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A model in which a baryon can be regarded as a bound state of two particles has been generalized to be
approximately invariant under SU(6). In the model, one of the constituent particles of a baryon can be
regarded as a quark and the other particle can be considered as a tightly bound state of two quarks, or
diquark. The quark is taken to belong to a six-dimensional representation of SU(6), while the diquark is
taken to belong to a twenty-one-dimensional representation. With this model, which can be considered
as a specihc dynamical approximation to the three-quark model, the baryon medium-strong mass splittings
are calculated beyond lowest-order perturbation theory. The model provides a mechanism for breaking
the Gell-Mann —Okubo baryon-octet mass formula while breaking the baryon-decuplet equal-spacing rule
by a smaller amount.

1. INTRODUCTIOÃ

HE nonrelativistic quark. model' ' has been used
by many authors' to calculate the baryon mass

spectrum. In the model, a baryon is a state of three
quarks bound deeply by their mutual attractive inter-
actions. The model is simple conceptually, but has the
calculational difhculties associated with the three-body
problem. One approximate way of treating this problem
has been to replace the sum of two-body interactions by
an effective attractive potential well in which all three
quarks are bound.

In a previous paper, 4 which we shall refer to as I.T,
two of us have introduced a model which makes use of
an entirely diGerent approximation. In the model of LT,
a baryon is assumed to be a bound state of two particles,
one with spin one-half and the other with spin one. The
spin-one-half particle can be regarded as a quark and the
spin-one particle as a bound state of two quark. s, or
diquark. This model may have some validity if a bound
state of two quarks is so tightly bound that it has a
smaller mass than that of a single quark, although of
course, not so low that it would have been observed.

It is interesting to point out that in this model the
lowest, -mass diquark has charge 43 of the proton charge,
and so may not have been detected by the usual methods
to look for fractionally charged particles with charge
smaller than the proton charge. The possibility that the
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lowest-mass quarklike object may have a charge greater
than the proton charge was pointed out by Gell-Mann'
in his original paper on quarks and later by de Swart. '

Once the assumption is made that a baryon is a bound
state of two particles, one with integral spin and one
with half-integral spin, the additional assumption that
the particle with integral spin is a bound state of two
quarks can be relaxed. Then the model can be con-
sidered as a two-Geld model, of a diferent kind from
those proposed by Giirsey, Lee, and Nauenberg. r In LT,
this two-particle model of baryons was called a "boson-
fermion" model. However, since the boson is most
simply regarded as a diquark. , and since the quarks may
obey parastatistics rather than Fermi statistics, we
adopt here the name "quark-diquark" model. The
model is not as simple conceptually as one in which a
baryon is composed of three quarks, but has the
calculational advantage that a baryon is made up of
two particles rather than three. This enables us to make
calculations to a high degree of precision more easily
than can be made with a quark model.

The electromagnetic mass splittings and the magnetic
moments of baryons have also been considered in the
model. ' It was found that in order to obtain agreement
with the observed baryon magnetic moments the two
constituent particles must be given fractional charge.
This consequence of the model makes it even more
attractive to regard the spin-one particle as a diquark.

One feature of the quark. model, which our model did
not have in its previous version, is that in the quark.
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e J.J. de Swart, Phys. Rev. Letters 18, 618 (1967).
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model the baryons can be considered as belonging to a
56-dimensional multiplet of SU(6). However, in the
quark-diquark model as originally introduced, SU(6) is
in some sense maximally violated. This is because if we
assume SU(6) invariance and wish to place baryons in
a 56 multiplet, we must form the baryons from a 21-
dimensional diquark multiplet and from a six-dimen-
sional quark multiplet. Now the SU(3) content of the
21-dimensional diquark is an SU(3) sextet of spin one
and a triplet of spin zero belonging to the 3 representa-
tion of SU(3). The baryon decuplet turns out to be
made entirely of the spin-one sextet and the quark.
However, the baryon octet is composed of an equal
mixture of the spin-one sextet and the spin-zero triplet.
Since the spin-zero triplet was missing in the model of
I.T, a baryon could not even come close to belonging to
a 56-dimensional representation of SU(6).

In the present paper, we remedy this defect of the
model by generalizing to include approximate SU(6)
invariance by forming a baryon from a diquark and
quark. , which in the lowest-order approximation belong
to SU(6) multiplets. We then break the symmetry to
obtain the medium-strong baryon mass splittings.

We assume that the diquark is a multiplet of 21 states
formed as the symmetric combination of two quarks.
The SU(6) multiplicities contained in a two-quark state
are given as follows:

686=210+ 15.

The 15-dimensional diquark we assume to lie much
higher in energy than the 21, if indeed it is bound at all.
Then a 21 diquark can combine with a third quark. as
follows:

2186=560+ 7o.

We assume that the members of the baryon octet and
decuplet belong to the 56-dimensional representation as
usual and that the particles forming the 70 lie higher in

energy. The SU(3) content of the 21-dimensional

diquark is as follows:

21+'6+'3,

where our notation is that the spin multiplicity is
written as a left superscript on the SU(3) multiplicity.
Thus, the diquark is a mixture of a spin-one particle of
SU(3) multiplicity six and a spin-zero particle of SU(3)
multiplicity three. We shall call these two diquarks a
sextet and a triplet, respectively. If the forces are
invariant under SU(6), the sextet and triplet are
degenerate in mass.

One simple way to break the SU(6) synunetry is to
assume that the sextet diquark and the triplet diquark
have diferent masses. Another way is to assume that
the interaction between a quark and a sextet is diferent
from the interaction between a quark and a triplet. We
shall consider both of these possibilities.

We shall also break SU(3) invariance by letting the
quark with hypercharge I"=—

3 have a somewhat

TABLE I. Quantum numbers of quark, sextet and tr&plat. Tbe
quark has baryon number B=-', and spin S=one-half, the sextet8=-' 5=1, and the triplet 8=~» S=O.

Symbol Mass Isospin Hypercharge Charge

Quark

Sextet

Triplet

q1
q2
q3

$2
$3
$4
$5
$6

t2
ta

mQ

my+ ~]

m~+b~+e1

mg
ms+62
my+ 63

ma+8, +e2

m, +5,+&3
m, +25~+ e3

mg
mg+5g
mg+5g+&4

2
3

2
3
2
3
2
3
31
3

2
3
1
3

2
3
1
3

3
2
3

heavier mass than the two quarks with F=—,'. As a
consequence of this, the sextet will break up into three
distinct masses; there will be an isospin triplet with one
mass, a doublet with a somewhat higher mass, and a
singlet with a still higher mass. Similarly, the triplet
quark will break into a singlet and doublet in isospin.

If the interaction between the two quarks to form a
diquark is invariant under SU(3), the splitting of the
masses within the sextet and within the triplet will be
closely related to the mass splitting within the quarks
themselves. In fact, if we use a nonrelativistic model to
describe the interaction between the two quarks, the
mass splitting within the diquark will be just the same
as the mass splitting within the quark. However, we
shall relax this assumption and allow the mass splittings
within the diquarks to be free parameters. This as-
sumption can follow either from a relativistic model of
the diquark. or from an interaction between the two
quarks which depends on the hypercharge and breaks
SU(3).

With these assumptions we list in Table I the masses
and other quantum numbers of the quark and of the
triplet and sextet diquarks. In Table I, the difference
between m, and m& is a measure of the violation of
SU(6) symmetry in the medium-strong interaction and
the parameters B„b&,5, are a measure of the violation of
SU(3) symmetry. For completeness we have also in-
cluded in Table I the parameters e, (i= 1, 2, ~, 4). In
the expressions for the masses of the quark, sextet, and
triplet, these parameters e; are assumed to arise from
electromagnetic effects and are assumed to be small
compared to the 8's. In writing down only four different
t.;, we are assuming that the electromagnetic splittings
are U-spin invariant. In this paper, however, we are
interested in the medium-strong mass splittings rather
than the electromagnetic effects and shall put the e;
equal to zero.

In Sec. 2 we shall give the lowest-order perturbation
theory results for the baryon mass splittings using this
model. However, the virtue of the model is that it
enables us to mak. e calculations going beyond lowest-
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order perturbation theory. In Sec. 3, we shall apply a
formalism which enables us in principle to obtairi the
baryon masses as eigenvalues of simultaneous diQer-

ential equations. We shall get approximate solutions to
these equations assuming that the potential is very deep
and that the wave functions vanish at the boundary.
This is the approximation previously made in LT, and
enables us to solve the equations in closed form as
algebraic equations. Unfortunately in several cases the
structure of these closed-form solutions is so compli-
cated that examining them does not lead to any useful
insight. However, by treating the SU(6) and SU(3)
synm. etry breaking to second order, we obtain results
which go beyond the usual lowest-order perturbation
theory and which illustrate the calculational advantage
of using a two-particle model for the baryons.

2. PERTURBATION-THEORY RESULTS

We assume that the interaction between the quark
and a diquark is a square-well potential with the follow-

ing characteristics: It has a major term which is SU(6)
invariant (when acting on states with zero orbital
angular momentum). As only the 56- and 70-dimensional
representations occur in our model, this major term can
be written as

l soP56+ l VOP70 1

where P56 and P70 are projection operators for the
baryon states belonging to the 56- and 70-dimensional
representations, respectively. The interaction contains
small symmetry-breaking terms of two kinds, those
which are SU(3)-invariant terms and those which break
SU(3) invariance. For the SU(3)-invariant terms we
include a potential e, which acts only between a sextet
and a quark combined to form a member of the baryon
octet, and a potential e& which acts between a triplet and
a quark. These two potentials split the symmetry be-
tween the decuplet and the octet of the 56. For states of
the 56, we also introduce two SU(3)-breaking inter-
actions proportional to the hypercharge of the system:
Vv~0 for the decuplet and 7~8 for the octet. The hyper-
charge V is introduced to indicate explicitly that these
potentials are proportional to the hypercharge. The
subscripts 10 and 8 explicitly show that their magni-
tudes can be diBerent in the decuplet and octet baryon
states. We are not directly interested in the states of the
70-dimensional representation but only in their per-
turbing e6ect on the states of the 56-dimensional
representation, and so we do not need such details as the
SU(3)-breaking interaction for states of the 70. With
these assumptions, the potential V between the quark
and the diquark can be written as follows:

~= (l'ss+»xo)Pio+ %os+»s) Ps
+VvoPvo+~. P,+~~P~, (1)

where P~o and P8 are projectors for the decuplet and
octet parts of the 56-dimensional representation of

Then the Hamiltonian Ho without interaction but
including rest and kinetic energy is given by

Ho ——TgP, (1 -',)+TsP. (-,'—',)+TsP, (0-,')+TsP, (1 0)
+TsP, (-', 0)+TsP, (0 0)+T7P((0-', )

+T P (l ')+T P (o o)+-T oP (l o) (3)
where

Ts= T(m, +28„ssss+5,),
T7 ——T(mg, ms),

Ts T(sris+5), m,), ——
To T(m„m, yS,), ——

Tgo ——T(m, +8), ms+8, ).

(4)

The approximation, that the potential is so deep that
the wave function vanishes at the boundary of the
potential, means that the momentum p is just a con-
stant inversely proportional to the radius of the po-
tential. %e can then obtain the perturbation-theory
results for the baryon masses by taking the expectation
value of this Hamiltonian between SU(6)-invariant
states. These SU(6)-invariant states are given in the
Appendix. The decuplet states listed in the Appendix

SU(6), P, is a projector for the baryon octet state
composed of a sextet and a quark, and P& is a projector
for an octet from a triplet and quark. The operators
P&0, Ps, P, and P, are also spin projection operators;
P~o being a projector for spin three-half, and P8, P„
and P& being projectors for spin one-half. The inter-
action of Eq. (1) is quite different in its spin and
unitary spin dependence from the interaction postulated
in LT. We shall assume that V56, Vvo and V70 V/6

are much larger in magnitude than the symmetry-
breaking terms ego, ~8, e„an

The remaining part of the Hamiltonian includes the
rest energy and kinetic energy of the quark and diquark.
In LT, ere used a Klein-Gordon equation to describe
this part of the Hamiltonian. While we can do so here,
we believe that little is gained by this, since our ap-
proximations in evaluating the model have their greatest
validity if the kinetic energy is small. Therefore we shall
use the nonrelativistic expression for the kinetic energy,
although we can carry through the argument with the
relativistic expression, using somewhat different ap-
proximations. We can write the kinetic and rest energies
in terms of projection operators on states with particles
of given mass. Let P, (I,I,) be a projection operator for
a state consisting of a member of the sextet with isospin
I, and a quark with isospin Io, and let P~(I~Is) be a
projection operator for a triplet diquark of isospin I&

and quark with isospin I,. Also let the expression
T(mq, ms) for the kinetic and rest energy of particles
with masses m~ and ms and relative momentum p be
deined by

T(mg, ms) =my+ms+-', p'/(pcs),
p~s=mgms/(my+ms). (2)
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v= 2 (v.+v5) . (6)

Jf we use Fqs. (2) and (4) in Eqs. (5), and neglect 8„5&,
and g, in the terms containing p', we obtain for the
baryon mass differences the expressions

are the same as those in LT, except that here we also
include the spin wave functions, while the octet states
include equal amplitudes for a sextet-quark state and a
triplet-quark state. Note that the phases of the Clebsch-
Gordan coe%cients in the expressions for the wave
functions may be different from the phases used in
some other papers. Using the wave functions from the
Appendix, we obtain the following expressions for the
baryon masses:

&*=T1+V56+ v10,

8 T4+ 8 T2+ V56 t

"*=8T5+8Ts+ V56—v10,

T6+ V56 2vlp

&= 2T1+2Tv+ V56+vs+v,
A= 2T2+6Ts+8T0+ V56+8,

8 T4+ 6 T2+2 T8+ V56+v y

FK = Tp+ 8 Ts+ 2 Tlp+ V56 v8+ V
&

where

A X=xsb, +—sy2(84+2b0),

Z —A=-2'L —dS.+y28, + (*'—y')&,$,
„=—x= 4*2& +(y' —-'~2)~

(17)

(1g)

(19)

Experimentally, the left-hand side of Eq. (16) is 147
MeV, while the right-hand side is 125 MeV, for a dis-
crepancy of 22 MeV. This is somewhat worse than the
discrepancy between the right and left sides of Eq. (14),
which is 12 MeV.

Thus, we see that if we use SU(6) wave functions in
lowest-order perturbation theory and neglect the SU (3)-
breaking potential we get a result which is too restric-
tive. One can conclude from this either that the SU(3)
symmetry-breaking interactions v&0 and vs are present
or that the SU(6) wave functions are too restrictive. As
a test of the latter assumption we can vary the baryon-
octet wave functions from the values given by SU(6)
and see how the results are changed. According to
SU(6) there are equal amplitudes for a baryon to be
made up of a sextet and quark and a triplet and quark.
If we assume unequal amplitudes, calling them x and y
~espectively, with x2+y2=1, we introduce one new
parameter. The decuplet wave functions, being com-
posed completely of the sextet and quark, are un-
changed. We then get for the octet mass splittings the
following expressions:

F*—cV*= 288,+ 8180—vtp,

Jt'/*= 485,+-—sh 0 2vtp, —

0—Ã*=28,+50—3vtp,

A —X=
—2,8,+-6'85+-'8ii, —vs,

Z —A=-', (S,—S.),
Z= ', &,+sr—ffp vs-, —

(7)

(g)

(9)

(10)

(11)

(12)

1'rom Eqs. (17)—(19) we obtain only the Gell-Mann-
Okubo mass formula, but not the extra unwanted
equation, Eq. (16), which is in worse agreement with
experiment.

We obtain the Inodel adopted in LT if we set x=1,
y= 0, in Eqs. (17)—(19).We then obtain the formula

h.—E=-,'(=- —Z)+-', (=- —A),

and the equal spacing rule for the decuplet

(14)

(15)

but nothing else. It is interesting, however, to see what
happens when the SU(3) symmetry-breaking potential
goes to zero. This means we set e&0 and vs equal to zero.
Then, in addition to the Gell-Mann —Okubo mass
formula and the decup/et equal-spacing rule, we obtain
the following result:

(16)

'0 This formula is usua11v written 3h+Z=2(fV+"). We have
chosen to write it in terms of mass differences to emphasize that,
in order to be conservative, the error should be compared to a
mass difference rather than to a baryon mass.

Ã* iV = '( —ns )-+-'p2(1/—14., 1/f5„)—
+v10 vs —v . (13)

From Eqs. (7)—(12) we see that we get the Gell-Mann-
Okubo octet mass formula'0

Experimentally the right-hand side of this equation is
202 MeV, while, as stated previously, the left-hand side
is 147 MeV. Thus, we again obtain a contradiction to
experiment if the SU (3) symmetry-breaking potential is
neglected. On the other hand, if we set y=1, x=0, so
that a member of the baryon octet is composed purely
of a triplet and a quark, we do not obtain any relation
between the octet and decuplet masses.

In the model we have taken 5~, 8», and 8. to be three
different parameters. But if the sextet and triplet are
really composed of two quarks, there may be some
relation between the parameters 8„6», and 5,. Let us
consider this possibility by forming a diquark as a bound
state of two quarks in a manner similar to the way we
formed a baryon as a bound state of a quark and a
diquark. Proceeding as before, we introduce the pro-
jection operators P(I1I2) for states of two quarks with
isospin I» and I2 and projection operators E, and I"»

for two quarks in a sextet state of spin one and a triplet
state of spin zero, respectively. We also introduce the
SU(6)-invariant potential V», the SU(6) synunetry-
breaking potential ~»' acting only in the triplet diquark
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state, and the SU(3)-breaking potentials 7'v, „and
~&&„. Then the Hamiltonian IJ» between two quarks
can be written

H12= T(m„m, )P(-', -'2)+T(ms+a„mq)P(2 '0)
+T(mq, mq+oq)P(0 12)+T-(mq+o„mq+oq)P(00)

+ (V12+Vvsq)Ps+ (V12+vl'+»1, )P2. (2o)

If we neglect terms of order p28q and calculate the masses
of the sextet and triplet in perturbation theory, we
obtain

m, =2mq+2P /Pqq+V12+svsqs 8s slq V q s(21)

+w*= ns(1

+rs= gs(1
+-.*=qs(-',

4'g= gs(0

'gl(1

+5= gl(2

@s——gl(l

+= -v=1(2

2 2)4'Ns s

0 1)y~.l+»(-,'—', 1)g ~.„
0-:)O=" +~ (0-: —:)S;*.,
0 0)fa,
2 2)4'&1+'Q(0 2 2)4'vv2 s

—', 0)P&1+q(2 —', 0)$52+q(00 0)|48,
0 1)4»+el(2 2 1)4»+n(l 2 1)As,
0-', )P-.,+&,(0 —', —,')y„+&(-', 0-', )y-,

the baryon wave functions +& can be written

(23)

m s
——ms+ -'. (V s q Vs q)

—+Vs', 82
——8,—vs„. (22)

3. A HIGHER-ORDER APPROXIMATION

We can go beyond lowest-order perturbation theory
by assuming that the baryon wave functions are not
given by the SU(6)-invariant quantities shown in the
Appendix, but that they have a more general form. We
shall write the generalized baryon wave functions in
terms of quark-diquark wave functions which are
eigenstates of spin and isospin. We lel. q2J(I,IqI) be the
spin-isospin wave function of a sextet of isospin I, and a
quark of isospin I, combined to form a state of total
isospin I and total spin J. Likewise we let vj(IsIqI) be
the wave function of a triplet of isospin It, combined
with a quark of isospin I~ to form a state of total isospin
I and spin J=—', . We also let the space wave functions
of a baryon 8 be p&;, where the subscript 2= 1 is omitted
for E*and 0, the subscript i takes on the values i= 1, 2
for F*,™*,and X, and i = 1, 2, 3 for A, Z, and ™.Then

We see that these expressions for m„m~, b„and 8&

contain too many unknown parameters to be useful.
However, if we assume that the SU(3)-breaking inter-
action can be neglected (v,„=vl„——0), we obtain 8,=81
=b„which is far too restrictive a result. A somewhat
less restrictive assumption is that e,„=v~„&0. Then we
have 8,=8s&8q. We see from Eq. (11) that this as-
sumption is incompatible with using SU(6) wave func-
tions, since we obtain Z—A. =O. This is independent of
whether we neglect the SU(3)-breaking interactions vs

and v~0. Furthermore, even if the parameter x is kept
free, if we neglect es and eyp we obtain the sum rule,

A iV+ ', (Z—A) =-V&—Xo, —

which is in clear disagreement with experiment.
Thus, our perturbation theory result is that if we set

5,=5&, we must not neglect the SU(3) symmetry-
breaking interactions es and ~&0, and we must use baryon
wave functions which differ from those required by
SU(6). If, however, we regard 8„b„adn5, as free
parameters, we obtain only the Gell-Mann —Okubo
formula and decuplet equal-spacing rule, independently
of whether we neglect v8 and v~0.

The baryon wave functions which follow from SU(6)
can also be written in terms of q2J(I,IqI) and g(IsIqI).
These wave functions are given in the Appendix.
OI' We can now obtain the masses of the baryons as
solutions to the eigenvalue problem

(Hp+V)% J3=8412, (24)

(Tl+ V56+vlp Il )4' 0 (25)

[T + ', (V 6+2Vvp) F-*)f1+', +2V—oQ =0, -(26)

-'V'2VA1+[T +8(2V56+Vvo) —V*)4 =0,
[Ts+8 (2 Vss+ V;o—2vlo) —=*Jf1

+-.~2«.-".)~.=0, (2n
8V'2(Vo —vlo)A

+[Ts+-', (Vss+ 2 Vvp —vip) — '
($2——0,

(Ts+ Vss —2vlo —Q)vt =0, (28)

[Tl+2(V56+Vvo+vs)+v +gfl
+2 (Vs+ vs) $2=0, (29)

—:(V.+"V.+[T.+-, (V-+V-+")
+vs —N$$2 ——0,

[To+2 (Vss+ Vvo)+V. —Ajf1
+Vs/2/V'12+ Vs/2/V 6=0,

Vol/ (+12)+[Ts+6 (V56+5Vvp+ 2v2)
—A jl//2+[Vp/(+1g)+ 8 (+2vs))ps= 0, (30)

where Hp and V are given by Eqs. (1) and (3). The
states gqq(I, IqI) and q(I&IqI) are eigenstates of the
projection operators in IIO, but are not necessarily
eigenstates of the projection operators in V. However,
certain linear combinations of g2~ and g are eigenstates
of the projectors P&0 and I'8 or I', and I'& in V. These
linear combinations are given in the Appendix. We
operate with Ho on 0'gg, then express the p&z and p in
terms of the eigenstates of the projectors 8~0, I'8, I',
and I'&, operate with V, and Gnally reexpress the wave
functions in terms of the q2g and g. After taking the
scalar products of the resulting expressions with q2g
and g, we obtain the following equations: (We suppress
the subscripts 8 on the $21;, since it is clear from the
equations which baryon is referred to.)
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Vpf'&/V 6+L Vo/(v 18)+ s (v 2o&)jA
+LT9+ s (Vss+2 Vvp+2og) AflPs= 0,

LT&+ s (Uss+2 Vzo+2v'8)
—

L Vo/(v'18)+' (4».)l4' +Vw4/v'6= 0

-«./(~18)+-. (~2.)j~.
+I.T.+-'. (V-+5V,.+2 .)-~~P,

—Vogs/(+12) =0,
Vofv/v 6—Vofs/(v'12)+LTs+ s (Vss+ Vvo)

+p,—Z]gs ——0,

LTs+ s (Ups+5 Vvo —»+».)—=.lg x

—L(Vo—»)/v18+ (v'» )1A
+(V.-")~./(~») =o,

—L(Vo—»)/(v'18)+ s (v'» )3 v

+PTs+ s (Ups+2 Vvo —v +2'o,)—jP,
—(Vo— )0' /(v 6)=0

(Vo— )6/(v'12) —(Vo—)0 /(v'6)
+LTvo+s (Vss+ Vvo»)+~s ]4'a=0,

(31)

(32)

It is more instructive to make use of our assumption
that the parameters m„m~, m~, ~56 ~vo, and Vo are
large, and the remaining parameters p, 8„h&, 8p, »p, »,
v„v~, and the difference ns, —ms~ are small. If we expand
the solutions to the simultaneous equations, keeping
only linear terms in the small parameters, vre obtain the
perturbation-theory results of Sec. 2. The baryon mass
differences, to this order, are independent of all the
large parameters. The exact solutions for the mass
differences, then, should be fairly insensitive to the
values of the large parameters.

We can go beyond the lowest-order perturbation-
theory results by expanding the exact solutions to
second order in the small parameters. The mass differ-
ences among the members of the decuplet are then

V*—&*=s~,+go—v vo+8Voy',
-*—Y*=—;8,+s5o—»o,

Q —"*=-'s5,+'s5,—»p —8Vpy.s,
vrhere

y, = (8,—8p)/6Vo

where

~o= t/"56 —~vo. (33)

The decuplet equations are very similar to those in
LT, except that here we are using a somewhat different
interaction term from the one used in LT. However,
when we turn to the octet equations, we And that for the
nucleon we have tvro simultaneous equations to solve,
whereas in LT we had only one. Likevrise, for each of the
A, Z, and vre now have three simultaneous equations
to solve, whereas in LT we had only one for the A and
tvro each for the Z and ™.

In principle, once the potentials are specified, these
sets of simultaneous differential equations can be solved
to obtain the baryon masses as eigenvalues. However,
following LT, vre proceed in a simpler way, assuming
that the potentials V56 and V» are suKciently deep
square wells that the fez, vanish at the boundary. Then
the momentum p appearing in the expressions for the
kinetic energy is a constant rather than a differential
operator, and the differential equations become alge-
braic equations.

These sets of simultaneous homogeneous algebraic
equations have solutions only if their determinants
vanish. We see that we are led to linear algebraic equa-
tions for the masses E* and 0, quadratic equations for
the masses F*, *, and E, and cubic equations for the
masses A, Z, and ™.In the case of the quadratic and
cubic equations, the baryon masses are assumed to be
the smallest roots of the equations. Quadratic and cubic
algebraic equations can, of course, be solved in closed
form, but the algebraic solution in terms of our param-
eters is quite complicated, especially so for the cubic
equations. Furthermore, these solutions contain too
many parameters to be useful. We shall spare the reader
by not writing down these closed-form solutions.

A—X=-',8,+-„'8s+ss8,—»
+VoL2f (3v* 7s)+9v—' 6v.vs+—5vs'3

:(~ ~.)-«-.&t--(~.+.)+~: ~j, -
—&= s&.+s&p—»+8VoLf'ys+3yZ —3y.ys],

(35)

where t =(vN, vvs~+v. —v,)/2Vo —and ys ——(&s—&,)/6Vo.
We no longer have the Gell-Mann —Okubo mass formula,
but rather the result

4-1V—-'( -Z)--'( -h.)
= Vo(1».v -»v s+3v') (36)

Experimentally, the left-hand side of Eq. (36) is +12
MeV. Since Vp is negative, we cannot satisfy Eq. (35)
with y, =0. We can get best agreement with experiment
in the following way. First, from Eq. (34) we write

"*—F*—(F*—Ã*)=—8Vpy '. (37)

Then we take the ratio 2 of Eq. (36) to Eq. (37),
getting

&= l(13—18v /7 —3vP/7 ') (38)

Since the deviation from the Gell-Mann —Okubo octet
formula is much greater experimentally than the devia-
tion from the equal spacing rule, vre will obtain best
agreement vrith experiment by maximizing E. We then
obtain

vs/v. = —3.

We see from these equations that to second order in 8,
and 8~ we no longer have the decuplet equal spacing
rule, but just the sum rule

2 (ms Vsc)

Hut since the decuplet equal spacing rule holds very well

experimentally, vre conclude that p, is small.
The octet mass differences are given by
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4. DISCUSSION

The main objective of this paper was to introduce a
two-particle model of baryons which is approximately
invariant under SU(6) and apply it to calculating the
baryon mass diGerences. We have considered the mass
splitting both in lowest-order perturbation theory, and
to second order in the SU(6)- and SU(3)-breaking
parameters.

Ke have found that we obtain best agreement with
experiment in second order if

&««om Eq. (35) we see that the first-order correction
to the Z —h. mass difference is just o'($&—$,). We can
satisfy both Eq. (39) and the equation for p —A if we
take

bg&b, &b, . (40)

In LT we constructed the baryons from a quark and
a sextet diquark. We found that we could not break. the
Geol-Mann —Okubo octet formula without breaking the
decuplet rule by a, comparable amount. Kith the model
of the present paper, which incorporates approximate
SU(6) invariance, we have additional flexibility. This is
because the octet baryons contain a triplet, as well as a
sextet, diquark. Therefore, here we are able to break the
octet sum rule with only a small breaking of the
decuplet formula.

However, because the parameters entering our model
are not completely arbitrary, we have less flexibility
than one might suppose. In particular, since Vp must be
negative, we cannot preserve the decuplet equal-spacing
rule by setting 7,=0, i.e., 5,=5,. This is because, with

Then from Eq. (36), using the experimental value 12
MeV, we obtain Vpy, '= —0.3 MeV. Kith this value of
Vov,o we obtain from Eq. (37) the predictions

0—Z~ —( *—F*)= *—F*—(F*—S*)=2.4 MeV.

Unfortunately there is some ambiguity in comparing
with the experimental values because of the 6nite
widths of the resonances and the electromagnetic
splittings. The most accurately known masses (in MeV)
are" E*++=1236.0~0.6, 7*+=1382.2+0.9 ~~* = 1528.9
&1.1, and 0 =1674&3.Using these values, we obtain

0 —*'—("*'—F*+)= —1.6&3.8,.*'—F*+—(I'*+—N*++)=0.5+2.2.

However, if we assume that U-spin invariance holds, we
shouM compare the negative members of each multiplet.
But the masses of the negative members are not so well
known, the errors being as large as 7 MeV.

Vp negative and with y, =0, the GeO-Mann —Okubo
formula is broken in the wrong direction. If we wish to
set p, =0 so that the equal-spacing rule holds exactly,
then we must weaken some of our other assumptions.
For example, we could add an SU(3) symmetry-
breaking potential between the quark and diquark
which depends on the isospin as well as the hypercharge.
But for the present we do not wish to consider this, more
complicated situation.

Ke can obtain an estimate for Vp from our results. As
a 6rst approximation, we assume that the Z—A. mass
difference arises chieQy from the erst-order term:

Z—A=-', (8(—8,)=80 MeV.

o (&~—&,)= 2&o(v~ —v.)= —8~ov. ,

where we have used v~/v, = —3. Putting the result
v, =—10 MeV/Vo into Vov,2= —0.3 MeV, we obtain

Vp= —330 MeV.

Thus, if the deviation from the Gell-Mann —Okubo
mass formula is to be explained as a second-order eBect
arising from the medium-strong mass splittings of the
quark and diquark, baryonic states corresponding to the
70-dimensional representation of SU(6) should occur in
the vicinity of. several hundred MeV above the baryon
octet and decuplet. The exact position of these states
will depend on details of the interaction, such as the
SU(3)-breaking interactions in the 70, to which
the lowest baryon octet and decuplet are relatively
insensitive.
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APPENDIX

In this appendix, the symbol for a baryon denotes its
wave function rather than its mass. Ke assume that the
baryons are members of a 56-multiplet of SU(6) and are
constructed from a quark and a diquark. We use the
symbols q;, s;, and t;for the SU(3) wavefunctions of the
quark, sextet and triplet diquarks respectively. We
denote the spin wave functions of a quark by n and P for
spin up and spin down, respectively. Also we denote the
spin wave functions of a sextet diquark of spin one by a,
b, and c for s components 1,0, and —1, respectively. The
triplet diquark has spin zero, and we omit its wave
function. We also define the spin wave functions Q
and +:

"A. H. Rosenfeld, A. Sarbaro-Galtieri, %. J. Podolsky, L. R.
Price, P. Soding, C. G. %'ohl, M. Roos, and W. J. Willis, Rev.
Mod. Phys. 39, 1 (1967}.

Then the wave functions of the members of the baryon
decuplet with s component of the spin equal to one-half
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which follow from SU(6) are

Ã*++=$&q&g,

&*'=L(v's)»q2+ (v'3)»q~34,
&*'=L(v'l) $ q + (v'l) $ q 74,
Ã* =$3qg,
1'*+=L(v'k)»q~+ (v'3) $4q~J4,
l'*'= (v'-') ($ q +$ q +$ q )»
l'* =I (43)$ q +(v'-')$ q j4,
="*'=L(v'3) $4q3+ (v'3) $6q~l4,
=--= t..«-:)"q.+(~-:) .q.&~,

0= $6q3y.

(A1)

Likewise, the wave functions of the members of the
baryon octet with s component of the spin equal to one-
half which follow from SU(6) are

p=
I (v )$ q (v )$ q jx+(v' )t q»

~= k(v'6)»q2 —(v's)»q~lx+(v'l)te2~,
A =

2 ($4q2 —$5ql)X+ (V 3) (g t2q2 —
g taql+tlq3)A )

z+= [(v'-', )»qg —(v'-', )$4q)$&+ (Q-', )t2qin,
&'= (v 3) ($2q3 k$4q—2 2 $6'~)x+5 (t2q2+t38)~ ~

~ = L(&3)»q3—(v'6)»q23X+ (v'l) t3q2~,

='= L(v'6)$4q3 —(v's)$6q~lx+ (v'2)t2q3~

=.-=L(v'6)»q3 —(v'3) $e21x+ (v'2) t~q3~.

The phases of the Clebsch-Gordan coefficients may
differ from those in some other papers.

In terms of the spin-isospin wave functions q2$(I,I,I)

and p(I&1 ~1) de6ned in Sec. 3 of the text, these baryon
wave functions can be written (suppressing charge
indices)

AT*=~,(1 -,'-', ),
~*= (v'-'.)"(1
-.*=h/3) n3(k

0= q3(0 0 0),
~= (v' ,')~ (-1

A= (v'l)~ (-:

&= (v'k) ni(1

== (v'6) n~(k

»)+(v'l)~. (!—: 1),
0-', )+(v'-,')&,(0-', —',),

-,'—',)+(V'-,')q(0-,'-', ),
k 0)+(v'6)n(k 2 o)

+(v'l)n(0 o o)

o 1)—(v'!)"(ll 1)
+(v'2)n(k 2 1),

0 —,')—(v'-', )gg (0 —', —;)

+(v'2)n(k o 2) ~

(A3)

To obtain the equations of Sec. 3, it is necessary to have
the eigenstates of the projectors P~o, Ps, P„and P&. The
baryon states de6ned in Eq. (A3) are eigenstates of P&0
and P8, while the states

qq(1 —,
'

—',), rt(0-' —), gq(-'-'0), g(—' —,
' 1), and g(—,'0-'),

and the linear combinations

(v'l) (l l o)+ (v'l) (o o o),
(v'l)n (1 o 1)—(v'l)n (l l 1)

(y-;)& (-', 0-,')—(v'-', ), (0-', —',),
are eigenstates of P, and P~. As stated in Sec. 3, the
states rt2$(I,I,I) and q(I~I,I) are eigenstates of the
projection operators in the free Hamiltonian.


