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The annihilation rate of the positron in a pure Fermi gas has been calculated (a) by using a ladder-graph
approximation with an exponentially screened Coulomb interaction (which is nearly the static limit of the
random-phase-approximation interaction), (b) by taking into account certain graphs up to third order
in the same interaction, and (c) by using a better approximation for the interaction in a ladder-graph series.
The contributions from graphs other than ladders was found to be 2—3% up to second order and 4—

5'%%uo

to third order. The results appear to establish that a ladder sum with a quite simple interaction approxi-
mates well the two-body propagator. The modification of the interaction has only a slight effect on the
rate. At low electron densities, the ladder sum diverges because of the existence of bound states, which
are proved to exist at any density as poles in the two-body propagator.

1. INTRODUCTIOÃ

t 4HE problem of calculating the positron annihilation.. rate in an electron gas (e.g., in solid matter) has
not yet been solved accurately even in the simple case
of a pure electron gas, in spite of numerous efforts in
this direction. The difhculty lies in the fact that the
interaction between the positron and the electrons is
essentially "strong, " which causes troubles in calculat-
ing the two-body propagator for the positron-electron
pair. Some earlier papers' ' suggest that the commonly
used method of 6rst integrating with respect to particle
energies in Feynman diagrams and then summing over
the order of the interaction, may be adequate at high
electron densities (i.e., metallic), while it has been
known to fail at low densities. '4 In this paper, we do
not solve the essential difficulties; we only try to point
out some characteristic features of the problem, using
the above-mentioned perturbation techniques and
making comparisons between more and less exact
approximations (comparison with measured rates alone
does not tell much about the correctness of calculations
and approximations) .

In Secs. 2 and 3, the ladder sum is compared with the
sum of a certain class of Feynman graphs up to third
order in the interaction. It is known that the ladder-type

sum is exact if one uses a certain effective-interaction
operator, which in turn is the sum of an infinite series
of diagrams. ' (Then, in the ladders, real- and not free-
particle propagators should be used. ) With this fact
in mind, it is clear that the reliability of the results
originating from a ladder sum depends essentially on
the "elementary" interaction that is used. Therefore, to
test the effect of this interaction, we have redone the
ladder calculation using a slightly modified interaction,
the modification being essentially the simplest one
possible. In Sec. 4, we consider briefly the "divergence"
in annihilation rate which results from this calculation
method and prove this to be due to the existence of at
least one bound-state pole in the approximate energy-
dependent two-body propagator.

2. LADDER SUM

The first thing to do in order to calculate the inter-
action that is used in the ladder sum is to obtain the
propagator of the interaction (which in this case con-
tains, e.g. , parts due to plasmons) . It is known' that this
interaction is approximated rather well by the simple
bubble-diagram sum which, in its static limit, results in
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FIG. i. The static limit of the
random-phase-approximation in-
teraction (I,) and the Fermi-
Thomas screened interaction (up)
at r, =4 in comparable units.

&(P)= 2 Ix.(P) I',
all v

where

x„(P) =re(2zr/V) '~' dx exp( —iP x)

(3)

electrodynamics, one can show that in the nonrela-
tivistic limit the partial annihilation rate E(P) may be
expressed equivalently by

where ko is the Fermi momentum, and ~ is the Fermi-
Thomas screening constant given by or by

Xgs.,(f, I &Iq.(x, 1)A(x, 1)SI IO), (3')

z' =me'ks/(zr') =4ks/ (zras),

where ao is the Bohr radius. The units are chosen so
that c=fi=eo= j.. Turning to the conventional param-
eter r, =r,/as, we find it to be

r, =zrya'/(4k ')

where y= (9zr/4) '~'~1.92. The function z4(k) shows a
peculiar behavior near k=200, where its derivative is
in6nite. This leads to a weak "long-range" oscillating
potentials for which the length of the period is zr/ke,
which is about 2 of the shortest normally encountered
electron wavelength. Thus it is expected that the
electrons do not "feel" these rapid small changes very
much; we therefore leave them out of the formalism. '
This smoothing has been done by taking the simple
exponentially screened Fermi-Thomas potential

I& (k) e2/(kz+ K2)

which, according to Fig. 1, does not deviate very much
from I,. They both tend to the bare Coulombic poten-
tial when k—+~ and to each other when k—&0.

There is some evidence' that using the static inter-
action without considering the self-energy effects is
at least in some cases almost the same as accounting
for the dynamical and self-energy effects, because these
eGects largely cancel each other. In addition, it seems
that the pure plasmonic eGects contribute very little
to the annihilation rate. For example, if we calculate
the simplest diagrams, which correspond to the case
where the final state contains one plasmon after an-
nihilation, they are found to give rather small con-
tributions. For these reasons, we have not taken into
account any electronic or plasmonic self-energy effects,
and we have used the simpliled static potential ug. It
is to be expected that even in more accurate approxima-
tions the results will be qualitatively of the same kind.

In what follows we use wave functions that are
determined by periodic boundary conditions and are
normalized in a volume t/". This leads to the well-known
point set in momentum space, each point k correspond-
ing to the wave exp(zk x) /V'~'. Starting from quantum

7 The diKculty with the induced charge density mentioned in
Ref. 6 is not even physically important here because the inter-
action is attractive.

s J. P. Carhotte and S. Kahana, Phys. Rev. 139, A215 (1965).

R(P) =2zrrszV ' Q e ee, z dxdy expLiP (y —x) j
x(o

I p. (y) j, (y) j,(x)p, (x) I 0),

where p refers to a positron of spin a, and it to an
electron; g and P denote Heisenberg operators, while

p and P are expressed in the interaction picture.
I 0)

is the full Fermi sphere of electrons plus one positron at
rest, and

I f„) denotes any final state that lacks an
electron-positron pair.

«t=«~=0; «~= —«t=&

Keeping in mind a concrete picture of a Feynman
graph corresponding to expression (4), we see that in
order to contribute to R(P), its interaction lines must
be horizontal (time axis pointing upwards), and all
"particle" lines (for electron, p) ks, for positron,
p/0) must point up, and hole lines (electron, p&k, ;
positron, p =0) down. There must be only one positron
hole line. To get R(P), all diagrams must be summed to
give the two-body propagator, in which we then perform
the energy integrations. Supposing that all energy
integrations may be performed term by term in the
perturbation series, we obtain for an Eth-order graph
(after letting V go to infinity and denoting P/ks ——K),
the general expression

RN '(P) =2zrrs'DN '(K)/V,
where

p N
DN, i(K) ( ] )N

Sx
de' ' 'de

xII '. xII,'
. (5)

In this expression, H is the total number of hole lines
in the diagrams, and x&, ~, x~ are the free momenta
(in units of ks) connected to fermion lines (in each
graph, one and only one positron line is a hole line
and has x=O; in addition, we require that the total
momentum of the annihilating pair be equal to K;
these considerations and the fact that the momentum
is conserved restrict the number of free momentum
parameters to E) . Integrations over the momenta must
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TAm, z I. Ladder-sum results.

X=o

Ladders
~(&)E'=0.3 E'=0.6 %=0.9

Total rate
(10'/pec) e(&=0)

Ladders with modified
interaction

Total rate'
(109/sec)

2
3
4
6
8

10

1.733
2.195
2.770
4.519
8.208

1.749
2.220
2.807
4.605
8.458

1.804
2.305
2.936
4.916
9.415

1.948
2.533
3.289
5.830

12.742

5.362
2.650
1.858
1.660
3.087

1.715

2. 716
4.329
7 ' 377

15.115

4.431

1.389
1.045
1.281
2.753

~ Computed as if qb(X) =$(0) when K (1.

be restricted so that an electron hole has @&1,etc. The
quantity y, is the momentum transfer connected to the
rth interaction, and e" =222(E„p—Ep,„„)/(kp2), when
JE p Ed is the energy di 6'erence between the upward
and downward lines that lie between two succeeding
interaction lines. (In this respect, we also consider the
annihilation as an interaction. ) We have put P=
(2/kp)2=4r, /pry. The total-annihilation rate is then
given by

R= g R" '(P) =22rrp' dx
4,N, P

&& 2 p-pp p«I a-'(x)A'(x)&p(x)0~(x) I o) (6)

integrate Eq. (8) to get

' ) =8~(~2+Z2+P —2*@~)

+' T(y & n)
X

y —Eg

Q [(+2+y2+P 2ppy)2)) 2 4&2y2 (1 $2) ( 1 2»2) $ 1/2 (8~)

For practical purposes, we change the limits of y inte-
gration from (1, pp) to (0, 1), defining

H(», Z, t) =2~T(1/t, E, ~)/[»2(1 —»Z~) j,
and thus obtain

1 +1
y(J:) =1+ dt d~ H(t, X, (),

0

(7
with H obeying Eq. (10);

D(K) =y(K)',

The usual ladder sum is easily found to be the square
of the sum of all "half-diagrams" shown in Fig. 2. Thus
we may write

where

g(K) =1+ dx T(x, K)/(x' —x K) (7')

H(t, E, () =
4(1—»E() [1 2»E$+ (E'+—P) t'j

and
+ dr

4(1—»E&) p

d2» r2H (r, E, q)

T(x, K) = +-
82r[(x—K)2+& J 82r

&& [(t +r +pt r 2»rc2») 4t r (—1—p) (1——r»2) $ "'
(10)

T(y K) This equation has been solved numerically for various

),+ j. (8) electron densities and values of total momentum E
The results are presented in Table I, where the values of

Denoting &=cos(x, K) and T(x, K) =T(x, IC, $), we

0 X
2V+~+ -- + ~ ~ ~

0 „K
T{x,Kj

{b)

I'xG. 2, (a) Ladder series, (b) Eq. (8),

-
R(Pj

& 5 R(P=
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FIG. 3. Partial-annihilation rate

versus total momentum at various
densitj. es.
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the value corresponding to r, 6 I.t has been shown
previously' that a positron can form a bound state with
an electron in a suKciently diffuse gas. In fact, it can
be shown that within the ladder-sum approximation
and using the static random-phase-approximation
interaction, a bound-state pole appears in the electron-
positron propagator at all densities.

Here we consider the function G(pqp2q~q2), where
1 refers to the positron and 2 to the electron, and p
and q are the outgoing and incoming energy momenta,
respectively. It is easily found that in the resulting
integral equation for the ladder sum we can perform
the integrations with respect to all the variables of
G except the total momentum P, total energy E, and
one of the momenta, say, p2 ——p. Thus we are left with

Z dP'dq'G(P p, p, P—a, q; E—p', p',—E q', q')—

=G(pPE),
G (pPE) =2m-im

X
0(&0—P)~(p P) 0(P—&0)(1—~(P, P))

mE —-'P' —ie mE —-'P' —(p' —p P) +i6

X[1+(2n.iV) ' g u(p —k)G(kPE) j, (11)

where 8(p, P) denotes the Kronecker 8. Again put-
ting P=koK, p=kox, k=koy, k02&u=@ATE

—-',P', u(p) =
e'U(x)/k02, and G(pPE) =2~imQ(xKor)/k02, we obtain

TABLE II. Contributions from the diagrams in Fig. 5. The
numbers in the table are the ratios of the contributions to that
of the zeroth-order graph. In the total sum, all graphs except 4
and 5 have been taken twice. Et and E~ are the corresponding
total-annihilation rates in units 10' sec '. They have been cal-
culated as if the partial rates were independent of the total
momentum.

Gra

~x g x
marut~ ~ ~ + &%~ Z~& + ~ ~ ~

$y

FIG. 6. Better approximation for the interaction.

for the zeroth-order part with respect to 1/V [we
expand G=GO+Gy/V+ ~, and note that 8(p, P)-+
(2m)'8(p —P)/Vj, the equation

0(x-1)
Qo(xK(o) =

X —X K—co—Se

dyU x—y 0 yKco . 11'

In fact, this is the approximative propagator when there
is no positron in the ground state. Letting U(x, y) =
U(y, x) =fdQ„U(x —y), we try a spherically symmetric
solution at K=O;

S(x—1) P
Q (*~)=, . ~+— Ax'&(* x)QDb~){.

X —M —Z6 8Ã

(12)

Because U, (x)) U&(x) at every density, we have

U, (x, y) )Up(x, y)

(x+y) '+p 4n=~ xy -'ln )
(* y)'+p —*'+y'+p

Let Uo be the smallest value of U(x, y) in the region
1(x, y(1+6. If we write Eq. (12) as Q=q+HQ and
denote with subscript r functions restricted to the
region 1(x, y(1+6, we get

Q, =q„+(HQ)„)q„+H„Q„)q„+E„Q„,

where now

1
2
3

5
6
7
8

10
ll
12
13
14
15
16
17

Total+zeroth
order

~t
Ladder-types

total
~l

0.493
0.170—0.019
0.243—0.014
0.051—0.008—0.004—0.001—0.001
0.001
0.084—0.006
0.001—0.009—0.001
0.001

2.729

4.110
2.837

0.673
0.314—0.025
0.453—0.017
0.129—0.016—0.007—0.002—0.003
0.001
0.211—0.011
0.001—0.017—0.002
0.002

0.831
0.478—0.030
0.690—0,019
0.242—0.023—0.010—0.004—0.004
0.002
0.397—0.015
0.002—0.025—0.003
0.002

3.934 5.350

1.756 1.00'?
4 ' 107 5.587

1.103
0.845—0.038
1.217—0.021
0.570—0.038—0.017—0.006—0.008
0.002
0.932—0.023
0 ' 002—0.041—0.005
0.003

8.757

0.489
9.117

1.337
1.245—0.043
1.788—0.022
1.024—0.053—0.023—0.009—0.012
0.003
1.665—0.029
0.003—0.058—0.007
0.003

12.858

0.303
13,330

4.275 1.835 1.052 0.508 0.314

E,(x, y) = (PUp/8~) y'/(x' —co) .

The inequalities follow from the fact that if the Neu-
mann series is required to converge, then the considered
functions are all positive for ~&1.Because

pU 1+5 y2
E,q„(x) = (x' —~)-' dy, =Xq, (x),

8x

we obtain

Q„)q„+E,q„+E,'q,+ ~ ~ ~ = (1+X+X'+ ) q, .

Now, if X~1, we certainly get a divergent result. Ke
obtain

pUO (1+6—(o"')(1+~'i')
X(P (u) = 6+-'(o'~' ln

8~ (1—o)"')(1+6+co'~')

First, let co=0, as in the computed sums. Then in the
u, or u~ case when we have Uo) 4n/[P+2 (1+6)'], we
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put 6 =aP'12 and get, as P~~,
l%.~2''t2(1+2n2) ~m.

Then, given arbitrary P/0, we see that if 600, the
lower limit of X goes to infinity when ~1, which
is the limit of the scattering-state energies. This result
can be seen to hold for an almost arbitrary attractive
static interaction as long as Vp&0.

Thus the propagator diverges below those energies
at which it would diverge if the interaction were zero.
The smallest value of ~ at which this kind of divergence
occurs corresponds either to a separate pole (=bound
state) or the end of a cut (=liniit of energies of the
interacting scattering states) . The latter case does not
seem plausible in this approximation, because if co&1,
the kernel of our integral equation is bounded. , and both
Tra and TrH' are limited. Thus the symmetrized
kernel has only discrete eigenvalues (with respect to
integration over y, ~ kept fixed), leading to simple M

poles in the function Q, (x&u). Similar poles appear also
in Qi(xylo), which is used rather than Q, in calculating
the annihilation rate.

Because of the result that the pole appears almost
for any potential, we are led to think that a kind of
quasipositronium can be formed in an electron gas of
arbitrary density. Because at high densities the energy
of this pole (there may be of course more than one
pole) is apparently only slightly below those of the
lowest scattering states, we might expect transitions
to occur between these states, especially in real metals.
Furthermore, the energy of the pole varies as a function
of the total momentum of the pair, and in more exact
approximations, the interactions between this posi-
tronium and excited electrons and holes cause some
smoothing of the poles. To our knowledge, these analytic
properties have not been studied in detail.

into 10 equivalent parts, whose end points were used
to compute the values of the functions. In the integra-
tion, the simple Simpson rule was used to approximate
the integrand, and the resulting 121X121 matrix was
then inverted. Although the computation uses quite a
few points, the error is not large because the function
B is rather smooth. The computation was made with
values X=0, 0.3, 0.6, 0.9 and r, =2, 3, 4, 6, 8.

Mod+ed ladder su222. The modified interaction is,
according to Fig. 6 (using units k2 and considering

only K=O; the notation is the same as in Sec. 4),

U-(x, y) =L(»—y) 2+07 ' —(4 ) 'P

X «IL(x—z)'+07
zeal

&&I(y—z) '+P7L»'+y'+ (x+y —~)'—*'7I '

Putting this expression into Eq. (8) in place of

U2 (x—y), one gets, after angular integration, the
modified ladder sum (cf. Eq. (10)7

H (t) =P(6 P)L12—(1+PP)7 '

where

I
+P(8t)-' dr rH (r) S(t, r),

0

Because x, y& 1 and s(1, we set z =0 in the integrand
as an approximation for the averaging eRect of the
angular integration. We then get

U (x, y) —L(x—y)2+$7 ' —PI3(»2+P) (y2+P)

Xi»'+y'+ (x+y)'7I '.
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APPENDIX

Ladder su222. Equation (10) has been solved numeri-

cally by dividing both intervals, (0, 1) and ( —1, +1),

(t+r) 2+Pt2r2 Pt2r2
5(t, r) =ln

(t—r) +Pt r 3(1+Pt ) (1+Pr )

P+r +tr
gin t'+r' —tr

This equation has been solved by dividing the interval

(0, 1) into 40 parts.


