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It is shown that the coherent-state representation of a many-boson wave function may be identified with
the order-parameter function conventionally used to describe a superfluid. The statistical mechanics of the
many-boson system is reformulated in terms of the coherent states, and a theory of the Ginzburg-Landau
form is recovered in an obvious approximation. The formalism is particularly useful for describing meta-
stable states of finite superflow and the fluctuations which may cause spontaneous decay of such states.

I. INTRODUCTION: THE PHENOMENOLOGICAL
MODEL

A SLIGHTLY generalized interpretation of the
Ginzburg-Landau phenomenological model of

superAuidity leads to several novel conclusions regard-
ing the nature of superQuid Qow. These conclusions
have been published in two recent papers, ' ' and are
:summarized in this introductory section. The remainder
of this paper is devoted to a systematic derivation of
'the Ginzburg-Landau model in the form in which we
mish to use it for many-boson systems. The derivation
makes use of the coherent-state representation of boson
fields, a formalism which turns out to be very appropri-
ate for the discussion of superAuidity.

In the Ginzburg-Landau model, ' ' the states of the
system are described by a complex-valued order
parameter f(r), which is a function of position r. The
function P(r) ordinarily is interpreted as a wave func-
tion for the superfluid component of the system. In
particular,

where Ap, is the difference in chemical potential between
the two points and d, (argot) the corresponding difference
in phase of P. Equation (1.3), in combination with
(1.2), describes the acceleration of the supercurrent by
a potential gradient, and thus characterizes the in-
trinsically superfluid properties of the system. ~

Our speci6c phenomenological picture is based on
the assumption that the space of all functions P(r)
satisfving suitable boundary conditions is appropriate
for the representation of an isothermal canonical en-
semble. That is, statistical fluctuations of the system,
caused by interactions with a constant-temperature
bath, are to be visualized as a continuous random
motion of the system point lt (r) in the function space,
the neighborhood of each point being visited by the
system with a frequency proportional to the Boltzmann
factor exp( —F(it}/ksT). Here F(f} will be taken to
be of the form of the usual Ginzburg-Landau free-
energy functional:

drLI Vyls a Ills+ ,'J3—IPI4+ j-, (1.4)

is the superAuid number density, and the corresponding
current density is

(We shall work always in units k= 1.) P is supposed to
have the time dependence exp(ipt) Lor exp(2ipt) for a
superconductor], where ti is the chemical potential.
More generally, if we choose two separate points in
the superQuid, we may write

Ati= (r)/r)t) A(argP), (1 3)

* Supported in part by the National Science Foundation.' J. S. Langer and M. E. Fisher, Phys. Rev. Letters 19, 560
(1967), hereafter referred to as I.' J. S. Langer and V. Ambegaokar, Phys. Rev. 165, 498 (1967),
hereafter referred to as II.' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950). For a more recent review of the Ginzburg-
Landau theory as applied to metallic superconductors, see P. G.
de Gennes, Superconductivity of Metals and Alloys (W'. A.
Benjamin, Inc. , New York, 1966), Chaps. 6 and 7,

4 The use of a Ginzburg-Landau equation for the description
of superQuid helium was proposed by E. P. Gross $Nuovo Cimento
20, 454 (1961)j and by V. L. Ginsburg and L. P. Pitaevskii,
Zh. Eksperim. i Teor. Fiz. 54, 1240 (1958) LEnglish transl. :
Soviet Phys. —JETP 7, 858 (1958)). See also L. P. Pitaevskii,
Zh. Eksperim. i Teor. Fiz. 40, 646 (1961) /English transl, : Soviet
Phys. —JETP 15, 451 (1961)g.

where A and 8 are temperature-dependent constants.
In particular, A passes through zero at some To, being
positive for T& T'o.

The fact that A and 8 are temperature-dependent
implies that Fg } is already some sort of coarse-
grained free energy, i.e., that a partial partition sum
has been performed in order to obtain Fff}.It is just
this point that will be amplified in the following
analysis. Here, however, it is important to emphasize
that, although the state fs which minimizes F(P} is
the most probable state of the system, Fffs} is not
the correct free energy. Rather, the true free energy is

ksT ln 6$(r) e—xp( —F{tt}/ks T), (1.5)

where the symbol 1'8$(r) denotes an integration
over the space of functions f(r). It is only when this
integral may be approximated by the largest value of
the integrand that the usual Ginzburg-Landau (mean
field) theory is valid.

The above formulation is particularly well suited to

~ B. D. Josephson, , Advan. Phys. 14, 419 (1965).
6 P. %', Anderson, Rev. Mod. Phys. 38, 298 (1966}.
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the discussion of metastable states. 0 only continuous
deformations of P are permitted —the perturbations are
small in some sense —then any local minimum of FfP)
locates a stable or metastab~e state. The stability
condition is therefore

SF/Sg (r) =O, (1.6)

to which we add the requirement that the matrix

must be positive definite. Equation (1.6) is just the
Ginzburg-Landau equation for general P.

The following properties of metastable states have
been discussed in Refs. 1 and 2.

A. Constant-Current States

We choose F in the form (1.4) and impose periodic
boundary conditions. Then the solutions of Eq. (1.6) are

4'(r) =fss'"' f"= (A k')/J3 — (18)

and carry current

jg= kfss ——k(A —k')/B.

For k'& tsA (the conventional Ginzburg-Landau critical
wave vector'), each of the states (1.8) locates an iso-
lated local minimum of Ii. For 3&0'&A, however, the
matrix (1.7) is no longer positive definite. In fact, these
states are unstable against deformations of the form

+g &i(k q) r— (1.1o)

where tl is small and Preferably Parallel to k and 8q is
an infinitesimal amplitude whose phase depends on q.

B. Current-Reducing F1uctuations

An important feature of any Quctuation which
carries the system from one constant-current state to
another is that the wave function f(r) must pass
through zero somewhere during the transition. ' For ex-

ample, consider a ring of circumference I. in which the
superflow is characterized by the state Pz. The states
iP in the neighborhood of fq all will have the property
that argP increases by exactly kl. around the ring. But
if the fluctuation away from fs is large enough that P
vanishes somewhere, then the total change in argp
around the ring is indefinite for that particular wave
function, and the system point may pass continuously
from the region of states with total phase change kI.
to those with, say, O'I..

This point is particularly signi6cant in view of the
fact that it is the phase Quctuations which preclude
off-diagonal long-range order in one- or two-dimensional

superfluids
""Clearly, if the amplitude of P never

vanishes, no Quctuations in the way the phase varies
' J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).

See II, Appendix C.
~The following argument owes much to the work of W. A.

Little, Phys. Rev. 156, 396 (,1967).
"T.M. Rice, Phys. Rev. 140, A1889 (1965).
&' P. Hohenberg& Phys. Rey, 158, 383 (1967).

from point to point can possibly modify the total change
of phase around a ring. In fact, if the amplitude of lt

remains constant, then the dc component of the current
also must remain constant. It follows that we might
expect a system to behave like a superQuid whenever
there exists an energy barrier to inhibit Quctuations in
the amplitude of P, whether or not there occurs a true
phase transition with long-range order.

C. The Free-Energy Barrier

It is obvious topologically that, in order for the
system point to pass from one local minimum of F(P)
to another, it must overcome a free-energy barrier.
The lowest barrier, and thus the least improbable
Quctuation which will effect the required transition,
occurs at a saddle point between the two minima. Thus
the current-reducing fiuctuation, say P(r), satisfies the
Ginzburg-Landau equation (1.6); but the matrix (1.7)
must have a single negative eigenvalue at f deterrnin-
ing the direction in P space along which the fiuctuation
is most likely to progress.

The properties of the saddle-point fiuctuation f have
been studied recently in several different connections.
In general, f describes a state which is almost every-
where the same as the metastable state (Pq in our case),
but which contains a single localized Quctuation. The
simplest example of such a Quctuation is the well-
known critical droplet which nucleates the condensa-
tion of a supersaturated vapor. ""In the case of liquid
helium, we have argued in I that P must describe a
vortex ring of a critical size determined by the velocity
of the superfluid. " Because lt vanishes at the vortex
core, an expanding, singly quantized, vortex ring will
eventually subtract 2m from the total phase change
across the system. Paper II was devoted to the study
of an eGectively one-dimensional superconductor, in
which case the Ginzburg-Landau equation is exactly
soluble and the relevant amplitude Quctuations can be
examined in detail.

The point to be emphasized is that a state of nonzero
superQow is truly metastable as opposed to stable in
the sense that there always exists a nonzero probability
for transitions to states of lower current and lower free
energy. This transition probability in all cases depends
on the frequency of nucleation of certain localized
amplitude Quctuations, and is therefore independent
of the size of the system. Rather than trying to compute
this transition probability directly, " in I and II we

"J. Frenkel, Esnetsc Theory Of Liquids (Dover Publications&
Inc., New York, 1955), Chap. 7."J.S. Langer, Ann. Phys. (N. Y.) 41, 108 (1967).

'4 See also S. V. Iordanskii, Zh. Kksperim. i Teor. Fiz. 48, 708
(1965) )English transl. : Soviet Phys. —JETP 21, 467 (1965)J."A brief discussion of the difhculties encountered in trying
to make a direct calculation of the transition probability for
creation of a vortex ring has been given by W. F. Vinen, in
Proceedings of the International School of Physics, "Enrico Fermi, "
Course XXI, edited by G. Careri (Academic Press Inc. , New York,
1963), p. 336. Our point of view differs from Vinen's in that we
imagine the critical ring to be created in a very large number o&

small steps rather than in a single quantum jump,
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have simply invoked an ergodic hypothesis and have
said that the frequency of transitions has the form

We shall often work in the Fourier representation:

~s ' exp( —hF/k~T), O.,(r) = (2 2)

where AIi is the height of the free-energy barrier and
vo is some sort of characteristic time for microscopic
processes. (Actual calculations of, say, critical currents
or resistivities turn out to be very insensitive to the
choice of rs.) The results of these calculations are
relaxation rates for states of finite superQow which are
always extremely rapidly varying functions of tem-
perature and current, being unobservably small
throughout most of the conventional superQuid region.
For example, in II we estimated that the width of the
observable resistive transition in a tin wire about 1 p'
in cross section would be of the order of 10 4'K. In
principle, however, the wire would have a finite resis-
tivity below this transition; but one would have to make
measurements over cosmologically long times in order
to observe it.

where

CiI Qg =Qg Qg

are the so-called "coherent states'"' ":
(2.4)

where the
I n~) are the number states for the kth mode

of the Bose field, and Q& can be any complex number.
Then the order parameter P(r) turns out to be

L~»~sl=Lrr~ i&a h=o, (23)
and V is the quantization volume. The right eigenstates
of the annihilation operator a~,

II. COHERENT STATES 4(r)= g rr~e~s r

v x
(2.6)

The preceding discussion has been based on a phe-
nomenological model which is slightly more general
than the conventional Ginzburg-I andau theory and
therefore requires additional justification, In particular,
we must question whether it is possible to formulate a
completely general characterization of a many-body
system, including both normal and superQuid phases,
in terms of an order-parameter function lt (r). In the
following we shall attempt to show that a very simple
such characterization can be constructed for many-
boson systems. Hopefully, an equally simple formulation
can be found for superconducting many-fermion
systems. "

The order parameter P for a many-boson system is

conventionally defined to be the thermodynamic ex-

pectation value of the boson field operator, the super-
Quid phase transition usually being associated with the
loss of symmetry which allows this expectation value
to be nonzero. In the preceding development, however,

P somehow characterized the pure quantum states of
the system, and was not itself a thermodynamic
quantity. Our assertion is that the order parameter P,
as we have used it above, may conveniently be chosen
to be the coherent-state representation of the pure
quantum states.

Consider the boson field operator, %„(r), which
satisfies the commutation relation'~

Le.,(r),e.,'(r')$= 8(r—r'). (2.1)

"In an earlier paper PJ. S. Langer, Phys. Rev. 134, A553
(1964)g, the problem of superconductivity has been formulated
in terms of a functional. integral which resembles that derived
in Sec. III of the present paper. The main difference is that, for
the superconductor, P depends on an extra timelike variable.

"We shall use the subscript "op" to denote second-quantized
operators.

The states given by Eq. (2.5) are normalized but not
orthogonal. In fact,

(~~
I &.)= exp(~~*&a—s I

~s I'—s I a I') . (2./)

They do, however, form a complete set:

1— d'~.
I ~~) &~s I

= 1", (2 g)

where the integration is performed over the two-
dimensional complex Q plane. Thus the set of all states
of the form

+..(r) I {4))=lIl(r) I {lt})
(2.9)

is a complete set for the many-boson system. We shall
use the nota, tions introduced in (2.9) interchangeably
throughout the rest of the paper.

The coherent states are most useful for dealing with
many-body systems which behave in some sense
classically, that is, systems in which the boson modes
are highly occupied. When this is true, the function
P(r) becomes a classical Schrodinger field which de-
scribes the complete many-boson system in just the

» R. J. Glauber, Phys. Rev. 131, 2766 (1963).
~s P. Carruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965).
~ P. Carruthers and K. S. Dy, Phys. Rev. 147, 214 (1966).

The problem of the anharmonic crystal discussed in this reference
is closely related mathematically to the interacting-Boson problem
discussed in the present paper.

» The relevance of the coherent states to the theory of super-
Ruidity has previously been pointed out by F. W'. Cummings
and J. R. Johnston, Phys. Rev. 151, 105 (1966).
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same way that the Maxwell field describes the classical
limit of quantum electrodynamics. Indeed, the most
fruitful application of the coherent states has been in
the systematic quantum-mechanical description of in-
tense radiation fields for which classical electrodynamics
provides a valid, although incomplete, description. "
Our point is that, for many-particle Bose systems as
opposed to many-photon systems, the validity of the
classical description implies superRuidity.

It will be useful to discuss brieRy the properties of
the coherent states in the classical limit. The discussion
is slightly complicated by the fact that the lni& are
eigenstates of the annihilation operator ak, which is not
Hermitian. It is a bit simpler to pursue the classical
limit by introducing a coordinate q and its conjugate
momentum p (we drop the subscript k for the moment):

(2.10)

1
n=——,(q+iP) . (2.12)

Thus the coherent state is a Gaussian wave packet
centered at the coordinate q. Similarly, in the momen-
tum representation, it is a wave packet centered at p.
This wave packet, in either representation, becomes
extremely narrow in the classical limit. To see this,
note that

&m)=&aI~'aln&= Inl'&)1 (clas»cal). (2.13)

That is, Alai' is a quantity which remains finite a,s
h ~ 0, so that (2.11) becomes a 8 function. It
follows that the coherent states provide an acceptable
(but by no means unique) representation for the
quantum-mechanical analysis of classical or semi-

classical systems. The representation is particularly
convenient from an analytic point of view because of
the direct relationship between n and the annihilation
operator, and also because of the simplicity of the
canonical transformation (2.12).

Now consider boson modes k with occupations In~ I'
large enough that a classical approximation has some
validity. The Hamiltonian equations of motion are

dp&/dt= —BH/Bq~, dq&/dt= BH/BPj, . (2.14)

Starting with (2.14) we may make a sequence of canon-
ical transformations to derive the equations of motion
for the complex field P(r) which describes the classical
limit of the ma, ny-boson system. From (2.12) and its
complex conjugate, we have

dn~/dt= iBH/Bni, *, dng~/dt=i BH/Bai, . (2.15)

Let the eigenstates of q., be denoted Iq'). Then it is
easy to show that"

&q'I a) =a='" exp( —-,'(q' —q)'+ip(q' —q)+-', p'}, (2.11)

where

Equivalently, "
@(r)/d~= if—H/fy+(r),

dP" (r)/dt=i8H/5$(r) .

Finally, it is conventional to use the notation

P(r) =f(r) expl iy(r)],

(2.16)

(2.17)

III. FREE-ENERGY FUNCTIONAL

We turn now to the statistical mechanics of the
many-boson system as described by the coherent states.
Our entire analysis hinges on the fact that the states
(2.9) form a complete set, so that we can evaluate the
grand-canonical partition function as follows:

H.p IJN.p)—
Z= Tr exp

ksT

d ng) H, p yN.p)—
I&( ) lexpl — II( ) &

k~r

bP(r) exp( —F(P}/kiiT) . (3 1)

In the final form of (3.1) we have defined again the
functional-integral notation first introduced in (1.5),
and also have made the important identification

H, p
—p2V, p

~H) =—~s»n &8) I
exp — I(A& .

kgT
(3.2)

In this section we shall consider the evaluation of the
free-energy functional F{f).

Consider first the case of noninteracting bosons. We

"In this form, the equations of motion reduce to the nonlinear
differential equation studied by E. P. Gross, Ann. Phys. (N. Y.)
4, 57 (1958)."P. W. Anderson, Ref. 6, p. 300. The same equations are
mentioned in a coherent-state formalism by P. Carruthers and
M. M. Nieto (unpublished).

where f and P are real functions of r. In a pure coherent
state, or in the classical limit, f is just the local number
density n (r):

m(r) ={@,~t{r)e,~(r)&= lg(r) I'=f'(r) (2 18)

If we transform to the conjugate variables n and g
(action and angle variables), we obtain

de(r)/dt= BH/8$(r), dp(r)/dh= —8H/6e(r) . (2.19)

These are exactly the superQuid equations of motion
discussed by Anderson. "It must be emphasized, how-
ever, that Eqs. (2.14), (2.15), (2.16), or (2.19) repre-
sent, at best, a semiclassical approximation to the equa-
tions of motion for the quantum-mechanical many-
body system.
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have (in units A=m=1)

(3.3)

so that

H„&'&—pN„)
({~}lexpl — ll{~})

l )

where

( cg

=II (-.I-pl-
& k,r

—1&2 (3.5)

f
(~.l eml-

ksr

=expL(e '"i~i' 1) l~. l j (3 6)
Finally,

F~"{P}= kiiT Q (e '&—~"&r—1)

Intel

2

k ii T dr P—*(r)

(——',P+p)
X -pl I

—14(r). (3.7)

Inserting the representation (2.5) for the coherent
states, we obtain

What is needed in order to make (3.7) or (3.8)
describe a system which can support metastable super-
flow is a higher-order term in the integrand of F{f}
of the form, say, I/I'. Such a term, with the correct
sign, will be generated by a repulsive two-body inter-
action in the original Hamiltonian. If we add a term
like (2.25) to H, however, we no longer can evaluate
F{f}exactly. What we shall do in the following is
evaluate Fg }as a power series in iP, the term of order
I/I' being the lowest-order term involving the two-
body interaction.

The technique required for evaluating F{g as a
power series in P is the same as that used in most field-
theoretic or many-body perturbation expansions. We
shall use the notation

H.y pN. p
—K.p+ H——.p',

~0P —~ ~e+Z ~z &

k

1
H.,'= Q v(q)a&~, tap, tag. ag, (3.9)

2V i,z, q

where it(q) is the Fourier transform of the two-body
interaction potential. The relevant expansion is

H.p yN. p) (—K.p)
exp —

I

=expl—
E k.T&

XZ (—1)" dA, 2

Equation. (3.7) assumes a more familiar form if we

restrict our attention to slowly varying functions f
and remember that, near the Bose condensation, p,

is small and negative. Then we may keep only the first
term in an expansion of the exponent:

drl3lvyl2+ lul IP I2j. (3.8)

The functional F& 'g }given by (3.7) is a quadratic
form in P. This means, flrst, that the partition function
Z is a product of Gaussian integrals which may be
evaluated easily and which give exactly the correct
result for noninteracting bosons. More important, how-

ever, is the fact that (3.7) predicts no metastable states;
that is, there are no isolated minima, of F'oi{P}except
the one at f= 0 and, therefore, no superfluidity accord-
ing to our criteria. The mathematical mechanism of
the Bose condensation, as obtained via the coherent-
state formulation, is very reminiscent of the spherical
model of a ferromagnet'4; and it is interesting to note
that the spherical model is also unrealistic in its descrip-
tion of the ferromagnetic phase transition because it
predicts no metastable states. '5

'4 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952)."J.S. Langer, Phys. Rev. 137, A1531 (1965).

n=o

XH.,'(h) "H.,'(Z.), (3.10)

H„'(X) being the interaction representation of H,~l:

~
(g)=gxxopH I~—xEcpp (3 11)

aqua)=e "'~aq, an't(X)=e"~aq. (3.12)

All the X-dependent quantities now appear simply as
numerical factors, and may be brought outside of the
matrix element.

The next step is to bring the annihilation operators
aq to the right and the creation operators ai,t to the
left. This is done by using the Bose commutation
relations (23). The result is a product of matrix

Our procedure is to evaluate, term by term, the diagonal
matrix element of (3.10) for the state

I {n})and then
to exponentiate the resulting series to obtain a free
energy F which is proportional to a single factor of the
volume V. This exponentiation amounts to a linked-
cluster expansion.

In evaluating the matrix element of a terzn in (3.10),
we first make use of the fact that the interaction
representation of the annihilation or creation operators
always may be written in the form



J. S. LANCE R

k+q J& J)k'-q

(2) For each particle line of momentum k starting
at V and ending at P, write a factor

X] lP —~~1
Q

elements of the form

(nkleXpl — « ~k I(~k )'(~k) In.&,
& kT (3.13)

FIG. 1. A typical diagram occurring in the expansion of the
partition function. The diagram contains 6ve particle lines and
four interaction lines. There are two disconnected parts, only the
left-hand one of which is shown with complete momentum and
X labeling.

expL —(lI.—X') ekj.
The points X and X' may be either interaction vertices
or the endpoints0and (k~T) '.

(3) For an interaction line carrying momentum q,
write a factor

(1/I')~(q).

(4) Sum over all momenta subject to momentum
conservation at each vertex. Integrate over the )'s,
observing the limits of integration. indicated in (3.10).

(5) Multiply by the standard synunetry factors to
avoid overcounting diagrams when performing summa-
tions over momentum variables.

The above procedure yields

one such factor for each mode k. This expression may ( Hop p1Vgp-
be evaluated as follows. Use the completeness relation ({n}I expl

I {n})
(2.8) and the number-state representation (2.5) to k, T
write (3.13) in the form

d2Pk
k k k &k

X expl (e '« "s —1)nk*Pkj. (3.14)

The integration over pk can be performed using the
second of the following integration formulas, valid for
any function f(n) which has a power series in n Lsee
Ref. 20, Eqs. (2.6)j:

dsp ( 8
e.*' '"'P"f-(P*)=

I

—f(n*),
x' (an*

(3.15)
d'P

e.&* ~e~'(p*) "f(p) = —
I f(n)

7r an)

The final form of (3.13) is then

expl (e-'"~""—1) Ink I'j
Xexp( —",/k. T)(n.*)'(n.)' (3.16)

The left-hand factor in (3.16) is just the quantity
computed in Kq. (3.6); therefore the quantity

exp( —F(+{P}/ksT) must factor out of each term in
the perturbation expansion.

The remaining contributions are conveniently de-
noted by diagrams of the kind shown in Fig. 1. The
variable h increases upward from 0 to (k~T) '. Vertical
solid lines denote particles; horizontal dotted lines
denote interactions. Both particle lines and interaction
lines are labeled by momenta, and momentum is
conserved at each interaction.

The rules for evaluation of these diagrams are the
following:

(1) For each particle line of momentum k starting
at ) =0, write a factor nk. For each line ending at
X= (k~T) ~

write a factor nk

where If r{n} denotes the numerical contribution of
the diagram F as determined by the preceding rules.
The conventional linked-cluster analysis then. tells
us that

F{n}—F {n}=kgTQ g r(e){n} (3 18)

where now only connected diagrams, F'), are included
in the sum. By "connected. ,

"we mean that every particle
line is connected to the rest of the diagram by at least
one interaction line.

According to rule (1 ) above, a diagram with /

particle lines is formally of order Inl"; that is, it
contains l factors Ok, O.k, etc., and l factors n~*, n~ *,
etc. To obtain the entire contribution to F{n}of order
In lq, we must sum all the two-body diagrams like those
shown in Fig. 2. The three-body diagrams will make
contributions of order

I nl', and so forth.
For completeness, we quote the numerical contribu-

tion to F of the first diagram shown in Fig. 2:

kaT pe
—x~k&r —e

—E'»»q
& ~(a)l

2y .. .
Xnk+q nk'-q nk'nk ~ (3.19)

where E= ek+ ski, E'= ek~q+ek q If the .two-body
interaction contains a hard core or is otherwise too
strong to permit the use of (3.19), then the entire series
of ladder diagrams must be summed. At this point our
formalism is very similar to that developed by Lee and
Yang, " and the reader is referred to their papers for
the details of such calculations.

MT. D. Lee and C. N. Yang, Phys. Rev. 1D, 1165 (1959).
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In conclusion, we note that we have constructed a
free-energy functional F{P}of basically the Ginzburg-
Landau form, Eq. (1.4), the only real difference being
that the derivatives of f enter in a rather more com-
plicated manner when f varies rapidly with position.
The simple form of the quartic term in (1.4) will be
correct for f's which vary slowly over distances of the
order of the two-body scattering length. Finally, the
crucial temperature dependence of A, the coefficient of

~f ~s, is essentially the same as the temperature depen-
dence of the chemical potential p, which must be chosen
to fix the number of particles. For noninteracting
particles, we know that p, is negative at high tempera-
tures and goes to zero at the Bose-Einstein condensa-
tion point. When we add the effect of repulsive interac-
tions, i.e., the term 8~f~ with positive B, then p may
be expected to become positive below some critical
temperature, as required by the phenomenological
model.

IV. THERMODYNAMIC AVERAGES AND
THE TWO-FLUID MODEL

The functional

il- -eg

Ji

+ Jl +

I+~~~ Hi

+ ls ~

FIG. 2. The sequence of two-body ladder diagrams which must be
summed to obtain the entire contribution to P of order ~n ~4.

The total density can be written in the form

1 1
n= g—n&= — dr (~P(r) ~')g, ——Q 1. (4.4)

V ~ V

1 1
j=—Q kng= — dr (/*VS —/VS*) —. (4.5)

V~ V 2i

Here it is obvious that we must expect a short-wave-
length (large k) divergence in (~f(r) ~')~. In fact, this
divergence is the same one which appears in similar
6eld-theoretic calculations, and it is reassuring to see
how it is subtracted out in Eq. (4.4). This divergence
disappears in the formula for the current density:

= (1/Z) exp( —F{P}/kiiT) (4.1)

is the diagonal element of the density matrix in the
coherent-state representation. We should like to in-

terpret (4.1) as simply the probability that the system
will be found in state P, but it must be recognized that
the density matrix is not quite diagonal in this repre-
sentation. For example, consider the expectation value
of the number density, which is given for a pure state
f by Eq. (2.18). We have Lsee Ref. 20, Eq. (2.16)j

The Ginzburg-Landau theory, and the two-Quid
model, emerge only when it is possible to evaluate the
above formulas by what amounts to a mean-field
calculation, augmented by a random-phase approxima-
tion. Suppose that pg}, Eq. (4.1), is sharply peaked
at some P, say f,. In fact, let us assume that P, is
overwhelmingly the most probable state in its part of
the function space, so that it must describe a stable or
metastable state of the system. Then we can associate
with f, a superfluid density r4 and a supercurrent j, :

ng ——Tr(agtagp. ,) j.= (4.*&4. 4.&—4."). —
2i

(4.6)

( d'nj ) ( 8
=III I

.*I .+ I~({ *},{ }), (4.2)
an, *)

which is derived by means of the integration formulas
(3.15). An integration by parts turns out to be legal,
so that

( dsng ).=rr
i~E ni

(4 3)

where the angular brackets denote an average over f
or rr space with (4.1) as the statistical weight.

It is important to note that the expected identity
between n„a dn(~n„~')~ is a good approximation only
in the classical limit, e»&1. The identity is exactly
correct only when the mode is occupied macroscopically,
i.e., Ns is of order X,

In order for the quantities defined in (4.6) to be mean-
ingful, f, must be of order unity (not, say, order E 'i')
throughout the system. That is, f, must have the
properties of the classical Geld discussed in Sec. II, and,
in particular, must obey the superQuid equations of
motion, Eqs. (2.19).Thus, the most probable f appears
to describe a superQuid component of the system.

It should be recognized, however, that the most
probable f is not the same thing as the average f, nor
are m, and j, the same as the average or expected values
of N and j as deflned in Eqs. (4.4) and (4.5). In order
to evaluate the correct density or current, one must
take proper account of the width of the peak in p{P}
near P,. That is, one must include the fluctuations.
There is no known way of doing this rigorously (except
in one dimension), but the following procedure probably
gives qualitatively correct results at temperatures far
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+ dr [(Vv)s+ fss(VQ)s+4fsvtr VQ+ ssvsj (4.9)

where
s'= 28f/= 2(A —k') (4.10)

If we use the more general F{P}computed in Sec. III,
especially with the quadratic term Fisi{P} given by
(3.7) which is necessary in order to allow for rapidly
varying it' s, then the relevant quadratic form becomes
more complicated but remains qualitatively similar to
(4.9). We arrive at expressions of the form

and

1
n=n, +(v') ——P 1 (4.11)

j= j,+2fs(vVg)+ k(v'), (4.12)

"The mathematical significance of performing these integra-
tions in the neighborhood of a P, which is not the absolute mini-
mum of 1 g ) is discussed in Ref. 13.

enough away from the critical point that the Quctuations
are small.

In principle, we want to expand F{P}out to terms
quadratic in P f,—and then perform the resulting
Gaussian integrals. '~ This procedure is slightly com-
plicated by the fact that F{f}is independent of the
phase of P, so that the phase fluctuations always will

be appreciable and must be handled separately. Sup-
pose that P, is one of the uniform current-carrying
states given by Eq. (1.8):

(4.7)

Then we follow essentially Rice's procedure" and write

it (r) = (fs+ v (r)) exp Lik r+f4 (r)j, (4 8)

where v and g are real functions of r. It then makes
sense to expand Fg }out to terms quadratic in v and

P. For the F{f}given in Eq. (1.4),

where the angular brackets here represent averages
with respect to the above Gaussian approximation for
the weight factor p{P}.In Eqs. (4.11) and (4.12), the
Quctuations contribute additively to n and j, and appear
to describe a normal component of the Quid.

Special calculations of this kind have been published
by Rice,"who has emphasized the fact that the phase
Quctuations preclude oG-diagonal long-range order in
one or two dimensions. The reader may check from
Rice's results that the formulas for m and j remain well
defined in all cases except where the Quctuations be-
come anomalously large near an apparent critical point.
The fact that the method breaks down in some tem-
perature range, especially in one or two dimensions,
says nothing at all about whether a phase transition
occurs, nor does it necessarily invalidate the qualitative
results in regions where the Quctuations are small
enough that the method seems self-consistent. In fact,
the known features of the soluble one-dimensional model
of the kind discussed here, using the simplest Ginzburg-
Landau form for F{f},are also the most striking
features of the above approximation. That is, there is
no long-range order, but the amplitude of it has a
nonzero most probable value and, for low enough
temperatures, is very unlikely to vanish. Thus the one-
dimensional model may, in some sense, be a superQuid.

Both this one-dimensional model and further analysis
concerning the behavior of the normal component
as described by fluctuations will, hopefully, be the
subjects of later communications.

ACKNOWLEDGMENTS

Most of this paper was written while the author was
in residence at the Physics Division of the Aspen
Institute, Aspen, Colorado. Stimulating discussions
with many people at the Institute were most helpful
in the completion of this work. The author also wishes
to thank Dr. N. D. Mermin for helpful criticism of an
earlier version of this paper.


