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of a molecular-field approximation to the exchange
interaction, and predictions for all relevant properties
have been produced.

The theory for the static-torque anomaly can be
made to agree with experiment, provided that G;; M/ =55
cm™. The other parameter in the spin Hamiltonian is
not determinable from the data which are available,
and it would be useful in this regard if data at temper-
atures lower than about 0.5°K could be obtained.

The result of a comparison of the theory for ferro-
magnetic resonance with linewidth and lineshift meas-
urements is encouraging. The resonance predictions
depend sensitively on the exact form of the resonant
susceptibility of the rare-earth ion. They thus have the
potential of providing a deeper insight into this property
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than previous work on rare-earth-doped YIG.” How-
ever, it is also clear that the high-frequency behavior
of the rare-earth susceptibility is still incompletely
described, and it would seem that further experimental
results at higher frequencies would be most valuable in
resolving this point.
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The detection of a nonvanishing quadrupole interaction in ferrous compounds in which the Fe?* jon
occupies a site of cubic symmetry has been achieved in several cases, using Mdossbauer spectroscopy. In
some cases, the onset of this interaction has been found to be simultaneous with the appearance of magnetic
ordering. A detailed theory of this effect is presented, which applies where the magnetic ordering is spon-
taneous (magnetic phase transitions), as well as where it is obtained by applying external magnetic fields
to a paramagnetic compound. It is shown that an electric field gradient is induced by the magnetic ordering
via the spin-orbit coupling. Utilizing the crystal-field approach, the magnetic ordering is described by
adding a magnetic term to the Hamiltonian, using the molecular-field approximation. For cases where
the magnetic term can be treated as a perturbation—which requires that it should be small compared to
the spin-orbit interaction—closed expressions are obtained for the induced electric field gradient and for
the magnetic hyperfine field at the site of the nucleus. The procedure required for other cases is outlined.
The form of the resulting Méssbauer spectrum is discussed. It is shown that the quadrupole interaction is
positive if the magnetic axis is parallel to a (111) direction, and that is it of equal magnitude, but negative,
when the axis is parallel to a (100) direction. This fact may be utilized to determine the direction of the
magnetic axis from Mossbauer measurements on a powder sample. Experimental evidence and possible
applications of the theory are discussed.

1. INTRODUCTION

The quadrupole interaction, i.e., the interaction be-

N recent years Mossbauer spectroscopy has become

an important tool for investigating hyperfine inter-

actions between nuclei and their electronic environ-
ment.!

1 Part of a Ph.D. thesis by U. Ganiel to the Feinberg Graduate
School of the Weizmann Institute of Science.
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1G. K. Wertheim, Mdossbauer Effect: Principles and Applica-
tions (Academic Press Inc., New York, 1964).

tween the quadrupole moment of the nucleus and the
electric field gradient (EFG) at the site of that nucleus,
has been observed to contain very interesting infor-
mation on the environment of the site, as well as on
the electronic structure of the ion.

In the following discussion we shall be concerned
with ferrous compounds, namely compounds containing
the Fe** ion.

In paramagnetic ferrous compounds, the quadrupole
interaction, which causes the splitting of the Méssbauer
absorption line of the Fe¥ nucleus (AEg), can be
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written as?
3Co=[eQV ../4I (21— 1) 312 —I(I+41)+n(I2—12)],
(D

where Q is the quadrupole moment of the first-excited
nuclear level, ¢ is minus the electronic charge, I is the
nuclear spin of that level, I, I, I, are the components
of the nuclear spin operator, and

n= (Vm" Vw)/sz-

Viey Vyy, V.. are the diagonal elements of the EFG
tensor at the site of the nucleus. Equation 1 gives the
form of the quadrupole Hamiltonian when written in a
coordinate system in which the axes coincide with the
principal axes of the EFG tensor. For /=$, the Hamil-
tonian (1) can be directly diagonalized, yielding

AEq=1%eV Q[ 1+4n2/3]12. (2)

In (2), only V., and 5 depend on the environment,
and are, in general, temperature-dependent. From the
temperature dependence of AFEy, some useful infor-
mation concerning crystal-field parameters and elec-
tronic states of the Fe*t ion can be deduced.®7

In compounds in which the Fe?t site possesses cubic
symmetry, the EFG tensor vanishes, so that AE¢=0,
and no quadrupole splitting should be observed. In
several cases reported in the literature, it was found
that the cubic site symmetry, as determined by x-rays
or neutron diffraction at room temperature, was, in fact,
confirmed by Mossbauer measurements yielding
AE@=0. However, when the temperature was lowered,
a nonvanishing quadrupole interaction was determined
from the Mossbauer experiments. One possible mecha-
nism responsible for this phenomenon is the onset of a
static Jahn-Teller distortion, which is identified also
by x-ray measurements as a crystallographic phase
transition lowering the symmetry. This phenomenon
has been observed, for example, in FeCr,Os and in
FeVy048° One interesting feature noted in these two
cases is the fact that the quadrupole splitting appears
already at higher temperatures than the transition
temperature as determined by the x-ray method: In
FeCr,04 a well-resolved doublet is observed at 170°K
(cubic to tetragonal transition seen by x rays at 135°K),
and in FeV,04 a doublet is observed at 147°K (140°K
determined by x ray as the transition temperature).?

2 M. H. Cohen and F. Reif, in Solid Sitate Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957),
voalks.'lngaus, Phys. Rev. 133, A787 (1964).

4 G. K. Wertheim, Phys. Rev. 121, 63 (1961).

5 A. Abragam and F. Boutron, Compt. Rend. 252, 2404 (1961).

8 M. Eibschutz, U. Ganiel, and S. Shtrikman, Phys. Rev. 151,
245 (1966).

I;é\;l) Eibschutz, U. Ganiel, and S. Shtrikman, Phys. Rev. 156, 259
( 8 M..Ta,naka, T. Tokoro, and Y. Aiyama, J. Phys. Soc. Japan

21, 262 (1966).
9 P. Imbert, Compt. Rend. 263, 767 (1966).
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This possibly indicates the existence of local distortions,
which are observed in the Méssbauer experiment, and
appear prior to the cooperative effect seen in the x-ray
measurement. There are, however, cases where a non-
vanishing quadrupole interaction is observed as the
temperature is lowered, even though the site symmetry
of Fe?*, as determined by x-ray measurements or by
neutron diffraction, remains cubic. These cases share a
common feature: the onset of the quadrupole interaction
is simultaneous with the appearance of magnetic order-
ing. Quite a few cases of this type have been reported:
Fe?t in Co0,? Fe*t in NiO, and Fe?t in MnO,! FeCr,S,
below its Curie point? (~180°K) and KFeF; below its
Néel temperature.®* Until recently, RbFeF; which
has been studied by several groups independently,’>%
was thought to belong to the same category. Testardi,
Levinstein, and Guggenheim,'® however, have recently
reported that RbFeF; becomes tetragonal in the anti-
ferromagnetic region, and this rules out the mechanism
we shall present shortly as causing the quadrupole
splitting in this case.

In FeCr,Ss, the Fe* ion is situated at a site of
tetrahedral symmetry. In all other examples mentioned
above, the Fe* site has octahedral symmetry. Although
a slight distortion from cubic symmetry was observed
in some of the monoxides,? it is considered too small to
produce the rather large EF G observed.!! Moreover, no
distortion of the site symmetry was found to be associ-
ated with the magnetic ordering in the case of FeCr,Sy,
in which the sites of the Fe nuclei remain cubic down to
4.2°K.

The explanation of a nonvanishing EFG appearing
simultaneously with magnetic ordering can be found
in the effect of the magnetic field, which introduces a
preferred direction in space. In the case of spontaneous
ferro- or antiferromagnetism, the spins are ordered by
the magnetic interaction, while both spins and orbital
angular momentum are ordered by an external mag-
netic field, and a nonvanishing EFG is magnetically
induced via the spin-orbit interaction. This explanation
has already been suggested in a number of recent
articles.'"215.17 Tn this paper we present a detailed
theory of this effect for the case of Fe?t in an octahedral
environment. Although all our calculations deal spe-
cifically with this case, we believe that the same ideas
are applicable also for other ions in a cubic environment,
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15 G. K. Wertheim et al., Phys. Rev. 158, 446 (1967).

16 G. R. Hoy and S. Chandra, J. Chem. Phys. 47, 961 (1967).

17 U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters
24A, 577 (1967).

18 L. Testardi, H. J. Levinstein, and H. J. Guggenheim, Phys.
Rev. Letters 19, 503 (1967).

19 W. L. Roth, Phys. Rev. 110, 133 (1958); 111, 772 (1958); J.
Appl. Phys. 31, 2000 (1961).
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TasLe I. Eigenvalues (E,) and eigenfunctions (¥») of the d°
configuration within the subspace of 575, in a cubic crystal field.

i E, ¥n
1 0 (3/10)2(go1+ V22— (1/V3) p-1.0)
2 0 (3)2(¢o0+3V3¢11—5V3¢-1,-1)
3 0 (3/10)12(¢o,1+ (1/V3) 1,0~ V2h-1,-2)
4 =27 (1/+/6) (¢0,1—V2¢1,2—V3¢_1,0)
5 =27 (1/V2) (p11t+o-1,1)
6 =2\ (1/4/6) (¢0,-1+V31,0+V2h_1,2)
7 =2\ (1/¥3) (V2¢0,—2+1,1)
8 2% (1/V3) (—V2¢o,2t+p-11)
9 =5\ (1//15)[—2V2¢o,1+¢1,2— (1/6) d_1,0]
10 =5\ (1/4/3) (—V3o.0t+b1.1—d_1,-1)
11 =5\ (1/4/15)[2V2¢o,-1— (1/6) p1,0+—1,2]
12 =5\ (1/V3) (¢o,—2—V2¢1,-1)
13 =5\ (1/V3) (¢o.2+V2h-1,1)
14 —5N 1,2
15 =5\ ¢12

and similar calculations can be easily performed by
changing the relevant parameters.

2. ENERGY LEVELS AND EIGENFUNCTIONS OF
Fe?* IN A CUBIC ENVIRONMENT

The problem of an Fe?* ion in a crystalline field of
cubic symmetry has been treated by Low and Weger.?
We shall reformulate the relevant results here in order
to fix the notation and obtain convenient expressions
for later calculation.

The electronic configuration of Fe*t, [Ar]3d?, leads
in the free ion to the ground term °D. In a cubic crystal
field, ®D splits into an orbital triplet ®7%, and an orbital
doublet 3E. In the case of tetrahedral symmetry, °E is
lower in energy, while in an octahedral site T is lower.
In the octahedral case, which we consider here, these
two terms are separated by an amount A, where Ax~
10000 cm™! in typical cases.®”?! Since A>~—100 cm™
in the free ion, and some reduction is expected in the
compounds, we have | A [<A, and mixing of °E states
into °T, states becomes extremely small and completely
negligible for our purposes. Hence we restrict our calcu-
lations to the subspace of 57, within which the spin-
orbit interaction can be diagonalized exactly.

For convenience in further calculations, we choose
two sets of orbital eigenfunctions for the 7% triplet:
one quantizing along the cubic (100) direction, and the
other quantizing along the (111) direction. Writing d,,
for the eigenfunction of L2(L=2) and L,=m, we choose
for the (100) direction

do= (1/V2) (dy—d_s),
d1=d,,

¢——~1= d—-l; (3)

20 W, Low and M. Weger, Phys. Rev. 118, 1119 (1960).
21 D. Palumbo, Nuovo Cimento 8, 271 (1958).
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and for the (111) direction,
Go=do,
1= (V3)dot (V3)d,
b= (VE)da— (V)
Note that within the subspace of T, both sets give
(@ | Lz | ¢r)= Ebir. (5)

Writing ¢y, for the state ¢y, with S,=0¢ (—2<0<2),
the eigenfunctions and eigenvalues of the Hamiltonian

Jeo=3C+N(L-S), (6)

where JC. represents the contribution of the cubic
crystal field (which is constant for all 15 states of 57%),
are summarized in Table I. The constant contributions
of 3¢, and 3\ have been substracted from all eigenvalues.
Note that the eigenfunctions have exactly the same
form for both sets of orbital basis functions (3) and (4).

We now proceed to examine the magnetic interaction.
We shall presently describe it by a term of the form
aL,+BS, in the Hamiltonian. For an external magnetic
field H in the 2z direction, a=usH and B=2ugH, ug
being the Bohr magneton. This applies for magnetically
dilute solutions of Fe* ions in a paramagnetic com-
pound, such as MgO. On the other hand, if the en-
vironment of the Fe?* ion orders magnetically, as in
KFeF; or Fe*t in NiO, then we shall use the molecular-
field approximation, and describe the magnetic ex-
change interaction by an effective field acting on the
spins. In that case we can write «=0, 8= pugh, % being
the molecular field, and we choose z || h.

(4)

TaBLe II. Matrix elements of L, and S, within 57%.
Wil Lyor S; | ¢j)={;| L. or S.| ¢:), and other elements not
given here vanish.

i J Wil La | ¥5) Wil Sal¥i)
1 1 3 3

1 4 =3/ —3(2v/5)
2 5 (3/5)1 (3/5)12
3 300 - ~4

3 6 3/(2v/%) 3/(2v/5)
4 4 =3 §

4 9 —4/(3/5) —4(31/5)
5 10 (2/5)12 (2/5)12
6 6 3 -3

6 11 —4/(3v5) —4/(3v/5)
7 7 1 —5/3

7 12 —V2/3 —v2/3

8 8 -3 5/3

8 13 =23 —V3/3

9 o —i 2
1 11 i -3
12 12 3 —4%
13 13 —3 $
14 14 1 -2
15 15 -1 2
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The nonzero matrix elements of L, and S, are given
in Table IT in the scheme of the states ¥, given in
Table I. From these, the matrix aL.,+8S, is immedi-
ately obtained.

3. CALCULATION OF THE INDUCED ELECTRIC
FIELD GRADIENT TENSOR AND THE
HYPERFINE FIELD

From here on, we shall measure all interactions in
units of °K, since this simplifies various considerations
where the temperature dependence is to be taken into
account (1°K=1.38X10"1 erg). Furthermore, when
dealing with magnetic fields, we shall compare them
with temperature when considering the appropriate
magnetic interactions, namely the product: ugH. Hence
we note that 1°K=14 887 Oe.

Our first problem is the calculation of the EFG
tensor. We assume, as is justified in many cases,®%7
that electronic relaxation times are much shorter than
27/ AEq, so that the nucleus “feels” the thermal average
of V;; over all electronic states. Relaxation effects,
which may become important at very low temperatures,
are not considered here.

In our calculations we consider separately the cases:

(a) «, B<<l A [7 T,
(b) T <o, BK| N .

In Fe*t, A $—140°K, which is equivalent to fields
of ~2X10° Oe. Considering cases of internal magnetism
(like KFeF;), we shall deal mainly with the situation
near the Néel temperature, where % is small, so that
case (a) is realized. If we look at magnetically dilute
solutions (Fe** ions in a cubic paramagnetic compound)
we consider external magnetic fields. Even the most
intense steady state fields presently available would
yield HK|\ |, although going to low enough temper-
atures could mean that case (b) is realized (e.g., for
H~10° Oe and T S7°K).

A. Case (a): o, 3|2, T

For this case we shall perform the calculation con-
sidering the magnetic interaction aL,43S, as a pertur-
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bation to the Hamiltonian (6). The EFG tensor at any
temperature can be expanded in powers of the magnetic
field 4,22 and % being small we shall consider only the
first nonvanishing term in this expansion. From sym-
metry it is clear that this will be the second-order term,

so that
(V)= Z Tsjuituh. (7
%l

(Vi) denotes the appropriate thermal average. The
form of Tj; is found using the results of Birss? as
explained in Appendix A. A detailed calculation of
(V;) is needed for two nonequivalent directions of h,
in order to determine it for any arbitrary direction of h.
We now proceed to calculate (V;) for h in the (111)
direction and for h in the (100) direction. (V;) ap-
pearing in (7) is a number, which is the thermal average
of the expectation values the operator V; takes in all
electronic eigenstates. Hence we have most generally

(Vij)="Tr[ Vi exp(—r3e) ]/ Tr[exp(—73C)], (8)

where 3¢=3C+aL.+BS,, r=T"1 3¢ (6) does not com-
mute with aL,+8S,, so we use the well-known identity
(proved in Appendix B)
1
eATB=¢AL-¢d / e XABeXUB X 9
0
where A and B are two noncommuting operators.
If B is small (in the usual sense of matrix elements),
we can expand (9) in powers of B. To first order in B
we have

1
eAtBovedf- g4 f e X4BeXAdX, (10)
0

and to second order in B we obtain

1
eAtBrgd | od / dX XA BeXA
0

1 1
fet / dXeXA4 BeXA f dyevXAX BeXA, (1)
0 0

Since we need (V;;) to second order in %, we use (11),
substituting 4= —73C, B= —7(aL,+8S.). Hence,

1
exp ( —73C) ~exp (—73Cy) —exp(—73Co) f dX exp(X73C)7(aL,+BS;) exp(—X73Co)
0

1 1
texp(—r3C) / dX exp(Xr3e) r(aL,+BS,) exp(—Xries) X /0 dy exp(yXr3co)r(aLsBSs) exp(—yXrics).
0

(12)

The states y, (Table I) are eigenstates of 3¢y (within 57%), so that 3Cw, = E.¥». We take matrix elements of (12)

22 We use % here to denote any magnetic field, external or internal, so that « and 8 are both proportional to 4.

8 R. R. Birss, Repts. Progr. Phys. 26, 307 (1963).
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between ¢, and ¥, obtaining
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1
[exp(—73C) Juntexp(—7E,) dun —7 exp(—7E,) (aL.~4BS2) un’ f dX exp[X7(E,—E.) ]
0

1 1
+7'2 exp(_TEn) Z {(aLz+ﬁSz) nn"(aLz+ﬁsz> n''n’ [ aX EXp[XT(E,.—E,,u) ]X/ dy exp[yXT(Enu—E,./) :l}.
nl? 0 0

(13)

For evaluation of (V;;) we need further the matrix elements of V;; in the scheme of the states y,. These are

easily obtained, using the following simple results:

<¢0 ! sz l ¢0>='—2<¢0 I sz I ¢0>= —2<¢0 I Vyu ! ¢0>=27),
<¢1 l Ve l ¢1>= '—2<¢1 I Vez l <251>= —2(¢1 l Vyy l ¢1>="‘7),

<¢~1 [ sz l ¢—1>='—2<¢-—1 ] sz ] d’—l): —2<¢—1 [ Vw 1 ¢—1>= -7,
v=o=(2/7)e(r3).

where

(14)
(15)

In (15), e equals minus the electronic charge, {(#3) is the average of 3 in the d orbitals. The plus sign should
be taken for the functions ¢ of (3), namely for the z axis chosen parallel to the cubic (100) direction, and the

minus applies for the ¢;’s of (4) (z||[{111)). Furthermore,

(0| Vij| $1)=0, for k5=l

<¢m I Vij I ¢m>=0, for ’l:#j.

(16)

Using Egs. (14)—(16), the matrix elements of V;; between the states ¥, were calculated, and the results for V,,

are given in Table III.

In Appendix B we describe the calculation of (V,,). The final result we obtain is

_ ?
Vel =15 34-5eNT4 TN T

—(1/40) (a+3B)24(7/72) (a—5B) 2T — (14/15) (a—28) 2e5“T]

AT 34-56™MT-TeSNT

' 3 5ePNT| TgNT ]

+i|:(3/200) (a+8) (29a+898) +(1/216) (a+B) (31la—7018) ™  (1/135) (a+B) (—88a+-2488) ™

)\2

Obviously, we have also here

<V=Z>=_2<Vu>= “2<Vw> (18)

<Vij>=0 for 7/;6]

The first term in (17) behaves essentially as 42/T?
since for T<| A | the contribution of the exponents is
only of secondary importance (A<0). This term can
be called a “Curie term,” in analogy to the 1/7 contri-
bution in calculations of paramagnetic susceptibilities,
as it represents thermal averaging over the values V.,
takes for the zero-order functions. Since, however, the
magnetic perturbation affects also the eigenfunctions
themselves, there are additional terms. The third term
(again for T<| A |) is nearly temperature-independent
(behaving essentially as 42/A?), so this is a “Van Vleck”
contribution, analogous to the Van Vleck susceptibility.

L2 [— (153/500) (a+-B)2+ (55/108) (a+-B)2e™NT — (686/3375) (a-B) %eNT

3+562)\/T+ 7e5NT ] (17)

Since the calculation is to second order, we also have a
“mixed”” term, which goes essentially as 42/AT.

In (17), (V..) is proportional to ». Since v>>0 for h
parallel to the (100) direction and <0 for h in a (111)
direction, we find that (V..) is equal in magnitude but
of opposite signs in these two cases.? Care should be
taken in comparing the two cases: The calculation is
performed choosing the z axis in each case parallel to h,
so that in (V,,) the subscript z refers to different axes.

As shown in Appendix A, we now have all the
information to determine T, and hence (V;) for
any arbitrary direction of h. The details are given in
Appendix C. The results we obtain are the following:
Let h be of magnitude # and have direction cosines
m, 1, | with respect to the cubic axes. Choosing a new

24 This fact can be utilized in determining the direction of the

sublattice magnetization from a Mossbauer experiment on a
powder sample (Ref, 17).
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coordinate system with its z axis parallel to h, we obtain
(Vauh)=%al?[12m*w?/ (1—P) — 1],
(V) =3al2[122(1— ) — 12m2n22/ (1— ) — 1],
(Vo= a6 om0+ 1) — 4],
(Vay*)= (Vys")=al?[6mnl(m*—n?) / (1—P) ],
(Vaih)y= (V") =%l 6mn(m*—n?) / v/ (1—P) ],
(V)= (V)= Sl 6L nit B—P) / / (1~ ) ]

(19)

In (19), @ is equal to the r.h.s. of Eq. (17) divided by
12, with v>0. The superscript % shows that the tensor
is written in a coordinate system as defined above.”

Within the same framework, namely, a, 8|\ |, T,
we now proceed to calculate the hyperfine field at the
site of the nucleus, H,. As in the case of the EF G, we
consider here only the first nonvanishing term in the
expansion of H, in powers of h, which will be the first-
order term. In analogy with (7), we write here

(Hp)i= Z Pijh;. (20)

For cubic symmetry, P;; reduces to a scalar, namely,

Pyj= pdij, (21)
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and hence,
<Hn>= Ph: (22)
which means that, within this approximation, H, is
parallel to h,? and the proportionality factor has to be
determined from one calculation for a specific case.
The hyperfine field is generally given by¥
214+-1-4S

S(2i—1) (2143) (2L—1)

X[L(L+1)S—§(L-S)L—3L(L-S)1+48S. (23)
The first term is the orbital contribution to the hyper-
fine field, the second is the dipolar term, and the third
is the Fermi contact interaction, which is written here
in a simplified form, 4 being a constant depending on
the ion one is dealing with. Choosing the z axis parallel

to h, we note that H, has only a 2z component. Inserting
all values for the case of Fe?t, we obtain

(Hu)=—2u{r*){(L)— (1/42) [6(S:)— (3 (L-8) L.
In (24) we take, as before, appropriate thermal aver-
ages. We need (L.), {(S.), and ($(L-S)L,+3L,(L-S)).
Denoting any of these three operators by O, we want
to calculate

(0)={Tr{ Oexp(—73C) 1}/ Tr[exp(—73C) ] (25)

to first order in %, so we use (10), obtaining

H,= —2us{r—2)L—2us{r )

Tr[Oexp(—rGC)]zz exp(—7En)Onn—T1 Z exp(—7E,) (@L4BS2) in'Onrud (Eny Enr)

exp(—7E,) —exp(—7E,)
N EH—E"I )
The matrix elements needed for the evaluation of (26) are given in Tables IT and IV. Using these, we find that,

as expected, in the r.h.s. of (26), zero-order terms in % vanish, and hence we need the denominator in (25) only
to zero order. The results we obtain are

_ g1 (@t 36) 4 (5/18) (2 —56) €M7+ (28/9) (a—28)NT

+Z’ EI_B(EM Eﬂ') :l(aLz"{'ﬁSz) nn’On’n (26)

(La)= 3 5eNT L TNT
L $(erk8) — (25/54) (o) 97— (28/27) VT
B e , (272)
, 3 (a+-3B) —25/18) (a—5B) €M7 — (56/9) (a—2B) &N
(S:)=—T" 3 52NT 7T
, $at8) — (25/54) (a-kB) 07— (28/27) 007
IBY Senlio , (27b)
s . $(a+3B)+ (5/6) (—5B) NT— (56/3) (a—2B) &N
(3(L-S)LA3L.(L-S) )=—T7"12 35T TN T
_ 9atB) —(25/9) (a+B) &N+ (14/9) (a+B) eNT
L 3 5eNT 7T - (279)

% Tn this form, the result is useful for calculation of the nuclear energy levels, which are needed later on (Sec. 4).
26 This is, however, not necessarily true in the general case.
2 3. S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, New York, 1964), pp. 325-8.
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Taste III. Matrix elements (i | V.| ¢;) within 575, in units
of 2 [Eq. (15)]. 4| Vaa|¥i)=(¥i| Vza| ¥4), and other elements
not given here vanish.

I3 j (30- ! VMI ‘ﬁ:)
1 1 —d

1 4 3/4/20
1 9 —6/5

2 2 1/5

2 10 —34/6/5
3 3 -3

3 6 3/4/20
3 11 6/5

4 4 -1

4 9 —2//5
5 5 —1

6 6 -1

6 11 2//5
7 7 1

7 12 V2

8 8 1

8 13 —Vv2

9 9 2
10 10 3
11 11 $
14 14 -1
15 15 -1

These results, when substituted into (24), give (H,).
The final expression for (H,) can be separated into two
contributions: One which behaves essentially (for
T<|\|) as &/T can again be called the “Curie term,”
whereas the other, which is essentially temperature-
independent (again for T<|X|) is the “Van Vleck”
term.

Care should be taken in using the results expressed
in (17), (19), and (27), since these will only apply as
long as the approximations involved hold. The main
point to note is | & [T, since | % |<<| A | is true in most
cases for Fe?t, On the other hand, as will be discussed

TasLE IV. Matrix elements of $L.(L-S)+2(L-S) L, within 575,
Wi ll¥i)= ;|| ¢¥:), and other elements not given here vanish.

i 7 Wi l1(3) (
+ (% )l'h

1 1
1 4 —9/\/5
2 5 612
3 3 -2
3 6 9//5
4 4 -1
4 9 2//5
5 10 —3/+/10
6 6 1
6 11 2/4/5
7 7 1
7 12 1/V2
8 8 -1
8 13 12
9 9 2

11 11 -2

12 12 —4

13 13 4

14 14 —6

15 15 6
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later, this requirement is often realized in practice, so
the theory can be applied in cases which are experi-
mentally possible.

B. Case (b): T S, 3K

This situation can be realized in magnetically dilute
solutions, where the Fe*" ion occupies a cubic site, and
an external magnetic field is applied. Another possi-
bility could be a case of internal magnetism, with a low
enough transition temperature® so that even when
| 2| 2T, we still have | & |[<<\.

We first calculate the EFG tensor. Here we shall
confine our attention to cases where h is either in a
(111) or in the (100) direction, since then we know by
symmetry that the major axis of the EFG tensor will
be parallel to h, and =0, so that all we need is (V..).
In this case we cannot use approximations like (10) or
(11), since B will not be small (4/T >1). On the other
hand, since 7| \ |, we neglect contributions from all
the_ states except for the lowest triplet (Table I) in

TaBLE V. Energy levels (E;) to second order in the magnetic
perturbation o L,+83.5., and eigenfunctions (;&) to_first order in
the perturbation, for the lowest triplet of 57%. The; are defined
in Table I.

7 E_,’ lpi
—3/(4v/5)[(a+B) /AW

va—3(VH L (a+B) /A5
Ys+3/(4v/5) [(a+B) /A s

1 jat36-+(9/40) (a48)2/2
2 (3/10) (a+B)%/A
—ta— 3B+ (9/40) (a+B)?/A

the thermal averaging, since the higher states will be
practically unoccupied. Since #<] A |, we neglect terms
of order (%/\)?, but not terms like #2/AT, and certainly
no term of any order in 4/7T will be neglected.?? Hence
we need energyv levels up to second order in % and
eigenfunctions only up to first order in 4, as given in
Table V. Using these and Table III, we calculate the
expectation values (§; | V.. | ¥:) for i=1, 2, 3 up to first
order in %/\. Thermal averaging using (8) within the
lowest triplet will give (V,.). We shall give the explicit
result only for the case of an external field H, in which
case: a=H, 8=2H. In this case we obtain

(Va)= (Zs™) (v/10) {2— (27/5) (H*/AT)
—[2— (81/20) (H2/\T) ] cosh(7H/2T)

+27(H/\) sinh(7TH/2T)}, (28)

28 In our choice of units, the saturation value of % in cases of
internal magnetism is normally of the order of the transition
temperature.

2 Contrary to case a, where contributions of orders h%/A?
h2/\T, and k2/T? were comparable, in case (b) :

B/NK | /AT | <12/ T2,

so terms of order #2/X\? may be neglected.
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where
Zo=[2—(81/20) (H2/\T)] cosh(7H/2T)
+1—(27/10) (H2/AT). (29)

This result is invariant under reversal of H, as it should.
Furthermore, we find again that (V,,) has the same
magnitude but opposite signs for H parallel to a (111)
direction and for H parallel to the (100) direction. This
is, in fact, independent of the approximation we use as
long as we restrict the calculation to within 7%, since
it results from Eqs. (14) and (15).

For very low temperatures, such that only the ground
state is occupied (7<<H), we obtain

(Ve )(T—0) = (v/10) (—1427H/N),  (30)

so that a saturation value larger than /10 should be
expected for the magnitude of (V..) (note that A<0).

The hyperfine field is calculated in a similar fashion,
for h parallel to either a (111) or to the (100) direction,
since by symmetry H, is then parallel to h. We need
(L), {Sy), and (ZL,(L-S)+32(L-S)L,) to be substi-
tuted into (24), where thermal averages are taken
only within the lowest triplet. Using Tables V, II, and
IV, we obtain the required results, which we give here
for the case of an external field H:

(Le)=(Zi™") {[—1+(81/40) (H*/\T) ] sinh (7H) 2T)
+(9H/5M)[(3) cosh(7H/2T)—1]}, (31a)

(S2)= (2™ {3[—1+(81/40) (H?/\T) ] sinh (TH/2T)
+(9H/5\)[(3) cosh(7H/2T)—11]}, (31b)

3L.(L-8)+3(L-S)L.)
= (Z¢') {9[ — 14 (81/40) (H?/\T) ] sinh(7H/2T)

+(54H/5N\[(3) cosh(7H/2T)—17}, (31c)

where Z, is defined in (29).

C. General Case

Cases (a) and (b) which are treated above lend
themselves to a fairly general treatment, so the results
can be expressed analytically. By the general case we
mean a situation where the approximations used above
are not justified, so an exact diagonalization of the
ionic Hamiltonian is required. In this case we have to
take

J=3CAN(L-S)+ (aL+8S) -t, (32)

where t is a unit vector parallel to the effective magnetic
field h (internal or external). Working only within 57,
is still justified, but if | X [>>| %] is not true, neither
case (a) nor (b) is realized. In practice, this can occur
only for cases of internal magnetism, in which the
{ransition temperature (T;_) is not low compared to
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|\ |,2® and we deal with a range of temperatures not
too close to the transition point. A typical example is
Fe** in NiO (with a Néel temperature of 523°K),
which has been treated by Siegwarth.!!

In order to obtain the results for the general case,
JC must be diagonalized by machine calculations. Once
the eigenvalues and eigenstates are known, the expec-
tation values of V;;, L, S, and {$L(L-S)+3(L-S)L}
can be found, and with (23) the hyperfine field is
calculated.

It is worth noting that also here, in the general case,
(Vi;) will be equal in magnitude but of opposite signs
in the two special cases where h is in a (111) direction
and in the (100) direction. This is easily understood
since we can then diagonalize A(L+S)+ (aL+8S)-t
starting from the matrices written in the scheme of
the states ¢, (Table I). When written in this manner,
the matrices are exactly the same in both cases, so the
eigenstates will also have exactly the same form. (V;),
which will be obtained, will therefore be the same in
both cases, being proportional to v (15). Since v changes
sign in going from h ||(111) to h [[{100), so will (V' ;).
From symmetry, it is clear that in these two cases, the
major axis of the EFG tensor will be parallel to h,
and n=0. Furthermore, it is clear that in these two
cases H, || h. These facts will simplify the consideration
of the Mgssbauer spectrum for these two cases.

In all the cases treated above, we have explicitly
assumed one mechanism to be responsible for the in-
duced EFG. The possibility of magnetostriction, which
can accompany a magnetic transition and distort the
crystal, is neglected. However, as long as such strictions
are not revealed by x-ray measurements, it seems
reasonable to assume their effect to be negligible in
comparison to the main mechanism, described above.

4. MOSSBAUER SPECTRA OF Fe** IN A CUBIC
ENVIRONMENT

Having calculated in Sec. 3 the induced EFG and
the hyperfine field at the Fe nucleus, we now consider
the Mossbauer spectrum in the presence of a magnetic
interaction. For the case of internal magnetic ordering,
the Hamiltonian of the excited (I=%) nuclear state
will be of the form?3°

3Ce=Car+3Co
= —Zpe(Hu) o+ [eQ(V.e)/4 (2 —1)]
XBI—I(I+1)+0(I2— 1) ].

ue 1s the magnetic moment of the excited nuclear state.
Note that z refers here to the major axis of the EFG
tensor, and 2z’ to the direction of (H,). In the ground

(33)

3 Tn this expression the assumption we made about electronic
relaxation times (Sec. 3) is explicitly implied in using (V..)
and (Hax). ) ’ ’ T
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state (/=1%) there is no quadrupole interaction, so
JCy= —Zﬂn<Hn)Iz'; (34)

u, being the magnetic moment of the nuclear ground
state.

If an external field H causes the magnetic interaction,
one should substitute H+ (H,) for (H,) in (33) and
(34); but since normally |H |[<|(H,)|, we shall not
bother to include it in our expressions.

The form of the Mossbauer spectrum for the different
possibilities arising from (33) has already been dis-
cussed by many authors.’® We shall use these well-
known results for the different cases described in Sec. 3.

A. Case (3): o, 8K ||, T

For this case we have shown above that (H,)|| h.
If h is in a (111) or the {100) direction, (V;) has its
major axis parallel to h, so (V..)=(V.*) (19), and
3=z

The nuclear energy levels of the excited and ground
states are then obtained®:

(Eo)1.= —2pe(H ) A (— 1) 1Tl 1e(V . 2)0/4, (35a)
(Eg)1,= —2py(Hn)I. (35b)

In the case in which h is not parallel to any of these
two directions,® the problem is still simple as long as
a, BK|\|, T, since (H,) is of first order in /% while
(Vi) is of second order. Hence, in (33) we expect
3Ce<K3Cuy, S0 3Cq can be treated as a perturbation on
3Car, and we take only its diagonal elements between
the eigenstates of 3Cy. In this case we obtain for
(E,)r, the same expression as (35a).

Let us denote the positions (energies) of the Moss-
bauer absorption lines by A;, taking the zero at the
energy of the v transition when the hyperfine and
quadrupole interactions are absent.** In both cases
with which we deal here, there will be six absorption
lines, yielding®?

M=~ S hark (0/4) (V.7),
Ag=—3g1— g~ (eQ/4) (V.:h),
Ag=3—1g0— (eQ/4) (V.1
Ag=—1g+1g— (eQ/4) (V)
As=3g1+5g0— (eQ/4) (V.."),
A= grt5g0t (eQ/4) (Vi) (36)
where
g1=| 3uc(Ho)l,  go=|2u,(Ha)|.

Here we have to deal separately with cases of internal

31 See, e.g., Ref. 1, Chap. 7.

32 Ref. 1, p. 81.

3 So that 2’ is not identical with z in Eq. (33).

3¢ The isomer shift is already included in the choice of the zero
point for the A;.
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magnetic ordering and with cases where the magnetic
field is external. In the first case, h has a definite di-
rection relative to the cubic axes, defined by its di-
rection cosines m, %, I. Hence, all the Fe*t ions ‘“‘see”
the same h, and g1, g, and (V") are the same for all
the Fe nuclei, so that in a powder sample, as well as
in a single crystal, the spectral lines will be sharp as
in a usual Mossbauer experiment. The same is true
for the second case, provided one works with a single
crystal. If, however, one works with a powder sample,
then the external field H has different m, n, [ at the
different Fe** ions, so we need an appropriate average
over directions. The situation is reminiscent of the
problem of nuclear magnetic resonance (NMR) experi-
ments in solids, in the “high field” case, where the
directions of the major axes of the EFG vary within
the powder, so that a broadening and a marked change
in the line shape of the NMR lines results.® In our case,
(H,)|| H, so g and go are the same for all the Fe nuclei.
{V..*), however, varies. We can write

Ai= A,~°+6,~, (373,)

where A is the part of A; containing only g and g
(36), and 6;==(eQ/4) (V..,*), which has to be aver-
aged. We calculate the first moments of A; using (19):

(8= A== 1 (e0) (3a?) [ TL6m+n+1) —4]

==£(eQ/4) (3ai*) (—2/5),

where the + sign applies for =1, 6, and the minus sign
for 1=2, 3, 4, 5. This result should be compared with
the case of a single crystal, where for H [|{111) we have

(37b)

8=k (eQ/4) 3al) (+2), (38a)
and for H [[{111)
3=k (eQ/4) (3ah*) (—2). (38Db)

We find that in comparison to the maximum effect of
the quadrupole interaction, powder measurements lead
to a reduction by a factor of five. Furthermore, the
lines will be broadened, and the line shapes will be dis-
torted compared to the symmetric absorption spectrum
which is usually obtained in a Mésshauer experiment.

B. Case (b): TSe, 3<K ||, and the General Case

In the cases for which (28) and (31) apply, namely,
H |[(111) or H [|(100), the former results are still of
some use. In these cases we observe that, by symmetry,
(H,)|| H, and the major axis of (V) is parallel to H,
n=0, and Eq. (36) still applies, giving the positions of
the Méssbauer absorption lines. The results of a powder
experiment in an external field are not included in the
previous argument, since there the direction of H is

% A. Abragam, Principles of Nuclear Magnetism (Oxford
University Press, New York, 1961), Chap. VIIL.
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not unique throughout the material, as discussed for
case (a).

The case of h in a general direction, as well as the
general case, where no approximations apply, can be
solved in the following manner: first (V;;) and (H,)
have to be calculated using the eigenstates of the ionic
Hamiltonian (32). Then the Hamiltonian of the nuclear
excited state (33) has to be diagonalized. Note that
here 2’ is not identical with z, so the eigenstates obtained
will not be eigenstates of I, or I,.. Once the four energy
levels and eigenstates of 3C, are known, and the two
energy levels and eigenstates of 3¢, are calculated, the
positions of the Mossbauer absorption lines are de-
termined by the allowed nuclear y-transition energies
between them. This procedure, although straightfor-
ward in principle, calls for machine calculation, so that
each case has to be treated separately with the relevant
parameters of the problem, and no general expressions
of the kind we have obtained in case (a) can be written
down.

5. EXPERIMENTAL EVIDENCE AND
CONCLUSIONS

On the experimental side, there have recently been
a number of investigations which lend support to the
theory described in the previous sections. Most of the
results belong to the category of internal magnetic
ordering.

The case of Fe?t in NiO investigated by Siegwarth,!
falls into the category of the “general case” (Secs. 3
and 4), since the transition temperature is 523°K, so
for the temperature range investigated, | % |27, |\ |

The case of RbFeF; which is an ideal (cubic)
perovskite at room temperature and down to 102°K,
has been until recently explained in terms of the above
mechanism ( Ganiel et al.,” Wertheim ef al.5) . However,
careful x-ray measurements by Testardi ef al.!® revealed
that this compound becomes tetragonal simultaneously
with the magnetic transition, the ratio ¢/e increasing
continuously as the temperature is lowered from 102°
to 86°K, where a second transition takes place. This
rules out our mechanism as an explanation for the
appearance of a nonvanishing EF G, since the measured
quadrupole splitting is positive, so that on the basis
of the present theory one would expect a distortion
(if any) which favors a (111) direction.

A favorable case for the application of the present
theory is the case of KFeF;, which is a cubic perovskite
at room temperature.®® As expected, the Mossbauer
spectrum above the Néel temperature consists of a
single peak. Magnetic measurements show that this
compound becomes antiferromagnetic, where different
authors find slightly different values for 75.% Recent

% A. Okazaki, Y. Suemune, and T. Fuchikami, J. Phys. Soc.
Japan 14, 1823 (1959).

$R. L. Martin ef al., Chem. Ind. (London) 3, 38 (1956):
Txy=115°K; K. Hirakawa ef al., J. Phys. Soc. Japan 15, 2063
(1960): Tx=113°K; A. Okazaki et al. (Ref. 36): Tx=121°K;
Ganiel et al. (Ref. 14): Ty=(12141)°K.
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susceptibility measurements by Hirakawa® show the
antiferromagnetic transition to occur at 122°K, and
no spontaneous magnetization has been detected down
to about 40°K. Fatehally ef al.,8 as well as Ganiel
et al.** have found the onset of a quadrupole interaction
to occur simultaneously with the magnetic hyperfine
interaction. It should be noted that, since Txy=121°K,
and the region which fits the theory of the previous
sections ranges down to 40°K, we already encounter a
situation where | % |S |\ |, T, so the procedure for the
“general case” (Sec. 4) has to be applied.

The actual comparison of the experimental results
with theory, however, presents certain difficulties. If
we use, for this case, a=0, B=F#, there arises the
question of the sharp temperature dependence of 7,
which is not well known @ priori.¥* Another problem is
the value of vQ [v as defined in (15)7], to which the
quadrupole splitting is proportional. Estimates of Q
ranging from 0.1 to 0.4 b can be found in the literature.®
Furthermore, the quantity v=(2/7)e{r-*) should be
corrected for the effect of the electronic core as well as
for covalency effects.* We therefore feel that it is pre-
ferable to rely on the abundance of data concerning
the quadrupole splitting in paramagnetic ferrous com-
pounds, in which the Fe?*+ ion occupies a site of distorted
octahedral symmetry. At low temperatures, the quadru-
pole splitting (in cases where the orbital ground state is
a singlet) saturates typically at 3-4 mm/sec, so it is
rather safe to take evQ=3.5 mm/sec. For the calcu-
lation of H, by (24), A and (#—*) are needed. For
(r=*), a value of 4.4 a.u. has been used in this con-
nection,’® " although higher estimates are found in the
literature.r A can be estimated from the hyperfine
field in FeF;,2 since in Fe*t we expect the orbital and
dipolar contributions to vanish (%S term). This yields
A~250kO0e. A somewhat hlgher estimate (4 = 275 kOe)
has been given for the free ion.#* Although the quan-
tities mentioned above seem to be known to within
10-159%, the situation is complicated by the fact that
the orbital term and the contact term are of com-
parable magnitude, but their contributions to (H,) are
of opposite signs. Hence, a rather small change in each
of them can change (H,) considerably, and a good
estimation of the dipolar contribution is essential.

# K, Hirakawa (private commumcatlon)

% This is contrary to the case of Fe?t in NiO, where 7'y =523°K.
Siegwarth (see Ref. 11) dealt with temperatures below 295°K,
where he could safely assume % to have reached its saturation
value, and treat it as an adjustable parameter, independent of
temperature.

9 A H. Muir, K. J. Ando, and H. M. Coogan, Mdssbauer
Effect Data Index (John Wiley & Sons, Inc., New York, 1966),

p. 24; see also A. J. Nozik and M. Kaplan Phys Rev. 159 273
(1967), and A. H. Muir, Jr., H. Wiedersich, and J. O. Artma.n,
in Proceedings of the Asilomar Conference on Hyperfine Inter-
actions, 1967 (to be published).

aA, ] Freeman and R. E. Watson, Phys. Rev. 121, 2566 (1963)
((3)y=4.8au.).

2D, N. A. Buchanan and G. K. Wertheim [Bull. Am. Phys.
Soc. 7, 227 (1962) ] give the value H, =622 kOe for Fe** in Fels.
( 4 R). E. Watson and A. J. Freeman, Phys. Rev. 123, 2027

1961).
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Fatehally et al.® have performed a fit of this kind,
which shows the correct behavior of AEq and (H,)
versus temperature, although the quantitative agree-
ment for (H,) is not very good, which is not surprising
in the light of the previous remarks.

An important feature, already mentioned above,
which is of importance in the case of KFeF;, is the
fact that for h ||(111) the quadrupole splitting is posi-
tive, whereas for h ||(100) it is of the same magnitude,
but negative. From symmetry considerations, one ex-
pects the magnetic axis to be parallel to either of these
two directions in the case of cubic symmetry, at least
near the transition point, so that in some cases a
determination of the magnetic axis is possible from a
Moéssbauer experiment on a powder sample. A similar
argument for Fe?t in a tetrahedral site has been given
by Eibschutz et al.? In KFeF; (V,.)>0, so we believe
the sublattice magnetization to be parallel to a (111)
direction. This can be checked, in principle, by calcu-
lating the magnetocrystalline anisotropy. A calculation
of this kind, assuming single ion anisotropy, has been
performed for the case of FeCrySy,? and the result
conformed with the result anticipated by the analysis
of the Mossbauer experiment. A similar calculation for
the octahedral case would, however, demand incorpo-
rating the 5E orbital states, since within °7 the energy
is isotropic with respect to the magnetic direction.
(This is easily understood if one remembers the equiva-
lence between T and a triplet of p orbitals). On the
experimental side, neutron diffraction experiments on
a powder cannot determine the magnetic axis in a
cubic compound. Hence a single-crystal experiment,
using either neutron diffraction or magnetization meas-
urements is needed in order to confirm the result which
is obtained in the Méssbauer experiment on a powder
sample.

Regarding the possibility of inducing the EFG by
an external magnetic field, the relevant systems should
be magnetically dilute solutions of Fe** ions in a cubic
paramagnetic compound. Here a single-crystal experi-
ment is highly favored, since in a powder experiment
the lines will broaden and the effect will be smaller by
about a factor of 5, so the possibility of its observation
becomes negligible.

In a single crystal, using high external fields (H)
and working at low temperatures (4°K) we estimate
the following results, using (28), (29), and (31) and
the values quoted above for A, (*—*) and esQ: for
H=5X10* Oe: AEq==+(eQ/2) (sz) 0.2 mm/sec,
(H,)=—140 kOe; for H=10° Oe: AEg=0.27 mm/sec,
(H,)=—140 kOe. These results are calculated for
H ||{111)(AE,>0) or H ||{100)(AE¢<0). The nega-
tive sign of (H,) indicates that (H,) will be of opposite
direction to the external field H. It is interesting to
note that (H, ) saturates at high fields, so that at 50 and
100 kOe we obtain the same result. Chappert e/ al.*

“ J. Chappert, R. B. Frankel, and N, A. Blum, Phys. Letters
25A, 149 (1967).
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report a saturation value of —120 kOe for H, in the
case of Fe*t in MgO. The slight discrepancy can easily
be attributed to the values of the parameters used in
the calculation. It should be noted, however, that the
full magnetic hyperfine splitting of the spectrum of
Fe*t in MgO was found to exist already for H~800 Oe.*
This phenomenon cannot be explained within the frame-
work of the present theory, and is probably due to
slow paramagnetic relaxation effects.* In this case,
namely, Fe*t in MgO, a quadrupole splitting has been
observed even in the absence of an external magnetic
field, at temperatures below 14°K.#% This has been
explained by Ham* as being caused by the combined
effect of random strains which lift the degeneracy of
the lowest spin-orbit triplet (7%,), together with long
electronic relaxation times between the levels of this
triplet. In this paper we have considered only the case
of an ideal crystal, namely, the case where no random
strains are present, and furthermore, relaxation phe-
nomena which may become pronounced at low temper-
atures (where electronic relaxation times become longer
than 4#/AEg) have not been considered.

On the other hand, when a large enough external
magnetic field is applied, the electronic eigenstates are
again determined by the Hamiltonian (32) and our
calculation should give the correct result at low temper-
atures, where gugH>>kT, g being the g factor of the
lowest triplet. Leider and Pipkorn,* and Chappert,
Frankel, and Blum* have independently found for Fe**
in MgO, applying a field H=50 kOe at 7'=4.2°K,
that AEg>0 for H [|[{111), and AE¢<0 for H |[{100),
AEq being of equal magnitude in both cases: | AEg |~
0.17 mm/sec. Both the signs and the magnitude are in
excellent agreement with our calculations.

Finally, we would like to point out that the effect
of magnetic ordering on the electric quadrupole inter-
actions should, in principle, be observed in other cases,
too. Although the results obtained above are specific
to the case of Fe**, the same principles can be applied
in other cases. Ghatikar®® has recently dealt with
Zeeman field-dependent quadrupolar interactions in
some rare-earth ions. Although in that case the de-
pendence is of different origin than that which we have
discussed in the present paper, it still adds interest to
the general idea of mutual dependence between mag-
netic and electric hyperfine interactions, for which the
Mossbauer effect is a very important tool of investi-
gation.

APPENDIX A

We show here how the independent components of
the tensor T; are determined. We have full cubic
symmetry, so the symmetry class is m3m (Birss,?

4% D. N. Pipkorn and H. R. Leider, Bull. Am. Phys. Soc. 11, 49
(1966) ; and H. R. Leider and D. N. Pipkorn, Phys. Rev. 165,
494 (1968).

4 I, S. Ham, Phys. Rev. 160, 328 (1967)

a7, Chdppert (private commumcatxon

% M, N, Ghatikar, Proc, Phys. Soc, (London) 87, 727 (1966).
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Table IT). Ty, is a polar tensor of rank 4. Writing the  Since V2V'=0, we have: > V=0, and this leads to

components as: Tyr=1jkl we have, in principle, 4 b —1 A2

independent components. If x, v, z are the cubic axes, =20 (A2)

then: Furthermore, since V;; is quadratic in the components
of h, we immediately have

XXX = YYYy= 2333= @,
d=c. (A3)

Tix1 is therefore completely determined by calculating
V.; for two specific cases in which h is in two non-
xyyr=yrxy=xzzv=gxxz=yzay=zyyz=d. (Al) equivalent directions.

XXYY= YYXX= XX25= 334X = Yyy2z=22yy="D,

EYXY= YXYX = XTXZ= ZXTX= YZYI= ZYZY=C,

APPENDIX B
We start by proving Eq. (9). Let 4 and B be two noncommuting operators. Then, 6 being a parameter,
A{e A AAD)} /df = — A e PAhA+B) | g9A( A+ B) A+

= g PABIA+B)

Integrating, we have

0
e 0Af(A+B) — 1+f e XABeX(A+B) X
0

Substituting §=1, and multiplying by e4 gives Eq. (9).
We now proceed to calculate (V) from (8), using (13). In the integrals appearing at the r.h.s. of (13), we
separate terms in which E,=E,s from those where E,# E,.. After integrating and rearranging terms we have

Cexp(—73C) Jun =exp(—7E,) 8un —7 exp(—7Es) (aLs+BS2) wn'd (Eny Enr)
+|:1 _5(Em En') :I(aLz—I"ﬁSz) nn’[exp( —‘TE”) —'eXp(—TEnl) ]/(En_En’)
+%72 CXP( —TEn) Z 5(En’; En”)a(En, En”) (aLz+BSz) nn”(aLz"{"ﬂSz)n”n'

+7 Z{6<En’: En")[l_&(Em Er»”)][exp(_TEn“)/(En—En“)]

+8(En, En)[1—8(Ew, En) JLexp(—7E,) /(B —Eu) 1—8(En, Eur)
th‘a(EnU Eyrr) ][exp(_TEn)/(En“'_En')]} (aLZ—I_BSZ)nn"(a'Lz+6Sz)n”n’
+Z {5(En': En”)[l_a(Em En”)]l:exp(_"'En) _exp(_TEn”)]/(En_En”)2

+[1=6(Ew, Evr) JL1—8(En, L) Ilexp(—7E,) —exp(—7Ew) /[ (En—En) (Ew—En) ]
+[1—8(Ew, Ew) L1 —8(En, En+) ILexp(—7Ey) —exp(—7Ewr) J/[(En—En) (En— Ev) 1}

X (aLz+6Sz) nn"(aLz+BSz> n''n’, (Bl)
where
6(a, b) =0, for a>£d
=1, for a=b.

Since « and B are proportional to %, the first term is of order zero in %, the next two terms are of first order in
h, and all other terms are of second order.
We are interested in

(V..)=Trlexp(—73C) V..]/Tr[exp(—73C) ] (B2)
to second order in 4. Calculating
Trlexp(—730) V.. = Z Cexp(—75C) Junt (Vee) nmy (B3)

we find, as expected, that zero- and first-order contributions in % vanish, so that only second-order terms in %
remain, and in the denominator of (B2) we need only zero-order terms. Taking the form of the matrices 3Cy,
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al,+BS., and V,, into account, we obtain
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Trlexp(—73C) Vo ]=2r2 D exp(—7En) (aLABS2) (Vi) un

+r Z { (1_6nn’) (aLz+ﬁSz) 7m'2( sz) nn[exp( —TEn) /(E,,,f -—En)]

n,n!

- (1_611,7;’) (aLz+ﬁSz) nn’ (aLz+ﬁSz)n'n’ ( sz)n’n[:z eXP( _TEﬂ’)/(En’ —'En)]}
+ Z {Z { (1_6nn') (1 _6ﬂ’n”) [(aLz'i_ﬁSz) nn'’ (aLz'I_ﬁSz)n”n’ ( sz) n'n

n,n/  nl!

+ (aLz+ﬁSz) nn’ (aLz+,8Sz) n'n’’ ( sz)n”n:“:exp( _TEn) —CXP( _TEn’) ]/[(En_En’) (En’ ""En") ]}

+ (1 _Bnn’) (aLz+ﬁSz) nn' (aLz"'_,BSz) n'n’ ( sz) n'n[exp(_TEn) _exp( _TEn’) :I/ (En_'En’)Z:I}-

This result, divided by

D exp(—7E,) =3+45eNT+ M7,

(B4)

(BS)

gives (V,.) to second order in 4. Substituting the values of the matrix elements and performing the summations,

we obtain Eq. (17).

APPENDIX C

As shown in Appendix A, only two independent
components of 7T'sz; remain to be determined: ¢ and c.
If we denote the r.h.s. of Eq. (17), divided by #? (with
9>0) by v, then for h parallel to a {100} direction we

have
(szh) =y,

and for h parallel to a (111) direction we obtain
(V)= —vyh

For the first case h=1%(1, 0, 0). Using (7) and (A1) we
have
alt=vyh?,
so that
y=a. (cy

For the second case: h= (%/V3) (1, 1, 1), so we obtain
(%, v, z denoting the cubic axes)

(Vu>= (Vyy>= (sz}: 0,
(qu>= (Vw)= <V=u>= <V22>= <V112>= <Vzu)= %C}ﬁ-

In order to evaluate ¢, we diagonalize (V;), so that it
is written in a coordinate system where the z axis is
parallel to h. This performed, we obtain

(szh> = 2<szh> =—2 (Vyyh>= %—C}ﬁ;

hence
’ (§) dlit=—lP=—ali,

(C2)

c=—4%a.

(C1) and (C2) determine Tjx; completely.

Let h be in an arbitrary direction, so that h=
h(m, n, 1) where m, n, I are the direction cosines of h.
Then, using (7), (Vi;) in the cubic coordinate system

is given by
(Vew)=3%al*(3m*—1),
(Vw)=3ak*(3n*—1),
(Ves)=1%al*(3P—1),
Vay)= Vyo)=—3ah*mn,
(Vaz)= V)= —3al’ml,
(Vye)=(Vay)=—3aknl. (C3)

For the determination of the nuclear energy levels,
which are needed later, we want (V;;*), namely the
components of (V;;), in a coordinate system in which
the z axis is parallel to h. This is obtained by performing
an orthogonal transformation, using standard trans-
formation techniques. A transformation matrix T is
found, which transforms the right handed triad of unit
vectors of the cubic system into the three new unit
vectors. T is given by

Toe=mn/(1—1)112
Toy=—m/(1—1)12,
T:.=0;
Tye=ml) (1— )12,
Ty=nl/(1—1)12
Tym— (1=B)¥
Tou=m,
Ty=mn,
T..=1.

(Vi) is then obtained from

(Vii#*y=2_ TwTjsVrs, and hence Eq. (19).



