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Superconducting Thin Film in a Magnetic Field —Theory of
Nonlocal and Nonlinear ESects. I. Specular Reflection*
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A self-consistent perturbation solution of the Gor'kov equations for a superconducting Glm in a strong
parallel magnetic Geld is presented. The order parameter is assumed constant in space, but proper allowance
is made for nonlocal effects, important when the thickness d is comparable to or smaller than the pair-
correlation distance P, as is often realized in practice. Specular reflection simpliGes the mathematical analysis:
The usual momentum-space representation and impurity averaging procedures for Green's functions are
shown to apply without essential modifications. Size quantization can be ignored as long as Pod /h))1. The
Ginzburg-Landau and Maki local theories, valid in the vicinity of the transition temperature and in the
dirty limit, respectively, are generalized. The modiGed equations for the current density, order parameter,
free energy, and critical Gelds are studied in detail and compared with previous semiphenomenological
extensions by Bardeen, Toxen, and others. An expression for the critical Geld H, valid in the intermediate
temperature and purity range is also obtained. The convergence of our perturbation expansion and the
assumed constancy of the order parameter are shown to require (e/c)H+] and (e/c)H, 'd«1, respectively.
An inconsistency in Rickayzen's alternative to Maki's theory is pointed out. The most important results,
together with their ranges of validity, are indicated in the last section.

I. INTRODUCTION

A. Qualitative Features and History of the Problem

ECAUSE of its relative simplicity, a great deal of
~

~

~

~

~

~ ~ ~

theoretical and experimental work has been
devoted to the properties of a superconducting film

placed in a uniform magnetic fieM of strength Bapplied
parallel to its surface. Although the magnetization
curve itself should be hard to trace because of the
intrinsic smallness of the sample, the critical field H,
corresponding to the superconducting-normal transition
is easily detected in transport and tunneling measure-
ments. Good, sharp transitions are obtained when
proper care is taken to ensure uniform film thickness
and composition.

A bulk (type I) superconducting sample ideally
behaves as a perfect diamagnet up to the thermo-
dynamic critical field H,&. The field drops to zero over
a penetration depth X, as implied by the well-known
London equation,

(4sr/c) 3= —X
—'A,

relating the current density induced in the super-
conductor to the vector potential of the total field,
h= V xA, in the transverse gauge (V A=O), chosen
such that A has no component perpendicular to the
surface. ' This same constitutive equation leads to a
reduced diamagnetic susceptibility when the 6lm thick-
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ness d'is less than ) . In the limit d((X London obtained

H, /H, s (+12)) /——d (1.2)

' J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,
1175 (1957);J.R. Schrieffer, Theory of SNpercortdrsctisity (W. A.
Benjamin, Inc. , New York, 1964).' V. L. Ginzburg and L. D, I andau, Zh. Eksperim. i Teor. Fiz,
20, 1064 (I95Q).
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by requiring that the work done in magnetizing the
sample (the area under the magnetization curve) be
equal to the superconducting condensation energy, i.e.,

the free-energy diGerence between the normal and
superconducting states in zero field, (Ssr) 'H, ss.

The Zeeman energy associated with the Geld inside
the sample is, however, detrimental to the pairing of
electrons in opposite time-reversed states which is the
basic ingredient of the present (BCS) microscopic
theory of superconductivity. ' The electronic states
adjust to the presence of the 6eld by becoming more
normal-like. This results in an effective field-dependent
increase in the penetration depth and causes the
magnetization curve to bend down, as shown in Fig. 1.
One anticipates that below a certain critical thickness
d,~X the transition should change from first to second
order. Above d, one expects hysteresis associated with
supercooling of the normal phase and superheating of
the superconducting phase, as shown by the dotted
part of the corresponding curve in Fig. 1. Such features
are already contained in the appropriate solutions to
the equations obtained by Ginzburg and Landau ( GL) s

by minimizing a phenomenological free-energy func-
tional gttIP, A I. The current equation,

(4n/c) 3= —(P/X') A, (13)
has the same structure as London's, except for the
appearance of P, which leads to the above-mentioned
nonlinear effects. The order parameter P, assumed real
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FIG. 1. Magnetization curves for a thin 61m in a parallel fIeld.
The transition is second order if the thickness is below a critical
value d,. Above d, the sample undergoes a 6rst-order thermo-
dynamic transition, although superheating and supercooling are
also possible. The area under each curve must remain equal to the
condensation energy (8ir) 'Z.bs.

and normalized to 1 in zero held, in turn obeys

( /)'L / —( / ) 3V—0+8=o, ( )

where s =&2(2e/fic) H, b'A' is the so-called GL parameter
(lc(1/v2 for type-I superconductors). In applying
(1.4) to a thin film note that if d is much smaller than
the characteristic distance X/ic over which P varies, one
may neglect the gradient term and average (1.4) over
the volume V of the sample:

+=i—-', (H,bh) 'V ' A'(r)d'r.

(4ir/c) 3(r) = — d'r'K(r —r') A(r'). (1.7)

He obtained good agreement with experiment by using
a phenomenological kernel

K~ (R) = (3/4irf Xl. ) RRe ~~&/R

analogous to that describing the anomalous skin effect
in normal metals. Just as in this case the range of
integration in (1.7) is assumed to be over the volume
of the sample if the electrons are diffusely scattered at
the boundaries or over all space with A extended
periodically outside the him in the case of specular
reflection. Equation (1.7) reduces to the local London
relation (1.1) whenever A varies slowly over the
distance $= ($, '+l ') ', i.e., if X or d, whichever is
smaller, exceeds $. Here f. and Xl. are the values of $
and ) in pure material; a finite electronic mean free
path / decreases the coherence length and increases the

' A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).

The critical field for a second-order transition is
obtained by setting lt =0 and h =H, . The result'

H,/H, b = (+24) X/d (1.6)

is larger than (1.2), calculated without taking non-
linearities into account, by a factor of K2.

Further complications arise if the vector potential
does not vary slowly over the distance characterizing
the extent of electron pair correlations. The existence
of such a coherence length $, which should not be
confused with X/Ic, was inferred by Pippard, ' who
showed that a proper interpretation of weak-field
penetration measurements necessitated a nonlocal con-
stitutive equation:

penetration depth. In his review of the subject just
before the advent of the BCS theory, ' Bardeen' pro-
posed a nonlocal extension of the A-dependent term in
the GL expression for 5's leading to a current equation

(4 /s)S= —C'fd'r'K(r —r') b(r'), (1.8)

which reduces to (1.3) or (1.7) in the appropriate
limits. The appropriate generalization of (1.5) is

+=1—r 'fd rd'r''LA(r) K(r —r') A(r')/2o2]

(1.9)

Most of the phenomenological theories discussed
above have been justihed from a microscopic point of
view in the past ten years. Thus, BCS showed that the
Pippard kernel is a good approximation to the exact
one with $,=0.18fisr/kiiT„where T, is the super-
conducting transition temperature and vg the Fermi
velocity. Later Gor'kov' derived the GL equations
from his Green's-function formulation of the micro-
scopic theory under a number of restrictions which are
usually satisfied sufFiciently close to T,. In particular,
he showed that the order parameter P can be identified
with the amplitude 6 describing the center-of-mass
motion of an electron pair normalized to its constant
value h„appropriate to a bulk sample in zero held.
6, is equal to half the energy gap in the quasiparticle
spectrum derived by BCS. Another consequence of
Gor'kov's derivation is that the GL I~: parameter is
roughly given by the ratio Xr, (0)/$ of the London
penetration depth at T=O to the Pippard coherence
length.

Recently Maki developed a local theory describing
the electronic spectrum of a dirty (l«$, ) super-
conducting him at all fields and temperatures, assuming
the order parameter to be constant over the sample.
Several authors~" have arrived at expressions for H,
in the extreme nonlocal limit d«t, showing a d '~' or
stronger thickness dependence in contrast to the d '
prediction of local theories.

Results pertaining to intermediate thicknesses have
up to now been derived by phenomenological ap-
proaches. ""Toxen's successful hts to his experimental

' J. Bardeen, EiicycloPedia of Physics (Springer —Verlag, Berlin,
1956), Uol. XU, p. 326. Note that P is assumed constant.

iL. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959)
LEnglish transl. : Soviet Phys. —JETP 10, 998 (1960)j.

7 K. Maki, Progr. Theoret. Phys. (Kyoto) 31, 731 (1964).
e Y. Nambu and S. F. Tuan, Phys. Rev. 133, A1 (1964).
9 R. C. Casella and P. B. Miller, Phys. Rev. 130, A928 (1964)."P. G. de Gennes and M. Tinkham, Physics 1, 107 (1964)."E.A. Sha oval, Zh. Kksperim. i Teor. Fiz. 49, 930 (1965);

51, 669 (1966 LEnglish transls. : Soviet Phys. —JETP 22, 677
(1966);24, 443 (1967)]."D. H. Douglass, Jr., and R. H. Blumberg, Phys. Rev. 127,
2038 (1962).

"A. M. Toxen, Phys. Rev. 123, 442 (1961);127, 382 (1962)."A. M. Toxen and M. J. Burns, Phys. Rev. 130, 1808 (1963)."J.J. Hauser and K. Helfand, Phys. Rev. 127, 387 (1962).
"W. Liniger and I'. Odeh, Phys. Rev. 132, 1934 (1963).
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data on indium films"" were obtained by using the
GL results with ) replaced by an effective value
adjusted to yield the correct weak-field susceptibility
determined by (1.7), assuming specular reflection. A
similar spirit occurs in Hauser and Helfand's work. "
Extensive thin-film calculations based on (1.8) and
(1.9) were performed by I.iniger and Odeh, "assuming
diffuse scattering at the boundaries. The most complete
computations" "' were made using Pippard's kernel.

eH, d'/c«1, (1.10)

or H,))H.s, H.s V2sH, s being the rn——inimum super-
cooling field in bulk. We find that (1.10) is a sufficient
condition in the extreme nonlocal limit as well, as first
recognized by Shapoval. "Within the range of conver-

"A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzialoshinskii,
Methods of QNamtara Field Theory irs Statistical Physics (Prentice-
Hall, Inc. , Englewood Clips, N.J., 1963), Chap. 7.

'8 M. Tinkham, in Basic ProMemsin Thin Filns Physics, edited
by R. Niedermayer and H. Mayer (Vandenhoek and Rupprecht,
Gottingen, Germany, 1966).

ie P. G. de Gennes, Physik Kondensierten Msterie 3, 79 (1964).

B. Scoye and Outline of this Work

In the present and following papers we present a
microscopic derivation of the properties of a super-
conducting thin film in a strong tangential magnetic
Geld, including nonlocal effects. Bardeen's equations
(1.8) and (1.9) are justified near T, for all values of
mean free path while a simple modification of Maki's
depairing parameter p~ extends the range of validity of
his results outside the local limit. We obtain explicit
analytic expressions for the second-order transition
critical field H, (d, /, T) and the value H„(/, T) corre-
sponding to the critical thickness d, (/, T).

The calculations employ the thermodynamic Green's-
function approach of Abrikosov and Gor'kov. " Mag-
netic held effects are calculated in perturbation theory.
Rapid convergence is shown to require (eH,d/c)'f, $((1
or, equivalently, 1—t((1 or d),/P, whichever is smaller,
near T,(t=T/T, ), and (eHd//c) '«1 or /«cr, and

dc,//s((1 for a dirty film at all T. In both cases the
restrictions involving d become important in the ex-
treme nonlocal limit. A nonperturbative approach' " is
necessary to treat pure films at low temperatures. The
order parameter is assumed constant over the sample.
This should be a good approximation, provided that d
is sufficiently small and that the Geld is perfectly aligned
with the film faces (a small perpendicular component
produces a vortex structure which can be avoided if
extreme precautions are taken"). In the local limit
near T„where Xz, '=2(1—t) Xr. '(0), the first require-
ment is satisfied if d(&X/tc, i.e., d'(&$,$(1—t) ', using the
results quoted in the first part of this section. From
de Gennes's work on dirty superconductors, "we also
know that the corresponding restriction in Maki's case
is d «$,/ In either ca. se, the condition on d is equivalent
to the criterion

gence of our perturbation expansion, however, (1.10) is
automatically satisfied for d($, so that it is an actual
restriction in the local limit only.

Specular reQection at the film boundaries is assumed
in the present paper. The corresponding unperturbed
single-electron eigenfunctions are then simple products
of exponentials and sines. The matrix elements of the
perturbation can be expressed in terms of the Fourier
components of A by means of elementary integrations.
This approach has the advantage of allowing direct
comparison with previous treatments ~ and to show
unambiguously that only bulk parameters enter in the
final equations, provided terms of order (pod) ' and
(p&'t//$) ' are systematically neglected. Since the
Fermi momentum Ps is of the order of the inverse
interatomic distance, these restrictions are not serious
for typical films of superconductors with d, $) 100 A.

A more elegant semiclassical approach, which makes
no use of the explicit form of the single-particle states,
is sketched in our previous communication. '0 The
method is particularly well suited for a treatment of
diffuse boundary scattering. A full exposition of the
method is contained in a companion article, " to which
we also relegate our comparison between theory and
experiments. No essential differences between specular
and diffuse reQection emerge from the analysis.

The generalized GL equations valid near T, are
obtained in Sec. II of the present paper. The derivation
essentially parallels that of Gor'kov' for bulk super-
conducting alloys, the main difference occurring in our
treatment of the explicit field-dependent contribution
to the linearized equation for the pair amplitude.
Nonlocal effects are automatically included by making
a direct expansion in terms of (e/mc) A p (up to second
order) and keeping the exact spatial dependence of the
vector potential. The final equations involve the bulk
weak-field kernel E. Although we derive an expression
for E valid near T, which allows for nonisotropic
scattering by impurities, it is necessary to ignore
possible differences between the single-electron lifetime
7- and the transport relaxation time 7.~, in comparing
theory with experiments. With T=7g E reduces to a
rapidly converging sum of Pippard-like kernels.

In Sec. III the results of Sec. II are used to obtain
the free energy and the critical quantities H, and H„
defined earlier. By neglecting contributions from
Fourier components of A other than the first, the
results can be cast in compact form, e.g., (1.6) holds
with X replaced by an effective-thickness-dependent Xd,

which is simply the inverse square root of the Fourier
transform of E evaluated at rr/d. Neglected terms
entail a maximum error of 2%. Toxen's procedure""
leads to a more complex definition of ) d, but the final
value is shown to agree with ours within the same
accuracy for d &d, . This explains the success of his fits

"R.S. Thompson and A. BaratoG, Phys. Rev. Letters 15, 971
(1965)."R.S. Thompson and A. Baratoff (to be published).
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to experiment. The equations determining the thermo-
dynamic transition are also discussed.

An improved expression for H, is obtained in Sec. IV.
Assuming s-wave scattering, we average over impurities
from the start and work directly with the renormalized
frequency and order parameter. ' If terms of order H'
are retained, the resulting formula for H, reduces to
that given in Sec. II near T, and to a simple generaliza-
tion of Maki's equation valid down to T=O in the dirty
limit. In the intermediate range, considerable improve-
ment is achieved by including terms in B4, as shown by
our comparison' " with Toxen and Burns's data on
Ill-Sn. alloy films. '4 The convergence criteria and the
restrictions mentioned earlier are readily ascertained
from the structure of the perturbation expansion.

In the last section we show that additional contribu-
tions associated with the hitherto neglected spatial
dependence of the order parameter are indeed negligible
if (1.10) holds. In the local limit (l((d) Rickayzen's
alternative" to Maki's theory is shown to be incon-
sistent,

The main results are summarized in the last section
for the benefit of the reader who is not interested in
the details of various derivations.

II. DERIVATION OF BARDEEN'8 NONLOCAL
GENERALIZED GL EQUATIONS

Although the approach developed in Sec. IV and in
the companion article" provides a shortcut to the
results obtained here, we think it is worth going first
through a derivation which parallels Gor'kov's' as close
as possible. The inRuence of finite thickness on impurity
averaging and electrodynamics is examined'in detail.
One may suspect that discrete quantization efIects
would manifest themselves if the thickness d is smaller
than the characteristic size $ of a Cooper pair, i.e.,
throughout the range where nonlocal eGects are im-
portant. This is not quite the case: As stated in the
introduction, a description in terms of the bulk weak-
field kernel and of macroscopic boundary conditions
(specular or diffuse reflection), as embodied in (1.8)
and (1.9), is adequate near T, as long as psd'/$))1.
The meaning of this peculiar condition is discussed in
part D below.

A. Perturbation Exyansion Near T,

We take as our starting point Gor'kov's formulation
of the microscopic theory, since it provides an adequate
description of the isotropic weak-coupling supercon-
ductors and enables one to incorporate strong field
and impurity eBects in a natural way. In this scheme
the electronic properties are completely specified by
the single-particle Green's function G and the pair
amplitude Ft, which obey the following coupled integral

s' G, Rickayzen, Phys. Rev 188& A73 (1.96$l.

equations'~:

G(r, r'; or) =G~(r, r'; &o)

G~(r, s; {p)A(s)Ft(s, r'; {p)d's, (2.1)

Ft(r, r', pp) = G~(s, r; —~) A*(s)G(s, r'; cv) d's. (2.2)

In the finite temperature formalism the frequency
variable ranges over the discrete values ~„=(2m+1) z-T.
The order parameter 6 must satisfy the self-consistency
colldltl011

A*(r) =gTQFt(r, r; M), (2.3)

+ Gp(r, s; co) fi(e/m*c) A (s) V,

+ (e'/2m*c') A'(8) gGg (sy r'i {p)d'sy (2.4)

where m* is the effective mass of an electron. The A2

term will be neglected from now on since the de Haas-
van Alphen and related oscillatory eGects which it is
responsible for are not appreciable even above the
critical field of typical materials because of thermal
and lifetime broadening.

Equations (2.1), (2.2), and (2.4) are iterated with
respect to the perturbations A and (e/m*c)A p, then
averaged over an assumed random distribution of
impurities, using standard techniques. '7 Following the
usual practice, ' we assume that 6 and A may be
averaged separately whenever they occur in a product
because of the rapidly oscillating character of
Gp(r, r'; cu). As far as d, is concerned, Caroli ei a/. '4

have shown that this procedure introduces no appreci-
able errors, provided the valence difference between
impurity and host is 0 or I.

Although the semiclassical Aesa/s

(.e
G~(r, r'; {p) = exp

~

i - A dl Gp(r, r'; {p)

is in fact adequate, and certainly quite useful whenever
the vector potential cannot be treated as a perturba-
tion, ' " the approximate expression for the phase used

» G. Rickayzen, Theory of SNpercondlctieity (John Vhley 8z
Sons, Inc. , New York, 1965), p. 418.

~ C. Caroli, P. G. de Gennes, and J.Matricon, J.Phys. Radium
gs, 707 (1962).

where g is the strength of the effective electron-electron
attraction. It is convenient to replace the BCS cuto6
in momentum space by a frequency cutoG, i.e., carry
the summation in (2.3) between —&on and ~~, arD being
the Debye frequency. This procedure gives results in

agreement with BCS in the weak-coupling limit and
corresponds to a more realistic model interaction, i.e.,
retarded rather than velocity-dependent. "

The normal-state Green's function G~ is in turn
related to its counterpart in zero field Go via

G~(r, r'; pp) =Gp(r, r'; ~)
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by Gor'kov, ' i.e., (e/c)A(r) ~ (r—r'), is valid only if
d))$ and A is sufEciently slowly varying. Since he
obtained the GL equations by expanding the corre-
sponding exponential to second order, a direct expan-
sion of G~ should (and does) lead to the desired
nonlocal generalization, since the exact spatial depend-
ence of A can be taken into account 2'

It is convenient to choose that gauge in which the
averaged order parameter is real (and constant) . With
the boundaries of the film at @=0 and x=d, and H
applied along the z axis, the average current density
has a y-component only and so does the vector potential
in the above-mentioned gauge. The problem is essen-
tially one dimensional: Only the x dependence of the
relevant quantities enters in nontrivial fashion. The
even part of A(x) turns out to be proportional to the
net current along the film, which is zero in our case, so
that both j and A are antisyrnmetric about x=d/2. At
a second-order transition from the normal state, the
field penetrates uniformly and A=H, (x—d/2). The
situation is illustrated in Fig. 2.

Pro. 2. Spatial dependence of the
total magnetic Geld h, =h(x) and oi
the associated vector potential A„=
A(x) in the gauge where the order
parameter is real. A uniform Geld of
strength II is applied in the s direc-
tion. The dotted curves show the
periodic extensions of A, and A appro-
priate to specular reQection at the
boundaries of the Glm.

I

I

I

I

I

Ill

I

I

I

I

ZJl
d

1=gTQF (cp) /6, (2.5)

is given by

Since d, (H, T) and A are bounded by 6(0, T) and
H, (T)d/2, which in turn vanish at T„ the lowest
nontrivial terms in the perturbation expansion should
provide an adequate description sufficiently close to
the transition temperature. In this approximation the
quantity appearing on the right side of the self-con-
sistency equation,

F(pp)/6 —(Gp(s, r; —(a) Gp(s, r; tp) )d's

(Gp(s 1" pp) Gp(s ll,' (p) Gp(v ll; (o) Gp(v, r, —cp) )d'sdsudse+ (%rl*c)'

I(Gp(s, r; —rp)G(s, u;tp)1 el „Gp(ll v'co))LB„„Gp(v r' pp)))+2 similar terms) A(l, )A(z,)d'sd'Ndsv,

(2.6)

where the angular brackets refer to impurity averages. The first-order field-dependent terms vanish in the gauge
where 6 is real.

Assuming from now on specular reQection at the film boundaries, it is natural to expand electromag-
netic quantities in Fourier series, viz. ,

A(x) =+A; cos(k;x),
j=o

The coefficients A; decrease rather rapidly with j, e.g.,

k;=js/d.

2 @ jm'x
A = — H.(x—-'d) cos dk

(2.8)

at H=H, . Note that A;=0 for j even by antisymmetry. The film is treated as a one-dimensional potential box.
Since impurity averaging restores the syrrimetries of the problem, averaged Green's functions may be expanded
in terms of the corresponding single-electron eigenfunctions, viz. ,

2 d pJ. N7I'x . . s prs
G(r, r', pp) = —g, sin sin expLipi (y —y') $G(NN', pi; cp),

en~
(2.9)

where pi=(0, p„, p,), y=(0, y, s); n and e' range over positive integers (angular brackets will be omitted

A similar spirit occurs in recent Russian work on nonlinear, nonlocal effects in bulk superconductors, e.g., A. I. Rusinov and
E. A. Shapoval, Zh. Eksperim. i Teor. Fiz. 45, 2227 (1964) LEnglish transL: Soviet Phys. —JETP 19, 1S04 (1964)g and T.K.
Melik-Barkhudarov, Zh. Eksperim. i Teor. Fiz. 47, 311 (1964) )English transl. : Soviet Phys. —JETP 20, 208 (1965)J.
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when dealing with the average of a single quantity).
The zero-field normal-state Green's function in the
absence of impurities is, of course, diagonal in that
representation.

Gs&" (fsfs', pi; &e) = (i&o—e ) '8„„. (2.10)

Here e„=(p'/2m*) —p is the energy of an electron of
effective mass m* and momentum p=(m. /d, pi),
measured from the chemical potential (Fermi energy)
&u

=pl."/2m*.

B. Impurity Averaging

Ke wish to argue that the equations which, to order
(p&l) ', determine the self-energy and vertex correc-
tions arising as a result of impurity scattering and
averaging in a bulk sample, ' ' are in fact applicable to
a thin film, provided its thickness d is much larger than
the inverse Fermi momentum, the range of the
(screened) impurity potential r, , and the mean separa-
tion of impurities d;. These conditions are certainly
realized in typical metal films with d&100 A. The
restriction d))d; need not be serious even in the least
favorable case where d&l and the material is dirty,

since the inequality l(($s can usually be satisfied in the
dilute range where l))d;.

A simple argument" shows that if terms of order
d;/d, r;/d, etc., are neglected, the average zero-field
normal-state Green's function is diagonal, i.e.,

G (one', p i; co) =Gp (fs, p i; &u) 0„,
where Gs(fs, pi; &o) —=Ge(p, &0) is obtained from its
counterpart for a pure film Gs&" (p, to) = (ia& —e~) ' by a
simple frequency renormalization: co—&co =pcs, with p =
1+(2r

~

&e ~) '.'7 The lifetime r is determined by the
scattering cross section 0. for an electron at the Fermi
surface

fs;=N, /V is the number density of impurities, t&& ——

pp/m* the Fermi velocity, N(0) =(27r') 'm*pF the
density of single-particle states at the Fermi surface,
and I is a pseudopotential (f matrix) which, in Born
approximation, gives rise to the same scattering ampli-
tude as the actual potential. Note, on the other hand,
that this simple form for Go would follow from

(2.11)

provided a constant term arising from integration over regions away from the Fermi surface is absorbed in the
chemical potential by redefining the latter. '7 The exact relation for Gs(mfs', pi, &o) obtained by substituting (2.9)
and (2.10) into the integral equation for the average Green's function in position space, ""

Go(r, r'; co) =G, ' (r, r'; &u) +N; Gs'" (r, ri, &o) (m(r&) u(rs) )Gp(r& rs' &o) Ge(rs, r'; &u) d'rid'rs,

where

4gx
(z(r,)n(r, ))=d 'P expPiq (r& —r&) j ~

N(j) ~',
(2') '

results in a diagonal contribution which reduces to the
expression on the right side of (2.11) if the sum over
allowed values of p

' is extended over negative as well
as positive values and is approximated by the corre-
sponding integral. There are additional ofI-diagonal
(num ) contributions whose effect is dificult to esti-
mate directly, but which we believe to be unimportant
on the basis of our previous indirect argument. ~'

We feel justified in keeping only the diagonal contri-
butions of more complicated averages, e.g. , those over
products of Ge's appearing in (2.6) . If summations over
internal momenta are treated as stated in the preceding
paragraph, the resulting equations are identical to
those first obtained by Gor'kov' for bulk samples, and
the same diagrammatic representation may be used.
Any contribution containing Ã times Go is given by
the sum of all diagrams consisting of E solid lines
connected in pairs by an arbitrary number of dotted
lines, each carrying a factor ti;

~ u(q) ~', momentum

conservation being satisfied at every vertex. Each
internal momentum p' contributes an integral

d'p'/(27& ) '.

"For a pure film (2.10) holds because Go&'& (r, r') is a Green's
function in the mathematical sense. By the same token it may be
viewed as a superposition of Green's functions G0( &(r, r„') for an
infinite metal, with r„' ranging over r' and its images with respect
to the boundaries of the film. Such a picture should retain its
validity in the presence of impurities after averaging, provided
d))d;, r;, since an electron then feels the influence of many impur-
ities as it traverses the film: its propagation may be described in
statistical terms. In a bulk sample the only eGect of impurity
averaging is to change ca to &o in the factor exp ( —~

co
~ ~

r—r'
~ /e~)

appearing in Go&'&(r, r')": Go(r, r'), therefore, has the same func-
tional dependence as in the pure case. This applies to a thin film as
well if the above-mentioned conditions on d are met. Using the
equivalence between the representations of the Green's function
in terms of images and of eigenfunctions, we are led to the con-
clusions stated in the text. The innocuous restriction pgd»1
allows one to approximate sums over discrete values of p by
integrals.
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C. Field-Independent Terms

The evaluation of the first two terms on the right
side of (2.6) follows Gor'kov's procedure very closely.
Consider, for instance,

Q(r, r'; rd) = (Gs(s, r; —~) Gv(s, r'; &e) )d's.

According to the considerations developed above,
Q(nn', pi; (u} =8„„.Q(p, (u), where

Q(p ~) =Go(p —~)Gv(p, ~)

d'p'
1 n; u p —p' ' p', (o . 2.12

(2s.) '
' j

The diagrammatic representation of this equation is
shown in Fig. 3 (a) . Denoting the second term in

brackets by 1.(c0), and using (2.12), one obtains

ds I

L(~) =n'
I ~(p —p') I'Go(p', —~) Go(p', ~)

(2w) '

X[1+L(~)]
dQ de

=N, j}j(o) —
I N(e) I

[1+1( )]
4x c2+o 2

=[1+1-(~)/2
I
~ Irl=(2

I
~ Ir) '

I E

CO

Q) CO

I
I

I
1
I
t

QJ QJ

FIG. 4. Total contribution to the field-independent term propor-
tional to 6'.

remaining contribution,

Q(~) =(n~/d) (m*~/2
I
~ I) =~&(o)/ I~ I

(2 13)

is unaffected by the presence of impurities and by the
finite thickness of the film. It could be obtained by
averaging (2.14) over the sample and approximating
the sum by an integral. This procedure is consistent
with the assumed constancy of A. The corresponding
diagram is shown in Fig. 3(b) .

The second term in (2.6) can now be easily evaluated.
The three possible contributions are represented in

Fig. 4. According to (2.13) impurity lines bridging any
single vertex bring in a factor g. Diagrams with more
than one line across the square give a zero contribution
upon integration over the extra internal momentum,
since both poles of the integrand occur in the same
half-plane. The total contribution,

2~—&(o) ~'n4[2/(2
I
~ I)'—2/r(2

I
~ I)'1

= —~&(o) (~'/2
I
~ I') ~ (2 16)

so that

Q(p, ~) =Go(p -~)Gs(p ~)~ (2.13)
is again the same as in bulk and independent of
impurity concentration.

in terms of the quantities defined in the preceding
section. The first contribution to (2.6) is therefore

2 . exg
Q(r, r;~) = —g sin'

d
(2.14)

(2v-) s,„s+(P
'

The integral on the right may be transformed into one

over e extending from —p+(nv. /d)'/2m* to ao. Since
the integrand is peaked about &=0, the sum on e
effectively extends up to nv ——[ad/v-]&&1, each term

being essentially independent of e27; the oscillating

parts of sin'(ass/d) cancel each other except within a
negligible distance pv

' of the boundaries. The

(a) (b)

"Strictly speaking, this is true only if the width of the peak is
small, i.e., u t «(nr/m*) (v/d)'=vrv/d In general the v. alue of
the inte ral smoothly decreases from that given by the residue at
e v)rv, viz.=, (m*v/2 )(o ~l, to zero in an interval of width
(vvv/d ) u (} ' about nv. This smearing does not affect our con-
clusions as long as pvd»1 and pvvv/ ~

vv ) ))1,however.

PIG. 3. (a) The integral equation (2.12} for Q(p, a&). (b} The
diagram for the field-independent contribution to I' (~) linear in
6; the vertex correction represented by the black dot introduces a
factor v =1+(2r ) ra () '.

D. Field-Dependent Term

The evaluation of the last term in (2.6) is only
slightly more complicated than in the local limit. ' The
integral over u, (or v, ) is directly expressed in terms
of the Fourier components of the vector potential:

2 . %7lN S XQ

0

sin A(u) sin du=-', (A„.,„,.yA~„, „„~).

(2.1.7)

Since m' and m" are typically of the same order as np,

k„+„~pv,. and A„+„. is negligible for pFd))1, only

A~ „"I need be retained. ' The corresponding wavy-
line insertion in any solid line of a diagram carrying
momentum p must accordingly contribute a factor
—',[(e/m*e) A;p„) and an x component of momentum &k;.

In the absence of scattering one obtains the three
contributions represented in Fig. 5, diagram (a) corre-
sponding to the term which is explicitly written out
in (2.6). In addition to the simple ri renormalization
and vertex corrections obtained earlier, impurity aver-

aging gives rise to the three types of diagrams shown

in Fig. 6. Those like (a) and (b), which contain one
or more dotted lines bridging one or both vector
potential vertices, yield zero upon integration over the
extra internal momentum, since all poles of the inte-
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grand lie in the same half-plane. In order to sum the remaining diagrams like (c), it is convenient to intro-
duce the quantity Q(n, n+j, pd, Qd)

=—Q, (p, Q)), which satisfies the integral equation represented in I'ig. 7:

Q(P; )=~(P, )~—(~+3'P', , )(P~(P, )(~P.d/3~")+~', i~(P —P') i'Q(P' ) i
(313)

Since the inhomogeneous term of (2.18) is proportional to p„, we expect Q; to have the same structure for the
isotropic model considered here. Only the second term in the partial-wave expansion

IN(e) I'=no+I p p'/P"

can therefore contribute to the second bracketed term in (2.18), which we denote by P„L;(Qd). Using (2.18) one
obtains a direct equation for L;:

n;Bi (Pp
L, (co) = P„'Go(p, Q)) G—()(n+j, pd. ; co) LOGO(p, cv) (eA;/2m*c)+L; (Qd) j.

pp' 2zr '

Recalling that Go '(n+j, pd. ; dd) =m —e„—k,z)pw, where z() = cos8, 0 being the angle p makes with the x axis, and
performing the energy integration first, we obtain

3 'dd, ' dw 1—nP (ed, 3 ') ed; f[3$( )] ( f/33( )])-'
ri o 2zr i 2 2i(d kdi)pz(() (2m—+e 2

I
Q)

I
j 2m*c 2icuri & ri

(2.19)

in terms of the inverse p-wave relaxation time

r, '= n—m*pp( 2zr) '(43P/3) ui ', n,N——(-0)

I 8 'cosBdQ,

the length $(cv) =z)) /(2 I
a&

I )t), and the function

3 ' 1—m' 3 1 tan's
f(z) = — dz() = — 1+—

2 1+9 z() 2 s s s

(2.20)

=(3~/4s), s&&1.

The structure of the zv integral shows that

Q(n, n —j, pd. ; a)) =Q;(p, co)

(2.21)

which also governs the k dependence of the conductivity
in the normal state (e=k/ in that case, of course). It
has the following limiting properties:

f(s)=1 s'/5, ——

as well. It also reveals that, for 2))1, the main contri-
bution to f(s) comes from a narrow peak of width e '.
In the extreme nonlocal limit (d«$) this corresponds
to p,/p, (d/$, so that a large error is made by approxi-
mating the summation over p, =nzr/d by an integral,
as in the above treatment, unless enough allowed
values of e, or rather m, fall within that peak This
leads to the restriction Ppd'/(»1 mentioned at the
beginning of this section and in the introduction. This
point has also been discussed by Shapoval. '~ The
importance of size quantization was recognized by
earlier workers, ' ' but led to unnecessary complications
due to their reliance on a BCS cuto6 in momentum
space. ' Typically (f/Pp)'i'(100 L, so that the above
restriction is reasonably well satisfied in practice.

It is now straightforward to calculate all the field-
dependent contributions, which are shown on Fig. 8.
Thus the contribution from diagrams (a) and (d),
obtained by summing over allowed values of k, and
multiplying by 2, take the liberty of choosing ~k, into
account:

(2.22)

d'p ( eA;2g, I z]Go(P, Q))
'

+L;(Qd) I P3(Go(n+j, pd. ; Qd) (eA;P„/2m*e)G()(p, Q))PING()(p, Qi)—
2zr '(, ' 2m*e i

is eaily evaluated using the techniques employed above to find L;:

(0) I&p~ g 3'fPA( )j 1+(2I~I), , fC 8( )j&
3 (,m*e; (2

I
~ I)'

Diagrams (c) and (g) make the same contribution,
while (b), (e), and (f) yield twice that amount.

E. Order-Parameter Equation

Adding (2.15), (2.16) and four times (2.22), and
substituting the result under the sum over frequencies
in (2.5), we obtain the self-consistency equation for d,

to second order in the field. The density of states N(0)
and the coupling constant g can be eliminated by
noting that

e~ f~~/(~T) l 2+coD
zrTQ

I
cv

I
'=2 P (2v+1) '—ln, (2.23)

coD v=0 7rT
'

provided that co~))mT, using standard mathematical
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(b) (c) Fro. 7. The integral equation (2.18) for Q;(p, ru).

Fro. 5. Total contribution to F(ro)/e to second order in the Geld
in the absence of impurities.

results. In the particular case where 6=0 and A=0,
the right side of (2.5) reduces to E(0)g times (2.23):
One obtains the well-known BCS result for the transi-
tion temperature T, in the weak-coupling limit (this
justifies our use of a frequency cutoB):

1=X(0)g ln(2 7cu i/is T). (2.24)

Substituting (2.24) for the right side of (2.5), sub-
tracting the contribution from the term proportional
to (2.23), and allowing the remaining rapidly con-
verging frequency summations to run to inGnity, one
gets the desired form of the equation relating the order
parameter to the Fourier components of the vector
potential at any given temperature:

T, 7f(3) / 6'l' 1 /2eb ' APf(k;$„)
T 8 trrT/ 3 & c; s (2v+1)'

)& L2v+1+ (27rT) i(1/r —f(k)P„)/7i)g i (2.25)

where

&r ——(ev/27rT) =0.88&,(T,/T),

~,=—~(~,) =E(2 +1)~.-'+1-']-',
and

7i'(3) /8 = 1.05 =P (2v+1)—'.
v=0

Note that $„&f (the Pippard coherence length
defined in the introduction) and that only the first few
terms in the sum over v make an appreciable contri-
bution. The local limit may therefore be defined by the
condition k,$(&1 for the highest significant A;. The
function f can then be replaced by 1, and (2.25) re-
duces to the equation obtained by Gor'kov, e provided
one neglects the spatial dependence of 6 and averages
A' over the film. The connection is established by
means of Parseval's theorem:

(eH,/c)'=2. 35(1—t) (g,d') ', (2.28)

a result independent of the mean free path as one
would expect. It is interesting to compare (2.28) with
the corresponding results of Nambu and Tuan, ' and
Casella and Miller, ' which have the same form, but
contain a cuto6' parameter p "of the order of unity".
Setting y = j. in their formulas, one finds that the values
of the coefficient would be 3.49 and 2.21, respectively.
The correct result was independently obtained by
Shapoval in his second paper on specular reQection. "

The actual comparison of (2.27) and of the corre-
sponding result for diffuse boundary scattering is taken
up in our companion paper. "Although the exact range
of validity of the nonlocal nonlinear theory developed
here can only be determined from a knowledge of the
structure of higher-order terms in the expansion in
powers of A, it is appropriate to state the resulting
limitations in compact form at this stage:

tunately, there exists no easily measurable property
from which one could separately determine r (or ri).
Furthermore, our calculation of the vertex correction
—f(k;$„)/ri was done assuming isotropy, a rather
unrealistic assumption in real metals. For the purpose
of comparison with experiment, it therefore seems best
to neglect all but s-wave corrections altogether, hence,
to make no distinction between r and rt„.

The critical Geld for a second-order transition II', is
determined by setting 6=0 in (2.25) and substituting
(2.8) for A;. Since AP o:j ', a good approximation is to
neglect all but the first ( j=1) contribution:

1 /8eP. Ps ~ &z$„f(mr&, /d) T,
3 l, s'c J „~ (2v+1)' T

The resulting error is 2% in the local limit Lthe factor
(8/s')' should be replaced by -',). In the opposite case
(d«$) it is only s%, and we obtain (int '=1—t
near T,):

d—' A'dx—= A',~=-', A . (2.26)
1—t&( min(1, d$,/P) . (2.29)

It is only in this limit that 7& enters through the simple
combination r '—rj '=r&, ', the inverse transport re-
laxation time which is proportional to the bulk residual
resistivity of the material in the normal state. Unfor- (al {b) (c)

(b) (c) (d) (e) (f) (9)

Fgo., 6. New types of diagrams appearing as a result of impurity Fio, 8. Total contribution to P(ca)/6 to second order in the Geld
y,vqraging. aftt;r impurity averaging.
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The replacement of lnt ' by 1 t—and $T by 0.88$, is
certainly justi6ed in this range. In additio
assumed constancy of 6 requires

1 t«—Q/d'

F. Current Equation

as mentioned in the Introduction.

n, the
An approximation for the average induced current

density ~ consistent with the terms retained in (2.6)
is obtained by iterating (2.1) and (2.2) once, sub-
stituting the result for G into the exact expression'

~~(x) =2 limL(e/2im*) (8„8—„)—(e'/m*c) A (x)jTQG(r, r'; &o), (2.31)

and noting that the zero-order term, i.e., (2.31), with G replaced by G~, must vanish, since the current in the
normal state is zero if we continue to neglect the A term in (2.4). The remainder is iterated once with respect
to the perturbation (e/m c) A p„and averaged over impurity configurations. Assuming again that A and 6 may be
averaged separately, one obtains the desired result:

~~(x) =TEA'(e/im*) lim ( ((8„—8„)Go(r, u; a&) LB„„GO(u, v; ~) 7GO(s, v; —co) Go(s, r'; co) )+2 similar terms)

X (%rn*c)A (N.) d'ld'vd's. (2.32)

Writing the jth Fourier component of (2.32) as ~;=g„g;(~), comparing (2.32) with the last term in (2.6),
and using (2.17) with A replaced by ~~ one easily realizes that Q;(a&) is simply 2A' times the sum of the contri-
butions from the diagrams shown on Fig. 8, provided that one of the wavy-line insertions is understood to carry
factor (eP„/m*c) rather than the usual —',$(e/m*c)A;P„) and that only the contribution from the jth Fourier
component is retained. Modifying (2.22) accordingly, we obtain

~~~ = —slV(0) A
~

—g $2v+1+ (2m'T) i(1/r —f(k $ ) /ri)$ i(err)' t 6 ' f(k,&„)

c '
&~T „~ (2v+1)'

(2.33)

G. Normalized Nonlocal Equations

It is convenient to rewrite (2.33) as follows:

3i= (c/4~) PX~—A~ (2.34)

where /=A/6„ the order parameter normalized to its
value in the absence of a field, i.e., the BCS tempera-
ture-dependent energy gap. We can then identify E, as
the Fourier transform of the weak-field (linear
response) kernel evaluated at k=k, . Because of the
restrictions (2.29) and (2.30), the standard relations"

-', Xl,'(0)/lil, '(t) —lnt-' —(7f'(3)/8(h. /7rT)', (2.35)

valid near T„may be used to eliminate 6, in favor of
the London penetration depth 31. of the pure material.
Recalling the dehnition2

literature. In the local limit E reduces to X '=XI. 'x„
where y, is the function which describes the e8ect of
impurities on the penetration depth in Gor'kov's
derivation (x,=1 in the pure limit). The function f
defined by (2.20) also appears in the Fourier transform
of the weak-field kernel proposed by Pippard on phe-
nomenological grounds before the advent of the BCS
theory, viz. , Xp(k) =ff(k()/$, 'Neglecti. ng all but s-
wave vertex corrections from now on, we note that the
bracketed term in (2.37) simply introduces a factor
$„/$i, so that IC reduces to a rapidly converging sum
of Pippard-like kernels. One easily verifies that, to
order (6,/xT)', the result agrees with the expression
for the weak-Geld kernel valid at all temperatures
which is obtained by introducing a factor

exp( —
~

r r'
~

t)—
we obtain

Xr, '(0) = (87r/3)$(0) (ei /c)', (2.36) into the BCS kernel for a pure superconductor. '
Using the relation'~

Xk=z; t
7f(3) .— (2 +1)'

X(2i+1+(27rT) '(1/r —f(kg, )/ri)j '. (2.37)

Although the vertex correction f(kf„)/ri is large—ly of
academic interest as mentioned in our discussion of
(2.26), it seems worthwhile to write down the exact
result, since it shows how the transport relaxation time
becomes replaced by the single-electron relaxation time
as one goes from the local to the extreme nonlocal limit.
To our knowledge, this has not been reported in the

p = 1—Q (A,/2II, b) 'X;. (2.39)

The equivalence of (2.34) and (2.39) with Bardeen's
generalized GL equations (1.8) and (1.9) is trivially
established by substituting the Fourier representations
of E, ~~, and A.

(8~) '& s'= (7f (3)/16)&(0) & '/(~T) ' (2 38)

determining the bulk thermodynamic critical field near
T„ in conjunction with (2.35), one can rewrite (2.25)
in normalized form:



SUPER CQNDU CTING THIN FILM

III. THERMODYNAMIC ANALYSIS AND
PHENOMENOLOGY

A. Free Energy and the Thermodynamic Potential

The expression for the free-energy density appearing
in the functional fdx FsIP, A(x) I, which yields (1.8)
upon minimization with respect to P (or P), can be
immediately written down:

Fs FN(0) +(Ss')
~

H s (P 2'its) +Pri (x)

X dx'E(x x') A (—x') +h'(x)
i

(3.1)
i

(+=0 and h=H outside the film, of course). To the
required second and third terms, which can be identified
with the condensation energy and the kinetic energy of
the supercurrents, we have added the normal-state
contribution and the field energy. Since h=dA/dx—=A',
variation with respect to A yields

to be determined later. In order to obtain the explicit
dependence of G~ on II note that the third term in

(Fa), may be written as

—(2c) '(QA), =(Ss.l '((H —h)h), ,

using (1.8) and Maxwell's current equation, and
integrating by parts. Substituting into (3.5) and sub-
tracting G~=F~(0) (B=H in the normal state), one
obtains

QG Gs GN (Ss ) 'H s'(P' —2P) -'MH—, (3.6)

which is formally the same as in Ginzburg's treatment. ~
Since

Bd= hdx=A(d) —A(0) = —2A(0) = —2+A.

the magnetization is given by

4rrM =H—B=H[1—(8/d') Q—(kg+PE;) '$

A" (x) =P It(x—x')A(x')dx' (3.2)
HP2(8/d2) QE,[h 2+/2K. )j—i (3 7)

j=l

which is equivalent to (1.9) because of Maxwell's
equation h'= —4s3/c. It is, however, important to
realize that if one uses the Fourier representation (2.7),
h exhibits jumps of magnitude H and —H at x=2md
and (2m+1)d, respectively, when periodically contin-
ued outside the 61m as shown in Fig. 2. If, in addition,
a net external current J per unit length flows in the

y direction, A" must contain 8-function contributions
of strength 2H+4vrJ/c and 2H+47rJ/c at th—e same
points. Adding them to the induced component (3.2)
and Fourier transforming we obtain

—A, =(SsJ/cd) (h'+PE;) ' j even (3.3)

= (4H/d) (h '+PE )' j odd. (3..4)

The even part of A does indeed vanish in the case J=0
on which we continue to focus our attention.

In practice, it is the applied field H, rather than A,
which is the experimentally controlled variable. Since
no demagnetization eBects are present in the simple
geometry under study, no distinction between external
and applied fields is necessary. The subsequent analysis
parallels that developed by Ginzburg'8 in applying the
GI. theory to small samples (constant P) . The thermo-
dynamic potential which is minimum in equilibrium at
fixed H is conveniently chosen as

Gs = (Fs)sv —(47r) 'BH+ (Ss.) 'H' (3 5)

B=(h),„being the macrosco—pic magnetic induction in
the film. The last term is solely added in order to
ensure that G—=0 when the sample is removed. It is
convenient to consider P to be a, variational parameter

2'V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34, 113 (1958)
LEoglish tratrsl. : Soviet Phys. —JETP 7, 78 (1958)g.

When P = 1 the first expression agrees with Schrieffer's
result" for weak fields. The second expression, obtained
by using the identity

Z j-'=-'/8,
j08d

is actually more convenient. Minimizing (3.6) with
respect to P, one gets

P2 1 (H/H ) 2(4/d2) QE.(h 2+/2K. )
—2 .(3 8)

which is identical to (2.39) once (3.4) is substituted
for A;.

B. Determination of Critical Parameters

Nonlocality does not affect Ginzburg's qualitative
results" concerning the behavior of AG and the classifi-
cation of possible transitions.

The critical field above which the normal state is
thermodynamically stable can in principle be deter-
mined by eliminating P between (3.8) and

2 —P= (H/II s)'(8/d') QE [h'(h'+PE ) $ ' (3.9)

which expresses the requirement Gz ——Gz.
Since $~0 at a second-order phase transition. the

appropriate critical field is given by the corresponding
limit of (3.8):

1 = (H,/H, s)'(4/d') PE,/h . (3.10)

Note that (3.9) also reduces to (3.10) in that limit.
When the him thickness is below a critical value d„
(3.10) is the only simultaneous solution of (3.8) and

~ J. R. Schrieffer, Phys. Rev. 100, 47 (1957).
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l s-' ——Er —=E(~/d) (3.12)

may be interpreted as an effective penetration depth
whose thickness dependence reQects the net inhuence
of nonlocality. As mentioned before the maximum
error occurs in the local limit where X~) and the exact
factor replacing —s,s-'=4.93 should be Q(24) =4.90.

The critical thickness d, is best characterized by the
requirement that dM/dH be inlnite at H=H, . The
physical meaning of this criterion is obvious from
Fig. 1. Differentiating (3.7), setting /=0, and using
(3.10) one gets

47r (dM/dH) ~, =4H,s'(dP/dH') Ir„

where

H~s(d p/dH') Ir.

= —(H,/H~) sL1 —2(H, /H, s)'(4/d') PEz/k'] '

according to (3.8). Neglecting all but the j=i term
as before and using (3.11) we obtain

—4s.(dM/dH)~ ~(8/7r') L(s'/2) (Xs/d)' —1j ' (3.13)

d, is thus defined by the implicit equation d, (s/v2) Xs.,
the corresponding critical-field ratio

H„/H, shirr/v2 =2.22 (3.14)

is, to a good approximation, unaGected by nonlocality.
In the local limit the right sides of (3.13) and (3.14)
should be replaced by (5/6) (5Xs/d' —1) ' and
(24/5)'I'=2. 19, which shows that the maximum error
is indeed small. It should be borne in mind that the
constant f approximation is adequate provided that
H,)&B,2 ——V2~8~. As a result, even our "exact" formula
for H„/H, s is only correct to zero order in ws, so that
its usefulness is restricted to extreme type-I super-
conductors (K«1l .

C. Critique of Previous Semiphenomenological Theories

Several attempts to include nonlocal and nonlinear
eGects on the critical fields of small samples were all
based on the same idea, namely that the GL results,
e.g., (1.6) for the second-order transition of a, thin film,

Is J. P. Baldwin, Rev. Mod. Phys. 36, 317 (1964}.

(3.9), so that the thermodynamic transition is in fact
a second-order one. For d) d„(3.8) and (3.9) have a
nontrivial solution corresponding to a first-order thermo-
dynamic transition. Under favorable experimental con-
ditions hysteresis associated with supercoolingM and/or
superheating can be observed. The normal phase can
in principle be metastable down to the field H, given
by (3.10). The normalized version of (2.27) follows if
one retains only the j=1 term in (3.10):

H,/H~ (s'/2) Xs/d, (3.»)
where

still apply, provided X is replaced by a thickness-
dependent P~ which describes nonlocal eGects reason-
ably well in the weak-field limit. The generally good
agreement obtained between theory and experiment
suggested that such a separate treatment of nonlocal
and nonlinear effects is justified. The analysis presented
in the preceding sections shows that this is indeed a
good approximation. %e need only compare previous
Ansatze for Xd with our result (3.12) .

It is appropriate to first estimate the error involved
in using the Pippard kernel instead of the exact one.""
For a given value of XL,, both must, of course, agree in
the pure, local limit (k(„$,/l«1); in the dirty, local
limit (kl, l/$, ((1) and in the extreme nonlocal limit
(kf»1) the results of Sec. II imply that

&(k) = (~'/7f (3) )(4/6') I~'p(k) 1 331Itr (kl

According to (3.11) this leads to a maximum 15%%u~

overestimate in the critical-field ratio.
%e now discuss previous ways of defining X& for a

given kernel. Douglass and Blumberg" used the very
expedient and, hence, widely accepted, proposal due
to Tinkham, "which consists of replacing the nonlocal
3-A relationship by the local London equation with X

replaced by the value corresponding to the effective
mean free path /z as determined by the normal-state
resistivity of the sample. A critical examination of this
procedure reveals serious inconsistencies, some of which
were already discussed by Toxen and Burns. ' Ke first
note that according to Fuch's classical work on the
subject" l&=l for specular reQection. One may, how-

ever, invoke the well-known insensitivity of the bulk
weak-field penetration depth to the boundary condition
used in calculating it' to argue that the diffuse-scatter-
ing result may be used instead. For a thin film the
corresponding formulas for ls are (l '+-,'d ') ' if l«d
and sdDn(l/yd)+ij if /»d. Using the Pippard model
for the sake of simplicity, one obtains the following
asymptotic formulas for

) „s=(P./P. )X,s=(~/~. ) ls(P;i=~.-i+l„-i):

~'(1+st/d) (d»k)

~4(&.his/d) Dn(l/yd) +1j ' («&&) . (3.15)

By contrast our result, Xs' ——($,/() L f(s./d)] ', leads to

~'(1+( '/5) e/d') (d»&)

'&.~"/d («&~). (3 16)

In view of what was said above, (3.15) should rather
be compared with our result for diffuse scattering.
Referring to Sec. II of the companion paper, " one
obtains

~'(1+(9/8) 5/d) (d»k)

(16/9) Sl "/d (««). (3»)
"M. Tinkham, Phys. Rev. 110, 26 (1938).
32 F. Fnchs, Proc. Cambrid8e Phil, Soc. 34, 100 (1938),
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The appearance of the same factor ~4 in both (3.15)
and (3.16) for d«$ is purely coincidental. Note the
absence of logarithmic terms in (3.16) and (3.17) and
the slower increase of Xa for d»P in the specular case.
We conclude that Tinkham's extrapolation or any of
the widely used semiempirical interpolation formulas
of the form Xe'=X'(1+cf/d)" are only crude approxi-
mations which could lead to significant errors either
for d&$ or for d)&P. We would also like to emphasize
that it is unreasonable to expect any close connections
between effective lengths describing nonlocal effects
for different field configurations. In a resistivity meas-
urement the current (or A) is symmetric with respect
to the midplane of the film (it is in fact uniform for
specular reflection), in contradistinction to the situa-
tion discussed here. By the same token no implications
about the validity of his procedure can be drawn from
Tinkham's observation" that the microwave power Eq
absorbed in a superconducting film varies in such a way
that the ratio of I'8 over the same quantity in the
normal state is independent of d and l at a given
frequency. It only increases one's confidence in the
theoretical considerations according to which the imagi-
nary parts of the conductivities oe,iv(k, co) have the
same k dependence in the dirty limit and in the anoma-
lous skin-eRect region. ' '4 As recognized by the Orsay
group, "however, the use of /& is justified in describing
nonlocal effects on the magnetic properties of a thin
film in a transverse field since the current is then sym-
metrically distributed across the film.

The procedure used by Toxen"" in interpreting his
own critical-field data is essentially based on the
following Amsats for Xq, due to Ittner':

1 —(2P.a/d) tanh(d/2Xe) =1—(8/d') Q(kts+E, )
—'.

(3.18)

On the left side the reader will recognize the London
expression for the susceptibility of a thin film normal-
ized to the full diamagnetic value —(4s.) '. Referring
to (3.7) one sees that the right side is the general
expression for the weak-field susceptibility ratio. In
the local limit (3.18) reduces to an identity:

(2X/d) tanh(d/2X) —= (8/d') Q(k'+X '). (3.19)

~ One may argue that part of the thickness dependence may be
due to increased scattering in the bulk of the film, e.g., from the
boundaries of crystallites whose size would decrease with d.
Unfortunately, it is hard to estimate the importance of such in-
direct e8ects. It should, however, be possible to separate the con-
tribution due to genuine boundary scattering by comparing the
dc resistivity of the film with that determining the decay of eddy
currents, as suggested by P. Cotti LPhysik Kondensierten Materie
3, 40 (1964)g.~ See, e.g., Appendix B in J. R. Kaldram, Advan. Phys. 13, 1
(1964).

ee P. G. de Gennes, Sgpercortdttctletty of Metals aru$ Alloys (W.
A. Benjamin, Inc. , New York, 1966),p. 226' E. Guyon, C. Caroii,
anti A. Martinet, J. Phys. (Paris) 25, 683 1964).

te W. Ittner, III, Phys. Rev. 119, 1591 (1960).

The physical reasoning behind (3.18) is that it may be
possible to simulate the net effect of the exact field
distribution on the thermodynamic potential AG by
using a simple London cosh(x/2') dependence with
)«adjusted to give the correct 8 or M.

We shall now show that the value of X& defined. by
(3.18) is in fact very close to our result as long as
d&d, . The hard computational work needed to solve
(3.18) for Xa can therefore be avoided. Each term of
the sum in (3.18) may be expanded in powers of E;/kP
provided E;&k, which is certainly satisfied if E~&k~2.
One obtains a double series whose general term is

( —1)" 'E "/k '"+' where n runs from 1 to oo (the sum
of the n=0 terms cancels against 1) . Since

E n/k 2n+2( gE n/k. .sn+s(E nPk.—sn,—2

and

g(ki/k )'"+'&g(ki/k;)4=1. 02ki',

we may replace E; by E& with a relative error less
than 2% (the maximum error is actually 1.5% and
occurs in the extreme nonlocal limit where E;~Eiki/k;) .
This estimate applies to the remaining series as well,
since it is alternating. Summing it, we obtain

(2Xe/tt) tanh(d/2), a) (8/d') g (kts+Ei) . (3.20)

Comparing with (3.19) we conclude that ),a ' Ei, at
least in the region d~&mX~, where the expression on the
left side of (3.20) varies so rapidly that the above-
mentioned error has a negligible effect and where the

geometric series converges. This completes the proof.
When d»d„one may replace the sum in (3.18) by

an integral and set tanh(d/2Xa) =1 to obtain

) „=(2/~) dkLks+E(k) j-i,
0

which one readily recognizes as the exact expression
for the effective penetration depth )~ in a bulk sample. ' 4

It is important to keep in mind that the electrodynamics
is local only if X»$, i.e., Xrs),»P or 1—t« tc'$,/(. Other-
wise )~)X, and Toxen's X~ diverges from the appro-
priate limiting value of (3.12), 1/QE(0) =X. This
shows that Toxen's procedure would not yield a good
value for the second order (slpercoolin-g) transition
critical field for tg)d, if 1))1—t)tt'f, /$, which may
easily be realized in a pure extreme type-I super-
conductor.

In his work, however, Toxen was exclusively con-
cerned with the thermodynamic critical field. He there-
fore substituted his result for )q into the GL analogs
of (3.8) and (3.9):
@=1—(H,/H~)'

&(L1—(Xe/it d) sinh(Pd/Xa) g/$4@ cosh'(Pd/Xgl j,
(2-~)~ =(~./~-)

&&L1—(2Xa/it d) tanh(it d/2Xa) ). (3.21)
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Although it seems dificult to judge the validity of this
procedure in the range just above d„we note that it
does yield the correct behavior H,/H, r, 1—+X&/d(P 1)—
for d»d, Pb. Since it has just been shown to provide
a good approximation for d&d, (/=0), Toxen's scheme
is probably adequate in the intermediate range as well.

The restrictions (2.29) and (2.30) must still apply,
and it is somewhat surprising that Toxen's later
attempt'~ to fit the temperature dependence of his
critical-field data using the complete weak-Geld HCS
kernel in conjunction with (3.18) and (3.21) results in
rather good agreement down to 3=0.4. Even if one
ignores the importance of higher-order terms in A, one
should use E(5, T):'E(fA, (—T), T] instead of i'
$A, (T), Tj. This distinction is especially important in
the range d(d„where 6—+0 at II, while A,/T is not
small except close to T,. Thus in the extreme nonlocal
limit or the dirty, local limit the ratio of the kernel
used by Toxen to the correct one behaves as (A./2T) '
tanh(d. /2T) when 8,—+0. The error made by using the
wrong kernel leads one to overestimate B„while the
omission of higher-order terms tends to give a lower
value. The success of Toxen's fit must be due to a
fortuitous cancellation of errors. In our opinion, a
meaningful comparison with experiment should rather
be based on the more systematic approach developed
in the following section.

A anal comment about Hauser and Helfand's
approach" is in order. These authors start from expres-
sions (3.6) for AG, which can be traced back to the
following expression for the free-energy density:

Fs= (8qr) 'LH.(2Q' —2P)+h'j —(2c) 'a~A (3 22)

by going through the manipulations leading to (3.6)
in reverse order. (3.22) is a reasonable Ar&sots, provided
that 1b is constant over the sample and that the explicit
dependence of ~~ on A is linear (in order to ensure that
bfFeI)Ir, A Id'r/bA = —~~/c). They further assume that

for suKciently thin samples (d(d, ) M is proportional
to P. Setting AG=O they observe that (H, /H, ()'~
2 —P, and conclude that the actual critical field (/=0)
can be obtained by mu1. tiplying the corresponding weak-
field result (/=1) byqq2, i.e.,

H./H. r,= (—2qrx) "'
where —47' is given by the expression on the right
side of (3.18). The preceding discussion clearly shows
that Hauser and Helfand essentially assume that (1.7)
holds.

IV. IMPROVED PERTURBATIOH SCHEME

Going back to Sec. II, we note that (2.27) is obtained
by retaining the first-order term in an expansion of F (o))
in powers of (er)r;H, d/cor)'r& ' In th. is section we con-
struct a direct expansion in terms of (errrH, d/cor) . This
makes no difference in the pure limit, but in the oppo-
site case ()r«$, ) convergence is markedly improved,
since

I
(0

I
v'«1 and r& =or/or = 1+ (2r

I
or I) '))1 for the

dominant contributions ((d„(7rT,). In that limit the
corresponding expression for H, is in fact valid down to
7=0, as first realized by Maki. ~ We wish to emphasize
that his work was restricted to the local limit (l«d)
and assumed 6 to be constant over the film (d'«(.l).
Since both conditions are hard to satisfy in practice,
our nonlocal generalizations (4.17) and (4.18) are a
signi6cant improvement.

A. Average Impurity Self-Consistent Field

The basic idea of the method is to avoid all explicit
calculations of vertex corrections by including the
average effect of impurities before making any expan-
sions. All the diagrams appearing as a result of the usual
impurity averaging procedure'~ are generated by the
iteration scheme illustrated in Fig. 9, which corresponds
to the following integral equations for the averaged
Green's functions:

G(r, r'; or) =G~('& (r, r'; o)) — G~(o& (r, s; or) A (s) G(s, r'; or) d's

+ G~('&(r, u; or) PMo(u, v, o)) G(v, r'; or) —M&;(u, v; or) Ft(v, r'; or) 7d'ld'r), (4.1)

Ft(r, r';or) = G~("(s, r; —or)A~(s)G(s, r';o))d's

+ G~(0&(u, r; —o)) fMrt(u, v; or) G(v, r'; o&)+Mo(v, u; or) Ft(v, r'; (d) gd'l—d'e, (42)

where

Mr (u, v; ) n~f(q )-qr'q
~
u(q) l'=exp[iq (u —v)]p(u, v;a) (43)

'r A. M. Toxen, Rev. Mod. PhyL 36, 308 (1964).
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and similarly for MG and Ml:t. G&(') satis6es the same
equation (2.4) as Gz, with Ge replaced by Gsis&, the
normal-state Green's functions for the pure film in zero
6eld. We now make the same simplifying assumptions
as in Sec. II.

We already noted there that it is difFicult to extract
any information concerning the angular dependence of
the cross section for scattering by an impurity from
experiment, so that it seems best to neglect the attend-
ant complications altogether. Equivalently, we assume
that the impurity pseudopotential may be represented
by a 5 function of strength I such that r '=2wlV(0) N,us

The self-energy corrections Mp and Mg acquire a
similar structure, e.g. , (4.3) becomes

Ms(u, v;~) =(27rcV(0)r) 'F(u, u;c0)8(u —v). (4.4)

Substituting into (4.1) and (4.2) we obtain the equa-
tions first written down by Larkin, " in which the
average effect of s-wave scattering by impurities enters
through a self-consistent 6eld with an ordinary and an
anomalous component proportional to G(s, s; c0) and
F(s, s; cu), respectively. No distinction between F and
F~ and the corresponding self-energies occurs in the
gauge where 6 is real. As before, effects present in the
normal state are absorbed by redefining the chemical
potential; Mg(Mr) is then odd (even) in ra

We further assume, as Maki and Larkin do implicitly,
that the spatial dependence of G(s, s; a&) and F(s, s; ~)
is negligible whenever 6 is essentially constant over the
sample. This crucial assumption will be examined in
more detail in Sec. U, where it is argued that (1.10) is
a sufhcient condition. Mg and Mp are then constant
and can be absorbed by renormalizing the frequency
and the order parameter as follows:

c0(ar) =a)+iMg((u), S(cu) =d+Ãp(c0). (4.5)

Except for this change, the resulting equations are
formally the same as Gor'kov's for a pure super-
conductor. In other words, one may start with (2.1),
(2.2), and (2.4), replace 6 by 6, o& by co in Gz and Ge,

+ I

/
I C iC

FIG. 9. The integral equations (4.1) and (4.2) for the impurity
averaged one-electron Green's function (a) and electron pair
amplitude (b) .

and forget about impurity averaging from then on.
The only difference from the zero-field case, investi-
gated by Abrikosov and Gor'kov, '7 is that the re-
normalization constants cv/a& and 6/6 are no longer
equal. All the interesting features of Maki's theory and
of our generalization stem, as a matter of fact, from
that very diGerence.

B. Linearized Equation for F(to)

The remainder of this paper is concerned exclusively
with the determination of the critical field H, corre-
sponding to a second-order phase transition. It is then
sufficient to retain only the lowest term in the expan-
sion of G or F in powers of A. A complete discussion of
the generalized Maki theory, valid for all 6elds up to
H„ is contained in the companion paper. " For our
present purposes the approximations

G(r, r'; &o) =G~(r, r'; ~),

F(r, r';to) —G~(s, r; —co)Z(s)G~(s, r';co)d's, (4.6)

are adequate. The superscript (0) has been suppressed
for simplicity. As in Sec. II, Gz is in turn expanded in
terms of (e/m*c)Ap„. According to (4.4) and the re-
marks that follow,

Mr((o) = (2s-iU(0)r) 'F(co), (4.7)

where F(co) is obtained by setting r'= r in (4.6), and
similarly for G(a&). With F(s&) assumed constant, one
may remove the constant 6 outside the integral over s
and average r over the sample. The diagrammatic
representation introduced in Sec. II can be used again;
only contributions from diagrams with no impurity
lines need be kept, however.

We 6rst note that only the zero-order term Go in the
expansion of G~ makes a nonvanishing contribution
to G(cu), since higher-order terms have two or more
poles in the same half plane. Thus co=to+(2r) ' sgnco
as in zero field."Ry analogy with (2.15) and(2. 22),
one easily sees that

F( ) =-~(0)~ i-i-' —:Zl—
I

' '
(4.g)

fesslt' A,'f/';$(oi) j
& c j 3~co('

to second order in H.
The diagrams contributing in fourth order are shown

in Fig. 10.The black dot refers to the constant factor A.
Without going into detail, we note that diagrams (b),

(p) (b) (c) (d) (e)

Fio. 10. Total contribution to F(a&)/A to fourth order in the Geld;
each black dot carries a factor g.

+ A. L Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965) '9 This is only truein theframework of the approximation (4.6),
fEnglish transl. : Soviet Phys. —JETP 21, 153 (1965)g. i.e., for infinitesimally small d.
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Fio. 11. Stairlike diagrams derived from Fig. 10(a) in the
j= i approximation.

(c), and (d) yield 4, 6, and 4 times the contribution of
either (a) or (e), respectively: it is suflicient to evaluate

(a) and multiply by 16. The general result is compli-
cated since momentum conservation gives only one
relation between the indices of the four Fourier com-

ponents of A. For that same reason the error one makes
by neglecting all but the lowest component A~=
—(4/sr) H,d is larger than for the H' term. We never-
the less make this approximation for the sake of sim-
plicity. It is then convenient to introduce new stairlike
diagrams, each step contributing ~ one unit of x
momentum ki ——s/d and a factor (eAiP„/2m*c). Thus
the new diagrams derived from that shown in Fig.
10(a) are illustrated in Fig. 11. Those obtained by
reAection about the base line have been omitted; they
contribute an equal amount. The total fourth-order
term is therefore

- (2eppH, d 4 ' dy ' dw dE
321K i Z(0) —cos'y —(1—w') '

s'c 2s i 2 (e+s(y) (e—uo) '(e+p~k, w —r'rp)

X I (e N4) t( s+pg kl w srp) + (e ppklw 'trp) j+ (e+2pEklw l~) (e+'vgklw Rd) I .

We have neglected to include kis/2m* in the denominators since it does not affect the final result, as shown in

Sec. II. Picking up the residue at e= —iso, separating into partial fractions, and performing the angular integra-
tions, one obtains

(4)
(2epgH, de' 4fL2ki)((g) j—f'Lk, g(rp) $

s'c j s (4.9)

where
2m @ 1 (1 w2)2—cos4qh dw

p
2s'

p 1 sw

= (5I4) I f(s) —(1—f(s) )/ss3 (4.1O)

f'(s) =5

F„= x(0)(1—z„)E„~-„~-. (4.11)

Keeping only the j= 1 contribution in (4.8) and adding

(4.9), one obtains

'P f(~k /d) -'P 'L4f'( ~k./—~-) j'(~k./d) 3, (4—1 )

where P„=(4eH, d$„/m'c) '. This should provide a reason-

able approximation whenever P„s is sufEciently small.

The structure of the complete series is easily surmised:

R„=g( 1)" '(eH, d)„—/c)'"f„(m.j„/d) (2N+1) '. (4.13)
n=l

Thj.s last expression reduces to the exact result in the
local limit ( f„=1), which one readily recognizes as the

average of 1—(2eA$,/c) ' tan '(2eA), /c) over the

is a new nonlocality function which, hke f(s), is

normalized to 1 when s=0 and decreases as z ' as s—+~.
It is interesting to compare (4.9) to the exact result in

the local limit,

F"'(a&) =sS(0)rK(ep~/c)4((A'), /5
~

~ ~s).

Since (A4)„=(H.d) 4/80, our approximation yields an
answer which is 80X6(2/x')'=0. 81 times the correct
one. The error is smaller, but hard to estimate, if
nonlocality is important.

It is convenient to write [co„=(2v+1)AT)

sample. Sy introducing appropriate nonlocality func-
tions f (s), whose behavior is qualitatively the same
as that of f(s), one can write the general result in this
fol ITl.

C. Determination of H, and Convergence Criteria

Substituting (4.11) into (4.7) and (4.5), one finds

F„=s.E(0)hf(1 —E,)/(~ co.
~
+(2r) 'E„)j. (4.14)

Recalling the self-consistency condition (2.5) and using
(2.23) and (2.24) to eliminate 1V(0)g, we obtain

~c ~ rdv ~v
ln —=2~TQ-

T „=p(o„(v„+(2r) 'E,

.&r/5,

o (2v+1) (2v+1+E„tr/t)
w»ch, with (4.12), yields the implicit equation for H,
given at the end of our preliminary note on the sub-
ject.'0 It is instructive to look at some limiting cases.
Thus our previous result for H„(2.27), follows if one
neglects E„ in the denominator on the right side of
(4.15) and retains only the leading contribution of
order P„. Referring to (4.13) one easily verifies that
the ratio of successive terms in the corresponding
series is (eH,dg„/c)'$1+ (2~„r) 'f(7r(„/d) j, provided
the inessential difference between different f„'s is
neglected. Using the v=o term in (2.27) to estimate
H„one sees that (2.27) is a good approximation if

1 «&f(~kid) (1+4/—t) IL1+(4/t)f(~(Id) j (4 16)

In the local limit (d»$)f—1 and (4.16) reduces to
1—t«1. In the opposite limit (d«$)f(rr)/d) d/$ and
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the right side of (4.16) becomes (d$,/P) (1+d(,/g)
which is bounded by d$,/P or l/$, depending on whether
d/)&l/$, or vice versa. In this last case l~g, however,
since d«P implies l«$.. We conclude that (4.16) is
equivalent to the simpler restrictions (2.29).

In the dirty limit P„ l, so that E„be comes inde-
pendent of v and the u summation can be carried out
explicitly:

OO 2p
ln —' =P

T „p (2i+1) (2i+1+p)

=4 (s+kp) —4 (2) .

Here P(s) =I' (s)/I'(s) is the logarithmic derivative
of the I' function~ and p =E.gr/l or

p = (r/3rrT) (esp/c) '

)(Qg sf(lssl) ~ ssgrl(4e+, d/~sc) sf(~l/d) (4 18)

if we retain the leading contribution. This will be
justified below. The first expression is a consequence
of (4.8), while the second one obtains if one neglects
all but the j=1 contribution, the resulting error being
small, as shown in Sec II. Fo.r d«$ or d)&$ one recovers
Maki's7 and Shapoval's" results. According to (4.13),
our neglect of higher-order terms is justified as long as
(eH,dl/c)'«1. The maximum value of H, occurs at
T=0. Using P(is) = in' and P(s) —lns (s»1),'s and
the BCS weak-coupling relations' D, (0) =(s./y)T, =
'Vs/s $0) oile flilds

(4eH, (0)d/e c)' ss)7~re, lf (~l/d) $ ' (4.19.)

The expansion parameter is therefore small through-
out the interval 0&t&1, provided l«$, f(srl/d). This
condition is certainly satisfied in the local limit, since
l(&$, by assumption. In the opposite case (d« l«$, )
one finds the restriction d$,/ls»1. We conclude that
our generalization of Maki's theory is valid, provided
l«$. and

films (l&$,) at intermediate temperatures such that
(eH,d),/c)'((1 or, using (2.27) for a rough estimate,

ln(T, /T) (& min($r/P, der/P) . (4.21)

This is confirmed by our good fit to Toxen's critical
field data for a In-4.6'f/o Sn 61m~ down to t=0.4, as
shown in our preliminary note. A more complete
discussion is given in the companion paper. "

V. CONSTANT & ASSUMPTION

As mentioned before, the results obtained in Secs. II
and IV are valid insofar that contributions associated
with spatial variations of the order parameter 5 are
negligible. Actually, the derivation of (4.15), (4.12),
and (4.13) requires that this statement apply to
F(r, r; co) =F(x, co) —as well, a seemingly stronger
condition. Using the analysis developed in the previous
section, we include the effect of the lowest two com-
ponents in the Fourier expansions of h(x) and F(x, oi),
e.g.,

&(x) = P& cos(2ssssx/d), (5 1)

and estimate that Ai/hs (eH, d /c)'. One is thus led to
the criterion (1.10) given in the introduction. As
explained there, within the framework of our perturba-
tion approach, (1.10) is a real restriction in the local
limit only. It is then inconsistent to keep any terms
beyond the leading one of order P„or (eHd$, /c)' when
substituting (4.12) and (4.13) into (4.15) .

The formalism introduced at the beginning of Sec.
IV also provides a clear interpretation of Rickayzen's
treatment. " He assumed d constant, but allowed
F(x, ia) to vary across the 61m. The self-consistency
condition (2.3) implies that A(x) does vary appre-
ciably, however, except near T„where the GL theory
applies. Ke conclude that it is inconsistent to neglect
the spatial dependence of 6, but not that of F(x, oi) .

(l/~. ) l&&d&&(~.l)" (4.20)
A. Simple Criterion

where the second inequality ensures that 6 and F(os)
are constant over the film.

Our general result (4.15) is not useful for pure films
at low temperatures because the expansion (4.13) does
not converge in that range. That it can be summed in
the local limit is of academic interest since the under-
lying assumption of a constant order parameter can
only be satis6ed if d«$. , and the exact form of the f„'s
in this extreme nonlocal case is not known at present
(the error incurred by ignoring j&1 contributions
increases rapidly with rs). Nevertheless, (4.15), to-
gether with (4.12), offers a considerable improvement
over (2.27) or (4.17) and (4.18) for moderately impure

4' W. Magnus and F.Oberhettinger, Special Functions of Math-
esaallcal Physscs (Chelsea Publishing Co., New York, 1947), p. 3.

d„=gTQF (oi), (5.2)

6 (ra) =6 +(2e-1V(0)r) 'F (oi). (5.3)

"D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306
(1963).

It is assumed that h(r) depends on x alone and is
symmetric about x=d/2, as implied by (5.1),
accordance with the Saint-James and de Gennes solu-
tion of the linearized GL equation for a suKciently
thin film in a parallel magnetic 6eld.4' Instead of (2.5)
and (4.5), (4.7) has self-consistency conditions for
each m:
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Fo(oo) = (2z) 'd'pFp(y, a)), (5.4)

co remains equal to its constant, zero-field value in the
framework of the linearized approximation (4.6) . Since
the strongest spatial dependence is expected at H =H„
it seems reasonable to restrict one's attention to this
case. The diagrammatic representation introduced in
Secs. II and IV is easily adapted to the present situa-
tion. It is important to keep in mind the special status
enjoyed by the m=0 components, e.g., the analog of
(2.17) for 6 involves —,'A~„„~ for e'Wn. ", and Ap for
I'=e". Combining this result with the analog of (2.9),
one obtains

~-( ) =2f i2 ) '~'P~-(P ~)

where

F„(y, oo) =F—(rs, m+2m, yi;oo) =F(e, I—2m, yi; oo).

Since the perturbation (e/m~c) A (x)p„couples diGerent
Fourier components, it is necessary to make simplifying
assumptions in order to obtain manageable equations.
We neglect all but the lowest component of A as before,
retain only the m =0 and m = 1 components of F(x, co),
A(x), and A(x), and work to second order in II. Typical
contributions to Fp(y, &u) and F~(y, co) are illustrated
in Figs. 12 and 13, respectively, where the black dot
denotes Do, while the vertical bar with a black dot
contributes a factor —',D~. Diagrams (a) and (b) in
Fig. 12 have been considered before. The contribution
to Fp(a&) from diagrams like (c) is 2X4=8 times that
of (c) (the factor 2 corresponds to reflection about the
base line):

where

d6

1r c j 2 y (p +co ) ( +pvpky w—Ico) (p+2$pkyw —zM)

= —N(o)lp( )fo ( t( )/d)~/

foi(z) =2f(2z) —f(z) . (5.5)

Going on to F&(a&), we note that diagram (a) in Fig. 13 contributes Lthe factor 2 comes from (5.4) for m= 1j
2e'vpII~d) A

2-,'(6,), I N(0) -', (dw) . . =~N(0) g(2zg(co)/d)Dg/co,
m'c j —1 p+ kd E+2vgkyw zG0—

where
C(z) = (tan-'z) /z. (5.6)

The contribution from diagrams like (b) and (c) is 2X4=8 times that of their sum

~

~

~

~

2epBd' 1

z-'c j 2 g (p+icv) (p+2ppk~w —ice)'

XI (p+ppk, w —i~) '+ (p+3o~k, w —uu) '$= zN(0) ;P(oo—)f»(7'(»-)/d) c4/~,

where

2f (z) =9f(3z) —8f(2z)+f(z)

Finally, diagram (d) contributes the same amount as
diagram (c) of Fig. 12 with —,'6, replaced by Dp. Dia-
grams like that shown on Fig. 14 are ignored, since
their contribution is proportional to A2, which we

neglect in order to get a closed system of equations.
Although this is a weak point in the argument, we

believe that it leads to adequate estimates. Combining
the results obtained above, one finds

Fo—:~N(0) I:(1—pPf) ~o—pPfo~~~l/I ~ I,

Fi—=~N(0) L
—pPfoi&o+(g —pPf») ~~3/I ~

I (5 8)

Substituting into (5.3) one gets two equations for Dp,

h~ in terms of 60, D~,. solving them and substituting
back into (5.8), one obtains

Fo=~N(0) (No~o pPfoi I
~

I ~x)/D, —(5.9a)

Fg—mN(0) ( —pPfpg I
co

I
2 p+Nghi)/D, (5.9b)

where

No=(1 —lPf) I I
» I+(Zr) '(1—gylPf )3+r-'(lPfo)',

Ni=(g —-'
Pf»p) (I » I+(2~) 'pPf)+r '(p&f»)' (5 10)

(b) (c)

FIG. 12. Stairlike diagrams contributing to F0 (y, co); the vertical
bar with a black dot carries a factor Q,~.

D=CI »
I +(2r) 'ppf3LI » I+(») '(1—R+pPf») j

—2(2r) '(pPf»)'.

Substituting (5.9) into (5.2) one gets two homogeneous
equations involving do and h~. Solving the second one
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for 6i/Ap and using the first one to eliminate X(0)g,
one obtains

~i/~o= —(QoPfoi(~/D) )

&& (Qf~L1—g —-'.P(f—fir)] —~oPfoi(a/&o) }D ')-'.

Fxo. 14. Neglected stairlike diagram
contributing to Fi(y, o&); the vertical bar I I
with a black dot carries a factor —,'g2.

(5.11)

ln(r, jr) =2~T'g-', P(~P/&D),
co&p

Since we are interested in the case where Ai/Ao is small,
2.24, one obtains

the last term in the denominator of (5.11) may be
safely neglected. Considerable simplification occurs for
d))$ or d«(. with

In the first case

(5.15)

f=foi=fu=1 and 1—g=oL2~$(oi)/d]'.

If (1.10) holds, all the terms proportional to P in the
denominator of (5.11) can be neglected, and the
remaining expression has the same dependence on + as
the summand in the numerator, i.e., (roD) '. Thus

gijgp~~2(2/ir—o) o(eH, d o/c)P&&1 (5..12)

In the second case g=&d/((oo), f=4djg(oo) b«
for '~ 'pgj((op)—]o and fir=(giro) iLd/g(o))]', as one
easily infers from (5.6), (2.20), (S.S), and (5.7) and
the asymptotic expression tan 's~-', x —s-'. The denom-
inator of (5.11) reduces to g &pter/D, and is again
proportional to the numerator, since Pfpi is independent
of ~. One obtains

L4/~o (4/~') '(eH, d'/c) (5.13)

which again suggests that the spatial dependence of 6
is negligible if (1.10) holds. It is gratifying that (5.13)
is consistent with the explicit dependence of 6 derived
in that limit by Shapovali' for eH, d'/c) 1, i.e., outside
the range of convergence of our perturbation expansion.

For intermediate values of d one may use the con-
venient formula

/~i=oPfoo(1ig) ', — (5.14)

(a) (c)

FIG. 13. Stairlike diagrams retained in the calculation of
~i(u, ~).

which interpolates between (5.12) and (5.13), to show
that

~
Ai ~/ho&(eH, d'/c)', we conclude that (1.10)

appears to be a sufhcient criterion in general.
Using (5.14) to express Ai in terms of Ap in the

equation obtained by substituting (5.9a) into (5.3),
and eliminating E(0)g with the help of (2.23) and

~=fL~+(2r) '(1—g+-.'Pfii)]
—-o'PfoioL(2r) '+o&(1—g)

—'].
Equation (5.15) should be compared with (4.15) and
(4.12), which determine H, if 6 is assumed constant
over the sample. Subtracting I'/D from the correspond-
ing exPression derived from (4.15), with g=ooP, vjz. ,
fLop+ (2r) 'oPf] ', one finds the correction arising from
the neglected spatial dependence:

—oPI:fpi'/(1 —g) ]3~j~+ (2r) '-'Pf]

&&L +(2 ) '(1—g+lPj) /D]
The last factor is essentially t op+(2r) ' oopf] ', since
one may neglect -', Pf in the numerator and approximate
D by Loi+(2r) ' ',Pj](co+(2r)-'(1—g)]. The relative
error made by assuming 0 constant and working to
second order in H„ i.e., retaining the leading term in
(4.12), is therefore

lPLfo'/f(1 —g)]L / +(2 ) 'lPf], (5.16)

which is bounded by (eH, d'/c) if d))( and by
(eH,d'jc)'(d/$) if d«(. It is small in the local limit
if (1.10) is satisfied and is always negligible in the
extreme nonlocal limit as long as P«1.

The inclusion of the next term in (4.12), which may
be written as —(6/5) P'fo, gives rise to a contribution

—(6/5) P'fo(~/L~+ (2r) ' oPf]')

on the right side of (4.15). The error incurred by
retaining the leading term only can therefore be
estimated as

(9/S)P( fpjf) $(a/op+(2r) ' PPf]. (5.17)

Recalling that the asymptotic behaviors of fo and f are
the same, we note that the ratio of (5.16) to (5.17) is
of order (dj$)' if d))f and (d/$)' in the opposite case.
Our exact knowledge of the higher-order terms in (4.13)
in the local limit is therefore mostly of academic
interest. On the other hand, (4.15), together with
(4.12), should provide reasonably accurate results when
nonlocality is important.
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B. Critique of Rickayzen'8 Theory

Rickayzen" arrived at the following equation for the
critical field in the dirty local limit (l&&P„d):

hi(TIT) =QLl+( /3 T)( H /)'j —4(l))-.
(5.18)

1=gTQ(X(r, cd) ), , (5.19)

X (r, cp) =Xp (r, cp) + (2m)V(0) r)-' Ep(r, s; cp) X (s, cp) d's,

Since 6 was treated as constant in the derivation, our
task is to criticize (5.18) as an alternative to Maki's
equation for H„~ obtained under the same assumptions,
in which the average is taken inside the argument of
the di-I' function P. This difference results in a value of
H, (0) greater than Maki's by a factor of 1.57. In
either case the criterion (1.10) leads to the condition
d'&&P, /, which was first directly obtained by de Gennes. "
Rickayzen's claim that (5.18) is valid in the opposite
case, corresponding to surface superconductivity, 4' can-
not be accepted and need not be discussed further. His
apparently good fit to Toxen's data on a In-4.6% Sn
film" is deceptive, since it can be shown to require an
unrealistically small value of the mean free path.

The derivation of (5.18) is based on the following
equations":

using the well-known result for the Fourier transform
of Ep in zero field, viz. , mX(0) (~ cp

~
+pep'rq') ' for

~

cp
~

v&&1 and ql&&1. The above-mentioned identification
allows one to check whether 6 is indeed constant.
Substituting (5.22) into the equivalent of (2.3),

~D

A(x)/h=gTQX(x, cp),
egg)

(5.23)

which leads to (5.18) upon averaging over the film.
One easily veri6es that the expression on the right of
(5.25) is not close to 1 except in the GL range 1—t&&1.
Thus it is inconsistent to use (5.19) in general, and we
are led to the conclusion stated at the beginning of this
section.

The results of Sec. IV pertaining to the local limit
are recovered if F(x, cp) is assumed constant and
Rickayzen's approach is modified accordingly. Since
A(x) and h(x, cp) are then constant as well, (5.20) or,
equivalently, (4.6), is solved as follows:

F (cp) =6 (cp) (Xp(x, cp) ).

and using (2.23) and (2.24), together with the defini-
tion of the di-I' function implicit in (4.17), one finds

6 (x) /2 = I ln(2ycp~/m T) —PLp+ (7/37r T) (eH,x/c) 'j
+0 (p) IDn(27~ /~T. )r' (5 24)

where

Xp(r, cp) = Ep(r, s; cp) cPs

(5.20) =~LOo(x ))- ' —(2 &(0) ) 'j '. (5.25)

Xp(x, cp) may again be expressed in terms of the Fourier
transform of Eo in zero 6eld,

E,(r, r'; cp) =G, (r', r; cp) Gp(r—', r; cp)

)& exp) —i(2eH, x/c) (y—y') j, (5.21)

which were obtained by looking for an instability in
the two-particle normal-state propagator in the ladder
approximation. We find it more instructive to consider
the linearized equation (4.6) which, together with

(2.3), (4.5), and (4.7) determine the order parameter
in the limit 6-+0. One readily verifies that X(r, cp) =
F(x, cp)/6; (5.20) follows if (4.5) and (4.7) are sub-

stituted into (4.6), while (5.19) obtains if (2.3) is
averaged over the sample, in accordance with the
assumed constancy of h. The Ansats

G~(r, r', cp) =Gp(r, r'; or) exp(i(eHx/c) (y—y')g

leading to (5.21) is justified for d» l.'p Rickayzen
solved (5.20) approximately by neglecting the varia-
tion of X over the range l of the kernel Eo.'

X (r, cp) =Xp (r, cp) L1+(2'�(0)r)-9, (r, cp) J,

dPpE.(q, )= Gp(p, —~)Go(q —p, )(2n.) '

=I 2nlV(0)/p~q$ tan '(qp&/2cp)

by setting q=2eH, x/c in accordance with (5.21). This
result is not restricted to the dirty limit and is valid
for q((pz. Substituting into (5.25) and (2.5) one
obtains (4.15) with

an-'(2eH, x&/e)

2eH, xg„/c
(5.26)

VI. SUMMARY

As shown in the first part of this section, however, only
the leading term in the expansion of (5.26) in powers
of 2eH, x)„/c, viz. , ip(2eH, )„/c)'(x'), =(eH,d),/3c)', is
meaningful, since the higher-order terms are smaller
than the error due to the neglected spatial dependence
of F(x, c ). In the dirty limit these higher-order terms
are negligible even at T=O, so that Maki's theory is
certainly the correct one.

1.C.]

X (x, cp) —s cV(0) D cp
~

+-pP pp'r (eH,x/c) '] ',
References to the most important equations derived

(5.22) in the course of this investigation are indicated below.
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The restrictions ensuring constancy of the order param-
eter and rapid convergence limit the range of thickness
in which various formulas apply from above and below,
respectively. Nonlocal eGects are governed by the func-
tion f(s), defined in (2.20) .

The generalized GL equations (2.34) and (2.39)
valid close to T, under the restrictions (2.29) and
(2.30) involve the Fourier transform of the bulk weak-
field. kernel (2.37) evaluated at the discrete allowed
wave vectors k;=jsr/d. The expressions (3.3) and (3.4)
for the Fourier coefBcients of the vector potential should
enable one to include the eGect of a net transport
current. In its absence, the critical 6eld H, for a second-
order transition is given by (2.27) or (3.11), while
(3.14) gives the critical ratio below which the thermo-
dynamic transition becomes Grst order.

Maki's equation (4.17) for H„ge ner ali ze daccording

to (4.18), is valid at all temperatures in the dirty limit
(l«f, ) under the restrictions (4.20).

The expression (4.15), together with (4.12), valid
in the range (4.21), provides the best answer for
moderately impure samples at intermediate tempera-
tures.
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Raman Scattering by Coupled Optical-Phonon-Plasmon
Modes in GaAs

B. TELL AND R. J. MARTIN

Bell Telephone Laboratories, MNrruy Hill, Eem Jersey

(Received 26 July 1967)

Raman scattering by coupled optical-phonon —plasmon modes has been studied in Qve differently doped
QaAs samples in order to determine the linewidths and polarization of the coupled modes. The linewidths
have been related to a lifetime which is predominantly due to individual electron collisions, although evi-
dence is presented for Landau damping in the purest sample studied. The polarization data show that
the plasma Raman scattering is comparable in magnitude to the phonon Raman scattering. The excitation
wavelength was 9698 A. from the ionized xenon laser.

I. INTRODUCTION

E have studied Raman scattering from five
differently doped GaAs samples in which the

conduction-electron plasma frequency varied from one-
quarter to twice the longitudinal optical-phonon
frequency. Mooradian and Wright' (called MW here-
after) have performed the only previous experiment on
a coupled electron p1.asma-phonon system, although
there have been numerous theoretical papers. ' M%'
showed that the frequency and damping of the coupled
modes change as a function of carrier concentration or
plasma frequency. At low plasma frequencies, the
modes are only weakly coupled and there exists a
reasonably pure plasma line and the longitudinal
(LO) and transverse (TO) optical-phonon lines. At

' A. Mooradian and G. B. %right, Phys. Rev. Letters 16, 999
(1966).

'B. Varga, Phys. Rev. 137, A1896 (1965); K. S. Singwi and
M. P. Tosi, ibid. 147, 658 (1966};V. C. Lee and N. Tzoar, ibid.
140, A396 (1965); D. K. McCumber, ibid. 154, 790 (1967); K.
Burstein, A. Pinczuk, and S. Iwasa, ibid. 157, 611 (1967};and
R. Tsu and D. L. White, Ann. Phys. (N.Y.) 32, 100 (1965).

high plasma frequencies, the modes are again un-
coupled with the LO phonon approaching the TO
phonon frequency. For intermediate cases, the modes
have mixed phonon-plasma character with the mixing
being largest where the uncoupled dispersion curves
would cross.

One motivation for the present experiment was to
determine the linewidths of the coupled system. The
linewidths have been related to a phenomenological
damping constant which is predominantly determined
by collision damping. However, evidence for Landau
damping in the purest sample studied is presented.
The polarization of the Raman scattered light has been
determined in order to discriminate among the various
mechanisms which can produce phonon' and/or
plasmon Raman scattering. '5 The published results of
MW were obtained with unoriented samples for which

s R. Loudon, Advan. Phys. 13, 423 (1964}.
4 P. M. Platzman, Phys. Rev. 139, A379 (1965).' A. L. McWhorter, m Proceedings of the International Conjerence'
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