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increases, the higher order echoes disappear and. only
the normal t=r echo remains.

IV. DISCUSSION

It is seen that the multiple echoes occur when the
spins are strongly coupled to the resonant cavity. The
general formalism applied to the quantum-mechanical
harmonic oscillator should apply to other systems such
as optical energy levels in an optical system. s

The relaxation processes of the magnons are divided

' N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.
Letters 13, 567 (1964); A. G. Fox and P. W. Smith, ~bid. 18, 826
(1967); S. L. McCall and K. L. Hahn, ibid 18, .908 (1967).

into homogeneous and inhomogeneous broadening. The
relaxation processes' which proceed via the coupling to
the Maxwell field will be strongly dependent upon the
mode structure imposed by the microwave cavity.
Further measurements of T1 and T2 are in progress in
this system.
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The superconducting transition temperature is calculated as a function of the electron-phonon and elec-
tron-electron coupling constants within the framework of the strong-coupling theory. Using this theoretical
result, we find empirical values of the coupling constants and the "band-structure" density of states for a
number of metals and alloys. It is noted that the electron-phonon coupling constant depends primarily on the
phonon frequencies rather than on the electronic properties of the metal. Finally, using these results, one can
predict a maximum superconducting transition temperature.

I. INTRODUCTION

N this paper we derive a formula for the super-
.. conducting transition temperature, using the so-
called "strong-coupled" theory, as a function of the
coupling constants for the electron-phonon and Coulomb
interactions. We take the point of view here that the
theory of superconductivity is accurate and well-

developed and that, given certain properties of the
normal state of a given metal, we could calculate its
superconducting properties, e.g. , T„with an accuracy

1'Po. The necessary properties of the normal state are
(a) the electron energy bands near the Fermi energy,
(b) the phonon dispersion curves, (c) the fully dressed
(screened) electron-phonon interaction matrix elements,
a,nd (d) the fully dressed Coulomb interaction between
electrons. All these properties are not sufficiently well-

known for any metal to make a first-principles calcula-
tion of its superconducting properties worthwhile. There
is much to be learned, however, by approaching the
problem from the other direction and asking what can
be learned about the normal metal from its measured
superconducting properties. There are available for a
number of superconducting metals and alloys measure-
ments of the superconducting transition temperature
T„ the Debye temperature 0', and the electronic heat-
capacity coefIicient p. Also, for a few metals, there are
measurements of the phonon energies and of the isotope

shift of T,. By making use of our theoretical formula for
T, and experimental data, we can find empirical values
for electron-phonon coupling constant X and the phonon
enhancement of cyclotron mass and specific heat. The
measured isotope shifts can be used to find empirical
values for the Coulomb coupling constant p, *.With the
addition of information about the phonon energies, we
will be able to examine the makeup of X and discuss the
inQuence of the various metallic properties upon the
variations of A. throughout the periodic table. Finally,
it will be pointed out that the theory makes a reasonably
definite statement about the maximum T, that one
should expect for a given class of materials.

The plan of the paper is as follows. In Sec. II we will

write down the integral equations for the strong-
coupled superconductor at the transition temperature
and discuss an approximate, analytic solution. In Sec.
III we will present accurate numerical solutions of the
integral equations and show that these results for T,
fit a simple analytic function of the coupling constants
X and p,*.In Sec. IV we use these theoretical formulas
and experimental data to find. empirical values of P and
the "band-structure" electronic density of states at the
Fermi surface for a number of metals and alloys. In
Sec. V we derive an expression for X in terms of an
average phonon energy 1V(0), and. an average of the
electron-phonon matrix elements, and find empirical
values for these quantities for a few elements. Ke



332 W. L. McMILLAN

present a theoretical argument and empirical evidence
that the coupling constant depends strongly on the
phonon energies and only weakly on the other param-
eters in a given class of materials. With this observation,
we derive in Sec. VI a maximum T, for that class of
materials.

II. THEORY

According to the Bardeen-Cooper-Schrieffer' (BCS)
theory of superconductivity, one has a relation between
the transition temperature T„a typical phonon energy
(oi), and the interaction strength 1V(0) V:

The integral equations for the normal and pairing
self-energies at the transition temperature are" "
$(oi) = C1—Z(oi) $oi

&0

doi' dpp, n'(rp, ) F (tp, )

x I C&'(~ )p+f( ~') 3—C(~'+~a+~) ' (~'+—~. ~) '—3

+C&(~.) +f(~) 3C(—~'+~s+~) '

—(—pp'+oi, —oi)
—'$}, (2a)

T,= 1.14(oi) expC 1/cV(0) Vl ~( )=Cz( )3 '
p CO

Here $(0) is the electronic density of states at the
Fermi surface and V is the pairing potential arising
from the electron-phonon interaction. Numerous
authors have estimated 1V(0) and V using Eq. (1) and
experimental values of 2 „0,and y (the coeAicient of
the electronic specific hea, t) .

Since the BCS paper, much progress has been made
in understanding the role of the electron-phonon
interaction in normal and superconducting metals.
Migdap showed that, in normal metals, the electron-
phonon interaction could be treated accurately Cto
order (m/M)'~'j even for strong coupling. Eliashberg'
and Nambu' have extended the Migdal treatment to the
super conducting state using the Green's-function
techniques of Gor'kov. ' The Kliashberg theory ta,kes
into account the retarded nature of the phonon-induced
interaction and treats properly the damping of the
excitations. This strong-coupling theory is a,iso
accurate to order (m/M)'". With the addition of the
pseudopotential treatment' of the screened Coulomb
interaction, the Eliashberg equations represent the
present state of the art in superconductivity theory. '
Comparison with tunneling experiments' ' and critical-
field measurements" for strong-coupled superconductols
has provided a strong confirmation of the theory in
its present form.

' J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 106,
162 (1957); 108, 1175 (1957).

2A. B. Migdal, Zh. Kksperim. i Teor. I iz. 34, 1438 (1958)
t English transl. : Soviet Phys. —JETP 7, 996 (1958)].' G. M. Eliashberg, Zh. Kksperim. i Teor. I"iz. 38, 966 (1960);
39, 1437 (1960) /English transls. : Soviet Phys. —JkTP 11, 696
(1960); 12, 1000 (1961)].' Y. Nambu, Phys. Rev. 117, 648 (1960).

'L. P. Gorkov, Zh. Kksperim. i Teor. Fiz. 34, 735 (1958)
LEnglish transl. :Soviet Phys. —JETP 7, 505 (1958)].' P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

7 J. R. SchrieGer, Theory of SNperconductk g'ty (W. A, Benjamin,
Inc. , New York, 1964).

8 J.R. SchrieGer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev.
Letters 10, 336 {1963);D. J.Scalapino, J. R. Schrie6er, and J.%.
Wilkins, Phys. Rev. 148, 263 (1966).

"W. L. McMillan and J. M. Rowell, Phys. Rev, Letters 14, 108
(1965); also (to be published).

' J. C. Swihart, D. J. Scalapino, and Y. Wada, Phys. Rev.
Letters 14, 106 (1965).

Co P

X ReCA(oi') j dhp, a'(oi, l F (pip)

Ai(oi) = Dp, (cugup

Mp(G) (3)

a,nd compute A(0) and 6( eo ) from Eq. (2) . Neglecting

"V. Ambegaokar. and L. Tewordt, Phys. Rev. 134, A805
(1964).

"D. J. Scalapino, Y. Wads, and J. C. Swihart, Phys. Rev.
Letters 14, 102 (1965).

XiP'(~.)+f( ~')3C(~—'+~.+~) '+(~'+~, ~) 'j
-C&(.)+f( ')3C(- '+ + )-'

Ã(0) V. ~p dip'
+(—~'+~.—~) 'jI—

Z (rp) e o&

X «C~(~') jC1—2f(~') j, (2b)

where F(oi,) is the phonon density of states, happ is the
maximum phonon frequency, rr'(o&, ) is an average of
the electron-phonon interaction, V, is the matrix
element of the screened Coulomb interaction averaged
over the Fermi surface, E~ is the electronic bandwidth,
and A (or) and f(oi) are the Bose and Fermi occupation
probabilities Cexp(oi/k T,) +11 '.The screened Coulomb
interaction is described by the parameters E(0) V, and
I~"&, and the electron-phonon interaction by the func-
tion n (pp, ) F(rp, ), which we will discuss in more detail
below.

We find an approximate solution to Eq. (2) by sub-
stituting a tria, l function for A(oi) on the right-hand side
of (2) and computing A(oi) by performing the indi-
cated integrations. We then require that the trial h(oi)
and the computed h(oi) be a,s consistent as possible.
Such a procedure was followed by Morel and Anderson, '
who, in fact, used a better trial function than we will
take; we depend more on the accurate numerical results
of the next section. We choose
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ZP (0) = —[N (0) V,/Z(0) jO~' 0

LV(0) = [Z(0)j—', ho doo, n'(rp, ) F(oo,)
p CO p

X[~o in(ppo/T. )+~„in(Ea/coo) j (8)

the thermal phonons, we have three contributions action; the third term from the Coulomb interaction is
to d, (0):

&& If(-~') (~'+~ ) ' f-(~') (-~'+~ ) 'I

+o "o d~' oo 'l "o dooo n'(coo) F(ooo)
, tanh l2

Z(0) p
co' 2T.i p

=[~o) /Z(0) 3»(~o/T ) .

At high energies the only contribution is from the
Coulomb interaction:

g(m) = —[N(0) V,/Z(~) j
&&[ho in(Mo/T, ) +5 in(Es/ooo) ] (9)

The renormalization is easily found to be

Z(0) =1+X, (10)Z(oo) =1.
Ke satisfy our consistency requirement at low and high
energies:o) p ADq

n'((v, ) F (co,) (s) a(0) =a,

The dominant contribution to the ~ integral is from
small co', and. we neglect ~' relative to coq in the phonon
propagators (co'+co,) '. The natural definition of a
dimensionless electron-phonon coupling constant is

and X corresponds roughly to the N(0) V of the BCS
model. Further, we have

~ GM 2
d'(0) =[Z(0) $ ', b, dooon'(~o) F(~,)

~o ~ p ~+Ms:—[~ /Z(o) 3((~)~/~o)

= P,) /Z(O)]»(, /T, )+[~„/Z(0)](( )/, ))
—[N(0) V /Z(0) ][&oin(co o/T ) +& 1n(La/a&o) j,

(11)
g(~) =g„

= —N(0) V,[~pin(&oo/Tc)+6 ln(Fa/uo) j

d(v, n'((o, ) F (cv,)
"0 dO)q' n'(~. ) F(~.)

p COq

where (&u) is an average phonon frequency; N(0) V,hp ln(cop/T, )

1+N (0) V, ln(F~;s/(up)

= —p*Ap ln(s&p/Tc), (12)
—0.Scop)

and we have neglected coq relative to ~'. The 6rst two
contributions are from the electron-phonon inter-

10-

I

10

N(0) U,

1+N (0) V, in(Es/cup)

Substituting (12) into (11),we find

hp[) —p*—p*X( (I )/(op) ) ln ((op/T, )
Ap=

1

(13)

~r (14)

The strong-coupling formula analogous to Eq. (1) is
then

T= —(I.+)~)—'= exp
ooo X—p*—( (ro)/(uo) )I p, *i

In weak. coupling (X«1), Eq. (15) reduces to the BCS
result with X—p* playing the role of N (0) V. The strong-
coupling features are (1) that the interactions are
renormalized by Z= 1+X and (2) that the Coulomb
interaction changes the gap function in such a way that
the phonon contribution is reduced from X to
~[1-((-)/-.).*j

where p* is the Coulomb pseudopotential of Morel and
Anderson'

FIG. 1. The logarithm of 6/T, versus (1+X)/k from a solution
of the integral equations of the strong-coupled theory with p~ =0.
The straight-line fit determines the constants t', 1.04 and 1.45) in
the theoretical formula L(Eq. (18)g.

III. NUMERICAL RESULTS

In order to 6nd a more accurate solution of the gap
equation, we go to the computer. We solve Eq. (2) by
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TAsLE I. Values of the coupling constant X for various values of
the Coulomb term p* and transition temperature T, I'in 'K) .

0.088 0.149 0.157 0.245

20
15
10
5
1
0.1
0.001

0.85
0.68
0.55
0.40
0.25
0.16
0.09

1.12
0.93
0.75
0.58
0.39
0.28

1.34
1.12
0.91

0 ~ 72
0.50
0.38
0.25

1.47
1.20

a simple iterative procedure. We write (2) in the form

A~+i(GO) = dM E(M, CO ) A~(M ), (16)

and choose Ai(~0) to be the solution found in Sec. II.
We substitute hi(co) into the right-hand side of (16)
and perform the indicated integration to find A, (&o),
which is, we hope, closer to true solution. Vfe find, in
fact, that after four to eight iterations, h(&u) has con-
verged in the third decimal place. During the iteration
it is convenient to fix T, and p~ and to adjust +' at each
sta, ge so that 6„+i(0)=6„(0). We must choose a par-
ticular n (cu,) F(&o,), and, since we will be interested in
the bcc transition-metal alloys in the next section, we
take F(~,) to be the phonon density of states of Nb
found from the neutron work. "u'(cd, ) is taken to be a
constant a' over most of the phonon spectrum; however,
we take o.'F(~) =0 for co(100'K to eliminate the
coupling to the long-wavelength transverse phonons
(see Fig. 4) . We have performed the numerical calcula-
tions for several values of T, and p* with T, in the
range 10 ' 'K& T,(20'K and p,

* between 0 and 0.2.
The results for ) for various values of T, and p,

* are
given in Table I. Instead of plotting the numerical data
as a family of curves, we will use the analytic formula
(15) to fit the data. A plot (Fig. 1) of ln(O/T, ) versus

(1+X)/X for y*=0 yields a straight line with a slope of
1.04 and an intercept of 0.37= ln1.45. In order to
determine the constant (~)/a&0 from the numerical
data, we plot in Fig. 2 the quantity

1.04 (1+X)
ln 1.45T,

)which should be equal to 1+((a&)/coo) Xj versus X. A
straight line with a slope of (ar)/u&0

——0.62 and an
intercept of i provides a good fit to the numerical data.
The scatter of the points about the straight line is
partly due to numerical inaccuracies of the computer
program which are magnified in taking the difference to
calculate y. The final formula for the transition tem-
perature is then

0 1.04(1+X)
T,= exp 18

1.45 X—p*(1+0.62K)

We have used the Debye O~ for the characteristic phonon
frequency. Ke could just as well have used the maxi-
mum phonon frequency coo or the average phonon
frequency (a&) Lsee Eq. (24) belowj. For niobium,
0~=277'K, &uo

——330'K, and (cv)=230'K. We illustrate
the accuracy of this analytic formula by plotting
y'=1.04(1+1)/ln(O~/1. 45T,) versus X in Fig. 3. The
analytic formula gives the family of straight lines
y'= —p*+(1—0.62p, *)X for a fixed p, *. The numerical
data points (for the same p* values) are shown by
crosses. The analytic formula does give a good fit to
the numerical values over a wide range of parameters.

The energy-gap function A(cv) for a typical set of
parameters (X= 0.91, y*=0.149, T,= 10'K) corre-
sponding roughly to those of Nb is shown in Fig. 4,
together with the phonon density of states of Nb.

Since we will find empirical values of X in the next
section, we are interested in the definition of A. in terms
of the electronic matrix elements and the phonon fre-
quencies. We have used n2(~) F(oi), which is defined by

(19)cx'((u) F ((o) =
2 ~, , Zg- '~(~ —~u-. ~)

s ~s s& ~ ~s s ~s

where the integral f d'p is taken over the Fermi surface and the electron-phonon matrix elements are given by"

au" = (&/2~&I'~n .")"'~.(p, p'), - (20)

where d„(pp ) is the electronic matrix element of the change in the crystal potential 'll as one atom is moved:

a„(pp') = p„*(,„.„V'tt)1l,.dr. (21)

Note that g' is inversely proportional to the phonon energy &o~„, so that the first moment of n'(~) F(~) is in-
dependent of the phonon frequencies:

kd COCP(M) F(M) =

X(0)fi(F )
2'

"Y.Nakagawa and A. D. B. Woods, Phys. Rev. Letters 11, 271 (1963).
~4 J. M. Ziman, E/ectrons and Ehonons (Oxford University Press, London, 1960) p. 182.

(22)
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Here (8') is the average over the Fermi surface of the
square of the electronic matrix element (21). Finally,
from the definition of A, , we have

X=-2
do) n'(oi) F(to) X(0) (d')

oi 3E (ois )
(23)

where (co') is an average of the square of the phonon
frequency:

yl 5

(oi') = doi ton'(o~) F (oi)
do) ns(to) F (oi)

dM toF (6))
dM F(oi) I

0.5 4.0 1.5

1 ( 0 ' 1+0.62K
1— p,

* ln 25
2 l, 1.45 T, 1+X

which differs very little from the weak-coupling result.
The velocity of electrons near the Fermi surface is

renormalized by the electron-phonon interaction. To
see this, we And the self-energy for electrons in the
normal state PEq. (2a) ] for T=O and M((tep.

$ (td) = Xto. (26)

The energy of the electronic excitations is determined
from the poles of the Green's function, or from

(27)

where e& is the energy of the Bloch state (measured from
the Fermi energy) with momentum k. Substituting

2.0

+/'
/s

W+

1.0
0

l

0.5
I

1.0 1.5

FIG. 2. The quantity y defined in Kq. (17) versus X; the straight-
line fit determines the third parameter (0.62) in the theoretical
formula PKq. (18)g.

"J. W. Garland, Jr., Phys. Rev. Letters 11, 114 (1963).

The transition temperature (18) depends on the
isotopic mass' " directly through the factor O~ and im-

plicitly through the toe dependence of p*. Using (18)
and (13),we find T, ~ M, with

1 (1+X)(1+0.62K) p*'

2 P.—p*(1+0.62K) ]'

FIG. 3. The quantity y'=1.04(1+X)/ln(e/1. 45T,) versus X
according to (+++), the computer program, and ( ), the
analytic formula LEq. (18)j, demonstrating that the analytic
formula does fit the numerical results.

(26) into (27), we find for the energy oi of the elemen-

tary excitation,
oi = es/(1+X) . (28)

The electronic heat-capacity coeKcient p, ' " the cyclo-
tron masses, "",and the Fermi velocity measured in the
Tomash-Rowell experiments'~" are all renormalized by
the factor (1+X).

This completes the theoretical portion of the paper,
and we will summarize the results. Our central result is
Eq. (18),which expresses T, in terms of a characteristic
phonon energy O~, the electron-phonon coupling con-
stant X, and the Coulomb "pseudopotential" p, *. This
formula was derived from accurate numerical solutions
of the integral equations of the (accurate) theory of
superconductivity with, however, a special assumption
about the shape of the phonon density of states. The
superconductor was assumed to be isotropic, but this is
not a serious approximation. The definitions of X and
p,

* in terms of the basic metallic properties are given in
Eqs. (23) and (13). Several observable properties of the
metal are modiIIied from their "band-structure" values

by the electron-phonon interaction. The velocity of
electrons near the Fermi surface is reduced by the
factor (1+X);this velocity is measured in the Tomash-
effect experiments. The electronic heat capacity and
cyclotron mass are enhanced by the factor (1+X).
The cyclotron-mass enhancement is in fact anisotropic

M G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 43, 1005 (1962)
/English transl. : Soviet Phys. —JETP 16, 780 (1963)g.

'7 S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
30, 271 (1963).' R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566
(1964).

"W. J. Tomasch, Phys. Rev. Letters 15, 672 (1965); 16, 16
(1966).' W. L. McMillan and P. W. Anderson, Phys. Rev. Letters 6,
85 (1966).

2' W. J. Tomasch and T. Wolfram, Phys. Rev. Letters 16, 352
(&966).

'~ J.M. Rowell and W. L. McMillan, Phys. Rev. Letters 16, 453
(1966).
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The experimental values of o,, T„and O~ are given in
Table II, together with the empirical value of p,

* ob-
tained using Eq. (29) . For the transition metals, we see
that there is some variation about the average value of
@*=0.13. The higher T, transition metals have higher
densities of states and smaller eRective bandwidths, and
somewhat larger values of p,

*are appropriate. However,
for these metals, p* is less important relative to X, and
we take below the value 0.13 for all transition metals.
For the nearly-free-electron metals, the theoretical
estimate p, *=0.1. is reasonable, and this is confirmed by
the empirical p,

* for zinc.
Next, we rewrite Eq. (18) in a convenient form for

finding an empirical electron-phonon coupling constant
from the experimentally determined transition

temperature T, and Debye 0":

1.04+p* ln (0'/1.45 T,)X=
(1—0.62@,*) in(0~/1. 45T.) —1.04

(30)

500 1000

FIG. 4. The real (—) and imaginary (——-) parts of the
energy-gap function versus energy at the transition temperature
for parameters (T,=10'I, X=0.91, y*=0.149) corresponding
roughly to niobium, together with the phonon density of states
for niobium used in the calculations.

and will vary from orbit to orbit; X is an isotropically
averaged quantity, and (1+X) gives an average en-
hancement factor. The strong-coupled formula (25)
for the isotope shift was obtained directly from (18)
and (13), and is numerically very close to the weak-
coupling result.

p*= (1—2n) 'i'/in (0/1.45 T,) . (29)

IV. EMPIRICAL RESULTS

We begin now the empirical portion of the paper,
making use of the theoretical equations and experi-
mental results to extract the coupling constants X and
p~. We first determine p,

*for those few metals for which
the isotope shift has been measured. Then, taking
reasonable values of p,

* for the other metals, we will
find empirical values of A, from T, and 0. Finally, we
use these empirical numbers for X to estimate the
"phonon enhancement" of the electronic heat capacity
y and deduce from the measured y the bare or "band-
structure" electronic density of states at the Fermi
energy.

Neglecting the "strong-coupling" correction
(1+0.62K)/(1+X) in Eq. (25), we find an expression for
the Coulomb pseudopotential p* in terms of the isotope-
shift coefFicient cx, the transition temperature, and the
Debye 8:

Here we use p*=0.13(0.1) for the transition (poly-
valent) metals. The experimental T, and 0" are listed in
Table III for the superconducting metals, together with
the empirical coupling constant X found using Eq. (30) .
The coupling constant found in this way is reliable for
weak and intermediate coupling strengths X&1. How-
ever, for the strong-coupled case X) 1, the resulting X is
sensitive to the details of the phonon spectrum, and it is
desirable to have more information about the phonon
density of states than just the Debye O'. For lead, where
the phonon density of states is known from the analysis
of the tunneling experiments to be quite similar to
that for niobium, Eq. (30) works reasonably well; the
coupling constant deduced from the tunneling data is
1.3, and Eq. (30) yields 1.1. For mercury, however,
the tunneling experiment yields a phonon spectrum
quite different from niobium, and Eq. (30) fails; the
tunneling experiment gives )%. =1.6, whereas Eq. (30)

TABLE II. Empirical values of the Coulomb pseudopotential p~
found from the isotope shift a, T„and 8 using Eq. (29).

Metal p,
* Reference

Zr
Mo
Re
Ru
Os
Zn

0.00~0.05
0.37+0.04
0.38
0.0+0.15

0.21
0.30~0.01

0.55 290 0.17
0.92 460 0.09
1.69 415 0.10
0.49 550 0.15
0.65 500 0.12
0.85 309 0.12

b
c
d~ e
e

a E. Bucher, J. Muller, J. L. Olsen, and C. Palmy, Phys. Letters 15, 303
(1965).

B. T. Matthias, T. H. Geballe, E. Corenzwit, and G. W. Hull, Jr.,
Phys. Rev. 129, 1025 (1963); E. Bucher and C. Palmy, Phys. Letters
24A, 340 (1967).

0 E. Maxwell, Rev. Mod. Phys. 36, 144 (1964).
~ T. H. Geballe, B.T. Matthias, G. W. Hull, Jr., and E. Corenzwit, Phys.

Rev. Letters 6, 275 (1961);D. K. Finnemore and D. E. Mapother, ibid.
9, 288 (1962);J. W. Gibson and R. A. Hein, Phys. Rev. 141, 407 (1966).

T. H. Geballe and B.T. Matthias, IBM J. Res. Develop. 6, 256 (1962);
R. A. Hein and J. W. Gibson, Phys. Rev. 131, 1105 (1963).

f R. E. Fassnacht and J.R. Dillinger, Phys. Rev. Letters 1V, 255 (1966).
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TABLE III. Empirical values of the electron-phonon coupling constant ) and the "band-structure" density of states
Eb, (0) found from T„e, and y for the superconducting metals.

Element
e

('K)
(mJ/mole

'K')

Nb, (0)
(states/

eV atom) fit'b. (0) /X(, (0) Reference

Be
Al
Zn
Ga
Cd
In
Sn
Hg
Tl
Pb
Tl
V
Zr
Nb
Mo
Ru
Hf
Ta
W
Re
Os
Ir

0.026
1.16
0.85
1.08
0.52
3.40
3.72
4. 16
2.38
7.19
0.39
5.30
0.55
9.22
0.92
0.49
0.09
4.48
0.012
1.69
0.65
0.14

1390
428
309
325
209
112
200

72
79

105
425
399
290
277
460
550
252
258
390
415
500
420

0.184
1.35
0.64
0.60
0.69
1.69
1.80
1.79
1.47
3.00
3.32
9 9
2.78
7.8
1.83
3.0
2. 16
6.0
0.90
2.3
2.3
3 ' 2

0.23
0.38
0.38
0.40
0.38
0.69
0.60
1.00
0.71
1.12
0.38
0.60
0.41
0.82
0.41
0.38
0.34
0.65
0.28
0.46
0.39
0.34

0.032
0.208
0.098
0.091
0.106
0.212
0.238
0.146*
0.182
0.276*
0.51
1.31
0.42
0.91
0.28
0.46
0.34
0.77
0.15
0.33
0.35
0.51

0.31
1.08
0.61
0.46
0.53
0.89
0.82
0.70
0.66
0.87

a, b
c
d
e
e
f
g
h
h
1

j, k
j, k
k
j, k
j, k
l, k
j, k
m, k
j, k
j, k
j, k

~ R. L. Falge, Jr., Phys. Letters 24, 579 (1967)."E. Gmelin, Compt. Rend. 259, 3459 (1964).
Norman E. Phillips, Phys. Rev. 114, 676 (1959).
G. Seidel and P. H. Keesom, Phys. Rev. 112, 1083 (1958).
Norman E. Phillips, Phys. Rev. 134, A385 (1964).

f H. R. O'Neal and N. E. Phillips, Phys. Rev. 137, A748 (1965).
g C. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).

B. J. C. van der Hoeven, Jr. , and P. H. Keesom, Phys. Rev. 135,
A631 (1964).

' B. J. C. van der Hoeven, Jr. , and P. H. Keesom, Phys. Rev. 13'7,
A103 (1965).

' B.W. Roberts, Progressin Cryogenics (Heywood and Co. , Ltd. , London,
1964)."F. Heininger, E. Bucher, and J. Muller, Physik Kondensierten Materie
5, 243 (1966).

& K. Andres (private communication).
R, T. Johnson, O. E. Vilches, J. C. Wheatley, and S. Gygax, Phys.

Rev. Letters 16, 101 (1966).

Er, (0) = 4s (Z/Er ), -
where Z is the valence and E& the Fermi energy.

(32)

~ J. W. Garland, Jr., has performed a similar service (to be
published) .

gives X=1.0. The point is that whenever Eq. (30)
yields a coupling constant greater than 1 and there is no
information available for the phonon density of states,
the results should be treated with some caution.

The electronic heat-capacity coeScient p is propor-
tional to the electronic density of states at the Fermi
surface (the "band-structure" density of states) times
the enhancement factor (1+X) from the electron-
phonon interaction. If X and y are known, we can find
the band-structure density of states Eb, (0):

Ebs(0) = 3y/27rskg'(1+X) . (31)

Strictly speaking, 1Vb, (0) contains the enhancement due
to the Coulomb interactions between electrons. In
Table III are listed the experimental heat capacity y
and the empirical electronic density deduced from Eq.
(31) and the empirical coupling constant X."For lead
and mercury, we have used the X found from the
tunneling experiments. For the polyvalent metals, we
list the ratio of Xb, (0) to the electronic density of
states at the Fermi surface from the free-electron
model

This procedure for extracting the band-structure
density of states is particularly interesting when the
experimental data ( T„O', y) are available for a series of
alloys with the same crystal structure. Consider the
bcc alloy system Ta—W. According to the rigid-band
model, which seems quite reasonable for the alloy
systems considered here, the band structures of Ta and
W are very similar, and in alloying from Ta to %, one is
merely increasing the Fermi energy so that the volume
contained in the Fermi surface increases from 5 elec-
trons/atom to 6 electrons/atom. Using the same
procedure described in the above paragraphs for metals,
we can 6nd the band-structure density of states at the
Fermi energy for each alloy and plot out the band-
structure density of states as a function of either
electron/atom ratio or energy. It is quite reasonable to
compare this empirical density of states versus energy
curve with that calculated from the computed band
structure of either Ta or W. There are sufficient data
available to construct the density of states versus
electron/atom ratio for four alloy series of the transition
metals.

(1) 1Vb, (0) for the bcc 3d transition-metal alloys of
Ti—V and V—Cr are given in Table IV and plotted in
Fig. 5. The V—Cr alloys with more than 60% Cr are not
superconducting above 0.025'K, and the coupling con-
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TA&LE IV. Empirical values of X and Eb, (0) found from T„e, and y for the bcc 3d transition-metal alloys and for "paramagnetic"
chromium. The values of ) in parentheses were obtained by extrapolation.

Alloy
% second

metal
Tc

('K)
e

('K)
(mJ/mole

'K')

Xb,{0)
(states/

eV atom) Reference

TiV

VCr

ccCr)l

20
30
50
75
85

10
20
25
40
50
60
80
90
94.5

3.5
6. 14
7.30
7. 16
7.02

3.21
1.90
1.36
0.37
0.10

(0.025

370
400
425
450
470

6.9
10.0
10.8
10.6
10.3

8.15
7 ~ 15
6.75
5 4
4.85
4.0
F 1
2.07
2.33

2.9

0.54
0.62
0.65
0.65
0.65

0.53
0.48
0.45
0.38
0.33

(0.aS)
(0.20)
(0.20)
(0.20)

(0.25)

0.95
1.31
1.39
1.36
1.32

i.13
1.02
0.99
0.83
0.77
0.67
0.37
0.37
0.41

0.49

~ C. H. Cheng, K. P. Gupta, E. C. van Reuth, and P. A. Beck, Phys. Rev.
12702030 (1962).

K. Andres and E. Bucher (private communication).
c F. Heiniger, Physik Kondensierten Materie 5, 285 (1966).

stants are found by extrapolation. The p value for Cr is
that for "paramagnetic" Cr found by extrapolating the
p for paramagnetic Mo—Cr alloys.

(2) The most complete data are for the bcc 4d transi-
tion-metal alloys of Zr —Nb, Nb —Mo, and Mo—Tc (Table

V and Fig. 6). We have used, in addition, the 4d—5d
alloys of Mo—Re which should give 1',(0) values
reasonably close to Mo—Tc. Heiniger et al.'4 have noted
that the p values for Zr—Rh alloys appear to lie on the
same curve as for the Zr—Nb alloys, and we have in-

TAnzz V. Empirical values of X and Sq, (0) found from T„e,and y for the hcc 4d transition-metal alloys.

Alloy
% second

metal
Tc

('K)
e

(oK)
(mJ/mole

'K')

fire, (0)
(states/

eV atom) Reference

ZrNb

NbMo

MoRe

Mo Tc

ZrRh

50
75

15
40
60
70
80
90

5
10
20
30
40
50

50

9.3
10.8

5.85
0.60
0.05
0.016
0.095
0.30

1.5
2.9
8.5

10.8
12.6
11.5

12.6

3.1
3.8
4.8
5.75
5.95

238
246

265
371
429
442
461
487

450
440
420
395
340
320

300

244
226
210
196
192

8.3
8.9

6.3
2.87
1.62
1.46
1.49
1.67

2.2
2.6
3.8
4. 1
4 4
4.4

4.6

3.62
3.83
5.08
6.80
7.36

0.88
0.93

0 ~ 70
0.41
0.31
0.29
0.33
0.36

0.45
0.51
0.68
0.76
0.86
0.85

0.91

0.59
0.64
0.70
0.78
0.80

0.93
0.98

0.79
0.43
0.26
0.24
0.24
0.26

0.32
0.36
0.48
0.49
0.50
0 ' 50

0.51

0.48
0.50
0.63
0.81
0.87

F. Heiniger, E. Bucher, and J. Muller, Physik Kondensierten Materie
5, 243 (1966); R. D. Blangher, J. K. Hulm, J. A. Rayne, B. W. Veal,
and R. A. Hein, in Proceedings of the Bighth International Conference on
Lou-Temperature Physics, London, 1962, edited by R. O. Davies (Butter-
worths Scientific Publications, Ltd. , London, 1963).

b B. W. Veal and J. K. Hulm, Ann. Acad. Sci. Fennicae A210, 108
(1966).

F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963).
G. Dummer, Z. Physik 186, 249 (1965).

F. Heiniger, E. Bucher, and J. Muller, Physik Kondensierten Materie 5, 243 {1966).
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N (0)
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(0)
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4
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0
4
Tt,

I

6
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FIG. 7. The band-structure density of states versus elec-
tron/atom ratio for the bcc and hcp 5d transition-metal alloys
from the data in Tables III and VI.

Fre. 5. The band-structure density of states versus elec-
tron/atom ratio for the bcc 3d transition-metal alloys from the
data in Tables III and IV.

eluded those data as well, although it is by no means
clear that the rigid-band model is valid for alloys of
metals whose valence differs by 5.

(3) The values of Xb, (0) for the bcc Sd alloys of
Hf—Ta, Ta—W, and W—Re, as well as the hcp Sd alloys
of W—Re and Re—Os, are given in Table VI and plotted
in Fig. 7. Again it is necessary to interpolate for X where
the T, has not been measured. The densities of states of
the three bcc alloy series are similar, exhibiting a peak
for electron/atom ratio v=4 5, a de.ep minimum near
m= 5.8, and a shoulder at m= 6.2. Figure 8 shows a plot
of the electron-phonon coupling constant X versus
electron/atom ratio, and Fig. 9 gives X plotted versus
density of states for these alloy series.

It is most interesting at this point to compare our
empirical results with the theoretical density of states

1.0—

X 0.5—

0
4

I I

5 6
n (ELECTRONS/ATOM)

FIG. 8. The empirical electron-phonon coupling constant versus
electron/atom ratio for the bcc 3d (000), 4d (I 0), and Sd
(p p p) transition-metal alloys from the data in Tables III—VI.

3.0—
i.o—

(0)

I
I
I

I
0.5- p

05—

0
4

Zr

I

5
Nb

7
Tc

(R e)

FIG. 6. The band-structure density of states versus elec-
tron/atom ratio for the bcc 4d transition-metal alloys from the
data in Tables III and V.

0.5 i.o
Nb, (o) (states/ev atom)

1,5

Fro. 9. The empirical electron-phonon coupling constant versus
the band-structure density of states for the bcc 3tf (000), 4d{), and 5d (Q Q Q) transition-metal alloys from the data in
Tables III-IV.
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TABLE VI. Empirical values of ) and Eb, (0) found from T., e, and y for the bcc (*hcp) 5d transition-metal alloys.
The values of X in parentheses were obtained by interpolation.

Alloy
oro second

metal
e

('K)
(mI/mole

'K')

rvb. (0)
(states/

eV atom) Reference

Hf—Ta

Ta-%

%-Re*

Re-Os*

Re-Os*

70

16
40
60
80
90

5
7.5

10
15
20
25

88

30

70

6.81

1.85

0.7
2.26
3.20
4.64

7.47

1.45

209

265
291
317
354
368

380
378
375
365
359
351

332

382

8.30

4.36
3.08
1.63
0.88
0.92

1.14
1.40
1.63
2. 10
2. 20
2.30

3.76

2.05

1.86

0.82

0.51
(0.39)
(0.25)
(0.26)
(0.27)

(0.32)
(0.38)
0.42
0.50
0.54
0.60

0.70

0.47

(0.42)

0.97

0.61
0.47
0.28
0.15
0, 15

0.18
0.21
0.24
0.29
0.30
0.30

0.47

0.30

0.28

a, b

a, b
a
a
a
a

a

a, b
a, b
a, b
a, b

a, b

~ E. F. Bucher, F. Heiniger, and J. Muller, in Proceedings of the Ninth edited by J.A. Daunt et al. {Plenum Press, Inc., New York, 1965), p. 1059.
International Conference on Lou-Temperature Physics, Columbus, Ohio, E. Bucher (private communication).

from band. -structure calculations. Matthies" has calcu-
lated the band structure of tungsten using the aug-
mented plane-wave (APW) method for two potentials
(labeled 8't and 8"s), and has computed the electronic
density of states versus energy. Figure 10 shows the
theoretical density of states for potential S'2, together
with the empirical density of states (solid circles) for
the Hf—Ta—%—Re alloys from Tables III and VI. For
the empirical data, the energy was determined from the
electron/atom ratio, using the theoretical curve (dotted
line of Fig. 10). As can be seen in Fig. 10, the agreement
between the theoretical and empirical densities of states
is excellent for this potential (Ws) . The d band is about
25% narrower for potential Wt than for Ws, and the
density of states correspondingly higher. The shoulder
at I=6.15 (Fig. 7) or at 8=1.17 Ry (Fig. 10) is a
critical point and can probably be identified with the
saddle point in the Matthies band structure about
half-way between the symmetry points H and 37 and
lying just above the tungsten Fermi energy.

Matthies" has also computed the band structure and
electronic density of states for hcp rhenium using the
relativistic AP% method. The theoretical density of
states is in good agreement with the empirical data for
the hcp W-Re-Os alloys (see Fig. 5 of Ref. 26) .

V. ELECTRON-PHONON COUPLING
CONSTANT

Having found empirical values of the electron-phonon
coupling constant X for a number of metals and alloys,
we now wish to investigate the dependence of the
coupling constant on the various metallic properties.

+ L. F. Matthies, Phys. Rev. 139, A1893 (1965).IL. F. Matthies, Phys. Rev. 151, 450 (1966).

A. Empirical Results

According to Eq. (23), in order to calculate the
coupling constant, we need to know the electronic
density of states Xb, (0), an average phonon frequency
(or ), and an average squared electronic matrix element,
(8'). The least accessible of these quantities is the last,
(ds), and we will first adopt the empirical approach and
determine (P) from the experimental data for X, irrr(0),
and (or). For this purpose the Debye 0' does not provide
a suSciently reliable estimate of the average phonon
frequency, and we must restrict this discussion to those
metals for which neutron scattering or electron tun-
neling measurements of the phonon frequencies are
available. The phonon density of states of Nb (Fig. 4)
is typical for fcc and bcc lattices, and for that case the
average phonon frequency LEq. (24)j is approximately
the mean of the frequencies of the longitudinal and
transverse peaks. In Table VII we give the average
phonon frequency found in this way, together with the
empirical X and X(0) values from Table III for the bcc
transition metals, three polyvalent metals, and U3Si.
From these three empirical quantities, we Gnd the
empirical values for (ds) given in Table VII by re-
writing Eq. (23)

(as)=t) 3f( s)/X(0) j. (33)

Dimensionally, 8 is an electronic quantity with units of
energy/length. The characteristic energy —the elec-
tronic-bandwidth or Fermi energy —is of the order of a
few electron volts, and the characteristic length is the
lattice spacing, a few angstroms; we expect 8 to be a few
eV/A, as observed. Note that for the bcc transition
metals, E(0) (8') (Table VII) is constant ~7 eV/A'
within experimental uncertainty, even though E(0) and.
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Fro. 10. The theoretical band-structure density of states versus energy for tungsten according to Matthies (Ref. 25), together with the
empirical (solid-circles) data for the bcc M alloys from Tables III and VI.

(8') individually vary by a factor of 10 Dor vanadium
E(0) (8') is somewhat low, but the uncertainty in (8s)
because of the uncertainty in (o/) is greater]. This is a
remarkable result: Ke find empirically that for this class
of materials, the electronic factor E(0) (d') remains

constant and that the coupling constant (or transition
temperature) is governed by the phonon factor M (o/s)
or by the stiffness of the lattice. This is in marked con-
trast to the statement that is usually made —that the
coupling constant (or transition temperature) is

T/ALE VII. Empirical values of the average electronic matrix element (g ) found from X, fI/'b, (0), and (aP )'/' using Eq. (33).
The T„e,and y values are taken from Table III.

Metal ('K)
~C

( K)
(mJ/

mole 'K')

Fs, (0)
(statesj

eV atom)
((p )1/s

('K)
(8)

(eV' A. ')
/V(o). (8')
(eV A. ') Reference

V
Nb
Ta
Mo
W
Al
In
Pb
VSSi

5.30
9.22
4.48
0.92
0.012
1.16
3.40
7.19

17

399
277
258
460
390
428
112
105
520

9 9
7.8
6.0
1.83
0.90
1.35
1.69
3.00

21~

0.60
0.82
0.65
0.41
0.29
0.38
0.71
1.12
0.82

1.31
0.91
0.77
0.275
0.148
0.206
0.21
0.300
2.33&

290
230
170
310
250
330
110
75

390

3.5
7.9
7.9

24.6
42.5
9.7
8.4
7.8
4.9

4.6
7.2
6.1
6.8
6.3
2 ~ 0
1.76
2.34

11.3

a
b
c
d
e
f

h, i
k, l

K. C. Tuberfield and P. A. Engelstaff, Phys. Rev. 127, 1017 (1962).
Y. Nakagawa and A. D. B.Woods, Phys. Rev. Letters 11,271 (1963).

0 A. D. B.Woods, Phys. Rev. 130, A781 (1964).
~ A. D. B.Woods, and S. H. Shen, Solid State Commun. 2, 223 (1964).

S. H. Shen and B. N. Brockhouse, Solid State Commun. 2, 73 (1964).
R. Stedman and G. Nilsson, Phys. Rev. 145, 492 (1966).

~ J. M. Rowell and W. L. McMillan (to be published).

h B. ¹ Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and A. D. B.
Woods, Phys. Rev. 128, 1099 (1962).

W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14, 108 (1965).
' Per vanadium atom rather than per molecule.
"J.E. Kunzler, J. P. Maita, H. J. Levinstein, and E. J. Ryder, Phys.

Rev. 143, 390 (1966).
~ Bernard lVIozer (private communication).
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governed by the electronic density of states, being
given by X=N(0) Voz, with Voh reasonably constant.
The coupling-constant variation is certainly correlated
with the density-of-states variation, but only because
the high-density-of-states materials are elastically
softer. We have at present no theoretical explanation of
this fact; we have only the empirical observation for
these five bcc transition metals.

Vqg dg (36)

For the free-electron gas, the density of states of one
spin per atom is

number, and we have dehned a dimensionless average
of the pseudopotential squared

B. Theory for the Simple Metals N (0) =3Z/4Et&, (37)

&.(p, p')=s(p-p')' . .v ., (34)

and, average 02 over the spherical Fermi surface, we
6nd

2IIt:g

0

2k@

(ee~'0) ve VdV A
0

=—sake'Ep' (v,'),

where E~ and k~ are the Fermi energy and wave

"J.C. Phillips and L. Kleiniman, Phys. Rev. 116, 28'7 (1959).
~ B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276

(1962).
~ W. A. Harrison, Phys, Rev. 126, 497 (1962);Pseudopotentials

est the Theory of Metals (W. A. Benjamin, Inc. , New York, 1966).

For the polyvalent metals (e.g., Al, In, Pb), the
pseudopotential theory" "enables one to calculate all
the properties of the metal from a knowledge of the
electron-ion pseudopotential. One can calculate the
Fermi surface, the electron-phonon matrix elements,
and the phonon frequencies. We do not intend to per-
form detailed calculations here, but rather we will
discuss how the coupling constant depends on the
pseudopotential, and will obtain some rather simple
results.

Within the pseudopotential model, the Hamiltonian
of the metal is the sum of (1) the kinetic energy of the
electrons, (2) the Coulomb interaction between elec-
trons, (3) the kinetic energy of the bare ions, (4) the
Coulomb interaction between ions, and (5) the bare
electron-ion interaction given by the pseudopotential
V (E,—r,) .This bare atomic pseudopotential is screened
by the conduction electrons, and in momentum space
the screened potential is just v,/e„where v, is the
Fourier transform of the bare pseudopotential, and eq is
the dielectric constant. With the atoms located on the
lattice sites, the crystal potential is just the sum over
lattice sites of this screened potential, and the Fermi
surface is determined by the values of v,/es at the
reciprocal lattice vectors. For the metals of interest,
one finds a Fermi surface distorted slightly from the
free-electron sphere, and for this discussion we neglect
this distortion and take the wave functions to be plane
waves. The electron-phonon matrix elements are now
readily calculated from Eqs. (20) and (21) . We And

where Z is the valence of the ion. Finally, expressing the
average phonon frequency in units of the ionic plasma
frequency

Qv'= 4trNZse'/M, (38)

we And an expression for the coupling constant

X=N(0) (8')/M(co')

E» (v,')
k» es ( (ap)/0„')

(39)

The factor Et /kt e' is just 0.96/r„where r, is the radius
in atomic units of a sphere containing one electron. We
And a simple expression for the electron-phonon
coupling constant for a nearly-free-electron metal,
involving a dimensionless average of the pseudo-
potential and a dimensionless phonon frequency:

1.51
X= (v,')

(40)

or =0q q el ~ (41)

The point that we wish to make here is that for the
polyvalent metals, there is a large cancellation between
the ionic term 0„2 and the electronic term E,~' so that
the observed phonon frequencies are extremely sensitive
to small changes in E,P or in the pseudopotential (for
lead, the observed orq2 are about ~~~ of the ionic term
Qo' at the zone boundary) . The important dependence
of the coupling constant 3 upon the pseudopotential
arises from the (oP) term in the denominator of Eq.
(40), rather than from the (ves) in the numerator.
Thus, for the polyvalent metals, the pseudopotential
theory predicts that the coupling constant varies
inversely with the (dimensionless) phonon frequency
squared:

(42)

For lead, the tunneling experiments' yield the values
(to')/0 '=0.02 and (v s) =0.04.

Within the pseudopotential model, the phonon fre-
quencies are also determined by the pseudopotential.
One starts with a calculation of the phonon frequencies
0~ of the bare ions and then subtracts the electronic
contribution Eb,s, which is proportional to v,'(1—1/e,):
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or, more approximately,

C'/M (or2 ). (43)

TABLE VIII. The predicted maximum superconducting transi-
tion temperature for four classes of materials found from the
observed Tc and ) and Fig. 11, together with the observed maxi-
mum T,.

From Table VII we see that C'=/V(0) (g2) is constant
within experimental accuracy for Al, In, and Pb.

To conclude this section, we (1) observe empirically
that for a given class (bcc) of transition metals the
coupling constant is equal to a constant divided by the
ionic mass times the average phonon frequency squared,
and (2) show theoretically for the polyvalent metals
that this should be the case.

Metal

Pb
Nb
VgSi

Nb3Sn

Tc
('K)

7.2 1.3
9.2 0.82

17 0.82

T max

('K)

9.2
22
40
28

8.8
10.8

Pb—Bi
Zr-Nb

20 Nb3Al-Nb3Ge

Observed maximum
T, Material

7I. MAXIMUM T,

For a number of years the highest observed super-
conducting transition temperature has been 18'K,3O

the "Matthias limit. "There has been a great interest,
possibly for technological reasons, in the search for
higher T, materials. Recently Matthias et a/." have
found superconductivity at 20'K in a solid solution of
Nb3A1 and Nb3Ge. In that paper the authors state that
"there is no theory whatsoever for high transition
temperatures of a superconductor. " In this section we
discuss an upper limit for the transition temperature of
a given class of materials.

The strong-coupled theory of superconductivity will
predict accurately the transition temperature of a metal
from its fundamental properties. The difhculty in
trying to predict a maximum T, is that one does not
have an accurate theory of metals from which to
calculate the band structure, the phonon spectrum,
etc. We can, however, make use of the observation of

T =&&) exp' —(1+&)/)t3 (44)

Now, using the observation of Sec. V, we write for the
coupling constant

)t = C/M (o/2), (45)

where C is 6xed for a given class of materials, e.g., for
the bcc alloys in the neighborhood of Nb. We have

T,= (or) exp) —M(or' )/C —1], (46)

the preceding section that, within a given class of
materials, the coupling constant depends mainly on the
phonon frequencies. Given the freedom to adjust the
phonon spectrum and therefore the coupling constant,
say, by alloying, we show here that T, has a maximum
value.

We begin with a simplification of the theoretical
formula for T,:

1.0
which takes on its maximum value as a function of
(or) for (or)= (C/2M)'/' and

T,m'*= (C/2M) '/V-2/2. (47)

What is happening here is that we increase the coupling
constant to maximize the exponential factor in Eq. (44)
by decreasing the average phonon frequency. But the
average phonon frequency premultiplies the exponen-
tial, and the product is maximized for ) =2. It is useful
to express T,/T, '" as a function of )1:

T /T max —(2/)1) 1/2&(1/2 —1/X)

FIG. 11. The superconducting transition temperature according
to Kq. (18) with p*=0.13, assuming that the coupling constant
obeys Eq. (45). Given the transition temperature and coupling
constant for a material, the maximum T, expected for similar
materials can be found from this graph.

+ T.H. Geballe, B.T. Matthias, J.P. Remeika, A. M. Clogston,
V. B.Compton, J. P. Maita, and H. J. Williams, Physics 2, 293
(1966)."B.T. Matthias, T. H. Geballe, L. D. Loninotti, E. Corenzwit,
G. W. Hull, R. H. Willens, and J. P. Maita (to be published}.

This expression has a broad maximum at X=2 and falls
off sharply for )1(1. In Fig. 11, we show T,/T, ~'~
calculated from the accurate expression for T, LEq.
(19)j rather than from Eq. (44), and taking p, *=0.13.
Given the T, and X for a given material, we can And the
maximum T, for a class of "similar" materials from Fig.
11. The theoretical maximum T, (Table VIII) for
Pb-like materials, that is, for the lead-based alloys, is
9.2'K, and there is in fact a Pb—Bi alloy with T,=
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8.8'K."For Nb-like materials, the maximum observed
T, is about half the theoretical maximum. The value of
T, ' for NbaSn was found by scaling the T, for
V3Si with the square root of the mass ratio.

There are a number of refinements of the theory of
T, ' which should be attempted. The most important
one is to test the relationship LEq. (45) $ between the
coupling constant and the phonon frequencies for a
wider range of materials and also, of course, to attempt
to understand this result theoretically for the bcc
transition metals. We should note that we have extrap-
olated the theoretical formula LEq. (18)$ for T,
versus 3, which was derived for X &1, to larger values of
~. The errors are probably not serious, but the calcula-
tions should be carried out for the extreme strong-
coupled case. We have assumed that the average
phonon frequency can be decreased indefinitely by (for
the pseudopotential model) cranking up the pseudo-
potential. Of course, this is not the case. We are likely
to drive some phonon mode unstable, so that the metal
prefers a different crystal lattice, before the average
phonon frequency is decreased very far. This would
set an upper limit on the coupling constant that one
could obtain experimentally and provide a stronger
upper bound on T, (a la, ttice instability of this nature
has been observed for VsSi).ss'4 The fcc Tl—Pb —Bi
alloys are an interesting case to study experimentally in
this respect, since the coupling constant is already
large for lead and apparently increases with bismuth
concentration.

VII. CONCLUSIONS

The central result of this paper is Eq. (18), which
relates the superconducting transition temperature to
the electron-phonon and Coulomb coupling constants
according to the strong-coupled theory of super-
conductivity. This theory is believed to be accurate for
real metals to lowest order in an expansion parameter
Scooz/E& 10 '-10 s. The equations were originally
derived for the Frohlich Hamiltonian, but recent
studies'5 —37 ' of the Coulomb interaction indicate that

»ll. ~. Roberts, Progress in Cryogenics (Heywood and Co.,
Ltd. , London, 1964).

33 B. W. Batterman and C. S. Barrett, Phys. Rev. Letters 13,
390 (1964).

'4 L. Testardi, T. B. Bateman, W. A. Reed, and V. G. Chirba,
Phys. Rev. Letters 15, 537 (1965)."E. G. Batyev and V. L. Pokrovskii, Zh. Eksperim. i Tepr. I iz.
46, 262 (1963) LEnglish transl. : Soviet Phys. —JETP 19, 1g1
(1964)g."V.Heine, P. Nozieres, and J. W. Wilkins, Phil. Mag. 13, 741
(1966).

» R. E. Prange and S. Sachs, Phys. Rev. 158, 672 (1967).

the only effect of the Coulomb interactions is to re-
normalize the energy bands and the electron-phonon
matrix elements, and that the structure of the self-
energy equations used here is correct. Band-structure
effects are properly included in the definition of X. We
have neglected the anisotropy of the energy gap, but
this introduces only a small error in &,. The effects of
persistent spin fluctuations, which are important for the
nearly ferromagnetic case, are believed to be unimpor-
tant for the metals considered here. These effects could
probably be included within the present formalism by
choosing a somewhat larger Coulomb term p*. We have
made one special assumption by using the phonon
density of states for niobium. This introduces important
errors only for the strong-coupled (X)1) supercon-
ductor with a wildly different phonon spectrum. We
note that the strong-coupled theory has received strong
experimental support from the analysis of the tunneling
experiments on lead which probes the detailed structure
of the self-energy equations. We regard Eq. (18) as
just the numerical consequence of the established and
verified theory of superconductivity. We have made no
attempt to verify the theory of superconductivity in
this paper, but rather have used that theory to examine
the electron-phonon interaction in those metals which
are superconducting. Equation (18) proves to be very
useful in estimating the electron-phonon interaction
strength and in stripping away the "phonon enhance-
ment" of the specific heat and cyclotron mass to reveal
the "band-structure" values. We have examined the
variation of the coupling constant over limited portions
of the periodic table and have found a surprising
result —namely, that the coupling constant depends
mainly on the phonon frequencies and is insensitive to
large variations in the electronic properties, e.g., the
band-structure density of states. This observation has
been used to predict a maximum transition temperature
for a given class of materials.
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