref. 24, p. 304.
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In order to make the connection between $ and the and, for case II,
Ginzburg-Landau coherence distance $oz„we consider
the Ginzburg-Landau-like equation derived in Sec. [eo(0)/2&a T]
IVof A: (3[1+K(0)V ln(T, /T) j[lll(T,/T)jj

(62) (7o)

where g( I
6

I ) is defined implicitly by the relation

I
a

I
=1'(0) Vg (.,s+g') 't'tanh(szPEo) Ay„., (63)

At T=0, $oz, is the same as P. As T~T., both forms of
Fs(T) become

(64)

EI, being the excitation energy. As was pointed out in A&

because of the form of Eo, g( I 5
I ) has no power-series

expansion in
I
6

I
at any temperature. Despite this,

we can linearize Eq. (62) for small
I
6 I, as a conse-

quence of the fact that g( I
6

I ) vanishes whenever

I
6

I
does. Thus, in the limit of small

I
3, I, we can set g

equal to zero inside the integrand appearing in (63), and

get

(71)

Equations (68) and ('71), giving the form of Poz, as
T—&T„are identical with the corresponding equation
for a dirty superconductor, "and also identical with the
result derived in Ref. 6 for a granular superconductor
with easily tunnelable barriers.

We see that, for case I where Ao ——oo(T), $oz, varies
with temperature in a manner similar to that of ~.
Defining

I
6

I =1V(0) Vg (do/e) tanh(-,'Pe)

=g[1+X(0)V ln(T, /T) $.

tr=—(X/Poz, ) = (Xo/l) F4(T),

F4(T) —= (2/sr) v3 {tanh[oo(T) /2k' T) I
'

(65)

(72)

The linearized form of Eq. (62) can therefore be written
ln( T,/T)

1 XOVlnT, T

($oz,'&zt'+1 j&=o,

provided we define

we see that F,(T) is a slowly varying function of T.66

Thus

goz, =){1+[1V(0)V ln(T, /T)] 'I' t' (67) Fo(0) = (2/sr) [3/cV(0) Vg't'=1. 10[A'(0) Vj—'t' (74)

Knowing t as a function of l and T, we now get Fe(T ) =sr s[42f (3)fits= 0.723. (75)

where, for case I,

4L = (S)'"Fo(T) Finally, we mention that the characteristic frequency

(76)

1 (1+%(0)V In(T./T)&

3 ( ln(T /T) 1

&oo(0) i «o(T)lt zts

&&
I( (

I tanhI( I ~ (69)

the threshold frequency for electromagnetic oscillations,
can be determined immediately, since we know both X

[Eq. (58)) and e [Eq. (16)j.
"See, e.g., P. G. de,Gennes, Sttperoondnoteoety of Metals and

Alloys (W. A. Benjamin, Inc., New York, 1966), p. 225.


