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It is shown that in the framework of the noncompact dynamical group theory, for every choice of the
current operator in the representation space, the requirements of current conservation and universality
of charge determine the relativistic mass spectrum. The most general currents linear in the algebra and
linear in the momenta are investigated, and mass spectra of the form m=C('/+$) in O(3,2}, and of the
form m= Cn or m= Cn(1+a/n')'~s in O(4, 2), are derived with positive magnetic moments and with form
factors in agreement with experiment. The freedom in the choice of currents, minimal or nonminimal, is
discussed and compared with that which exists in the usual Lagrangian Geld theory.

The main feature of the Majorana equation, as well
as of its recent generalizations, is that it contains
infinitely many mass and spin states (discrete or con-
tinuous) rather than a single one characteristic for the
usual quantum 6eld theory. Therefore, quantum sys-
tems so described literally possess "structures, "whereas
single mass equations describe "point particles. " The
mass spectrum of such a composite system is intimately
connected with its external interactions. In previous
studies~ we have mainly considered the problem of
transition probabilities and form factors. The main
purpose of this paper is to exhibit the relationship
between mass spectrum and the charge normalization,
on the one hand, and the speci6cation of the currents,
that is, external interactions, on the other. In the
absence of a model of hadrons in terms of their internal
constituents, we describe the composite system group-
theoretically by its global quantum numbers and
determine the mass spectrum from the consistency with
the external interactions. That this idea works was
shown recently in the case of the H atom, treated within
the framework of 0(4,2) group, where the specification
of the transformation property of the electromagnetic
current determines the mass spectrum via the position
of the anomalous threshold. '

In Secs. II and III, we brieQy recapitulate the general
framework of the theory. In Secs. IV and V, we discuss
currents and mass spectra in specific 0(3,2) and O(4,2)
theories. Finally in Sec. VI we discuss the origin of the
currents in the Lagrangian form and the problem of
minimal coupling for infinite-component wave equa-
tions and compare it with the usual Lagrangian theory.

I. INTRODUCTION

ECENT investigations into the mass spectrum,
form factors, and decay properties of hadrons

~ ~

~ ~

~

~

taking into account inhnitely many higher spin states
provided by a group representation have turned out to
have a forerunner in the Majorana equation, ' put for-
ward at a time when hadrons were hardly known.
Gel'fand and Yaglom' in 1944 discussed the general
mathematical structure of this equation, but it was still
not timely to consider physical applications. It is only
in recent years that the generalizations of this equation,
arrived at from entirely different and independent
points of view, ' ' have been realistic enough to make
calculations of hadronic properties and to compare
them with experiment. ' ~ At the same time one now has
a fairly general and rigorous relativistic framework of a
quantum theory of composite particles with new
potentialities for further development.

* Supported in part by the Air Force Oflice of Scienti6c Re-
search, OQice of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. AF-AFOSR-30-67.
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II. GENERAL THEORY

Q'e shall work. in an entirely group-theoretical frame-
work. It will become clear that this has its parallels in
the approach using in6nite-component wave equations.

%e start with an irreducible unitary representation
D of a group 6 called "the group of quantum numbers"
that labels all the states of the system. Let o. represent
collectively all the quantum numbers and denote the

8 A. O. Barut and H. Kleinert, Phys. Rev. 160; 1149 {1967).
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states by ln). The representation D is, in general,
infinite dimensional. On this Hilbert space (lu)) one
can introduce, in general, new operators I' which,
together with the elements L~ of the Lie algebra of G,
generate a larger group g that has the same representa-
tion D of 6; i.e., D is also an irreducible representation
of 8. The group g contains also the physical transition
operators or currents, so that it will be denoted as the
"dynamical group. "

The angular momentum operators J are always parts
of the algebra of G. We next identify the generators M
of the pure Lorentz transformations, in the simplest
case, among the elements of the Lie algebra. The finite

pure Lorentz transformations are then represented in
our Hilbert space by

exp(i( M), tanh&= p/8, (2.1)

where $; are the relativistic velocities, the three param-
eters of the pure Lorentz transformations, related to
the energy 8 and momentum p of the particle as shown

in Eq. (2.1). The transformations (2.1) allow us to
deine moving states of the whole system with
momentum

p»= (m cosh), pm sinhf)

l n', p) = exp(i( M) l n) . (2.2)

Note that if M is four-dimensional and o. just labels the
two spin states, then ln', p) is simply the Dirac spinor
I (p), so that Eq. (2.2) not only generalizes u (p) to
in6nite-spin components but also to other intrinsic
degrees of freedom as well.

Finally, we form with the spinors u;p) covariant
couplings; e.g. , a scalar vertex (n'; p' n, p), a vector
vertex (n', p'

l J„ln, p), etc. , and identify these with the
external interactions. More generally, in the case of

groups higher than O(3,1), we admit more complicated
vertices (i.e., currents) of the form

F.=&u' p'IJ. lu p), (2.3)

where the new barred states are defined by

lu)= (1/E ) exp(i8 T) ln), (2.4)

and where 0 are parameters to be determined, Q is a
normalization factor, and T is a combination of rota-
tionally scalar operators in the Lie algebra of g. We
refer to Eq. (4) as the "mixing effect" or "tilt, " and its
physical meaning is that the interactions have a simple
form transforming like group generators only in these
new states ln). Another way of expressing this is that
the physical vertex interaction operator (5 matrix) is of
the form

( 'l 5l ) (1/1V X —)( 'le "' e "™Je'&~e".~l )Au.

This structure describes correctly the electromagnetic
interactions of the H atom, and we study this possibility
also for relativistic particle theories. Note that in Eq.
{2.3) the tilting operation is done 6rst on the rest states
according to (2.4) and theN the operation of boosting,

in that order, so that 8» is a Soma /de 4-vector. This is
the general framework of the theory. Examples will be
given in later sections.

(ul Jplu)=q for all n. (3.2)

We expect similar restrictions on the appropriate
universal coupling constants with external scalar and
tensor interactions.

We now formulate the requirement (3.1) in a more
precise form. Consider the current element between a
state l1) of momentum p~ ——(nz, 0,0,0) and a state l2) of
momentum pp»= (mp cosh), gap sinhf). These states are
in general the tilted states introduced in Eq. (2.4). Then
according to (2.3),

P», = (1 l J» exp(ig M) l 2), (3.3)

where
l 1) and l2) are now states in the representation

D of G (i.e., momentum-independent rest-frame states).
The requirement of current conservation is simply

(3.4)
or

wy(1 l Jp exp(i( M) l 2)
—(1lP„"J„exp(i( M) l2)=0. (3.4')

Then, because J„is a 4-vector, we have

exp(i( M)mp Jp exp( —i( M) =p.,»J„. (3 5)

Consequently, (3.4') gives the condition

m~(1l Jp exp(i( M) l 2)=m&(ll exp(i( M)Jpl 2). (3 6)

In the following sections we shall apply these two
fundamental requirements, Eqs. (3.2) and (3.6), to
specific O(3,1) and O(4, 1) theories and evaluate for
speci6c choices of the currents and normalization of
states, the mass spectrum, magnetic moments and form
factors.

The tilted states are orthogonal with respect to the
metric Jp, for from (3.6) we obtain, in the limit &

—+ 0,

(il J.l2)=s„. (3.7)

III. CURRENT CONSERVATION AND CHARGE
NORMALIZATION

Let J„be the current that couples to the electro-
magnetic field. First the current has to be conserved
(i.e., couples to zero-mass photon) for all possible
transitions, in particular between states with di6erent
masses. This requirement gives

J»V"=0~ Vu= pr p». (3.1)
It is for the nondiagonal elements (i.e., different masses)
that the current conservation will be shown to essen-
tially determine the mass spectrum. The diagonal
elements of the zero component of the current for zero
momentum transfer give the total charge of the state.
Our second requirement is that the charge of all higher
states in an irreducible "multiplet" is the same;
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A. Algebraic Current

It is known that for the unitary representations one
can de6ne a Nnigee algebraic vector operator I'„ for

jo=o, jr=2,
jo=g, jx=o (4.2)

without doubling the 0(3,1) states, and for

2 7 j]=ZP

with doubling of the 0(3,1) states by parity. On the
doubled states

l p„ivj jm&), the representation of r„ is
explicitly given as follows'.

r'l jma)
=+(j+-,') l jm+),

ir+l jma)
=~[(j—m)(j—m —1)]'"Cilj—i,m+1,+)

~[(j et)(j+m+1) j—'"(2j+1)~)
I j~+1 ~)

~[(j+~y1)(j+m+2) j'"C+)
I j+1,~+1 ~)

ir-l jm+)
=+[(j+tn) (j+m —1)]'"Cglj—1,~—1,~)

~[(j+~)(j—m+1)j (2j+1)A;l j&m 1,w)—
~[(j—m+1) (j—m+2))'~'Cj+ll j+1,m —1,+),

irolm+)
=~[j'—m'j'"C;l j—1,m)&)

~m(2 j+1)~~ l j~,~)
~[(j+1)o—~op»oc „lj+1,~,~), (43)

where

C;=('/2j)[j'+"1 ", ~;= /2jU+1). (44)

IV. CURRENTS, MASS SPECTRUM, AND
MAGNETIC MOMENTS IN

O(3)1) THEORY

Ke consider a model of the hadron resonances in
which the group of the quantum numbers, G, is the
Lorentz group itself extended by parity: (0(3,1), m}.
We assign the hadrons (and their antiparticles, in the
case of fermions) of 6xed isospin and hypercharge
to a single, unitary, irreducible representation of
0(3,1), (7r}.U we designate by [joj&j the eigenvalues of
the two 0(3,1) invariant operators [L' M'=—jo'+j )' 1—
and L M= —ijoj&], then the states of spin j, spin
component m, and parity g are given by

l [joj ))j~+)=,~2[l [j.j))j~)+ l [ jo—jljj~)],
with

(4.1)

In the case of (nontrivial) unitary representations, jo is
an integer or half-integer (the lowest spin) and j;=iv is
an arbitrary imaginary number. For the nonunitary
Dirac case, however, [jojrj= [o,$).

In the case with no doubling, simply set v=0 and
choose the plus sign in these equations.

We shall require that this algebraic vector operator
F„should always be part of the electromagnetic current
of the hadrons, and call it the "algebraic current":

Jp"= apF~. (4.5)

Note also that for v=0, F„together with the generators
of 0(3,1) generate the bigger algebra b:0(3,2) on the
same Hilbert space of D.

J3"= a3L""I'v,

J4"= a4I I""q„. (4 6)

If we restrict ourselves to current terms that are no
more than linear in F„and I-„„,and no more than linear
in momenta, the most general current will be a linear
combination of the following five terms:

G„:(r„,p„,q„,L„„p",L„„q"). (4.7)

The current between states j and j' has the form

I.=(j'I G. l jp) (4.g)

Here
l jp) designates the states boosted to momentum

p (and, in general, tilted). In writing the linear com-
bination indicated in (4."I) we meet immediately with a
new situation (arising from the fact that we have
in6nitely many different mass states) which would be
trivial in the usual single-mass theories: The coeS.cient
of the 6rst term in (4.7) has a different dimension from
those of the others. Therefore, the coefficients of the
linear combinations of currents must be functions of the
invariants m', but because we have many masses they
must in fact in general be matrices whose elements are
functions of the invariants. Moreover, the condition
(3.2) that the total charge of all higher mass states is
the same shows also that these coefficients cannot be
constant numbers, because the diagonal elements of Gp
for the terms in (4.7) go as

(j+—'„2m;,0,0,0) .
We therefore write the total current in the form

(4.9)

B. Nonalgebraic Currents

Besides the algebraic vector operator F„which exists
in the 0(3,1) representation alone, we can also construct
vector operators out of the Poincare vectors of the
particles in the vertex. Let p and p' be the momenta of
the particles, q that of the photon;

J&&=a&P&= a, (p'v+ pv),
A"= aors" = a2(p'& p&), —

' H Kl t Ph D the is Universit of Colorado 1967 where t',","' are the electromagnetic coupling constants
(„))p„bl;,h,g).

' ' '
for the vertex and may be different for every particle
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and every current. In the case of the H atom, in fact
the coupling "constant" is a matrix and factorizes in
the form

e„„=e/1V„1V,

so that the factors can be absorbed into the normaliza-
tion of states as described in (2.4). We shall assume the
same property for our currents which then can be
written as

y., rE.r V; ~S,~

for all j' and j, (4.11')

C. Mass Syectrum

Thus our requirements leave us with the following
two equations:

m'(j'+-') —m;(j+-,') m —m
+o +/rx

(4.10) (j+k)
ap +2a& — -=q for all j.E' gj

(4.12')

In the case of O(3,1) there is no tilting [i.e., no scalar
operators T defined in (2.4)), so that we are left with a
normalization factor 1/E;. We therefore have for the
most general linear current between the states j and j'

In the special case when a~ ——0, it follows that we can
describe only charged particles,

&'= (j+-:)'",
ap ag

O'I I'"liP&+ (j'I&"
I jP&~., rg. S; ~lV;~

and the mass spectrum

m, =C(j+-,)-, (4.15)

a2 a3
+ (j'le I jp&+

g ., qQT. q l7; 3E,3

+ (j
'

I
l-""v.

IjP)
QT .Ag .4

which is the result already obtained by Majorana from
a wave equation. '

In the general case we can choose from the second
condition of (4.12), as one possible simple solution,

+ r (j+1)1/2 g Pm 1/2. . (4 16)

then ap+2a~ ——q, and a solution of Eq. (4.11') is clearly
The two fundamental requirements j3.2j and j3.6j, i.e.,

and

m,'(j'I G'I jf»=m'(j', —116'I j& therefore,

(3.6') then

m, =C(j+-;),

ap= —ay'1)

give in this case

,, (j'+-,)—m;( j+-',)
ep ++1

S, ~~V,~

m, ' 2m, 'm; coshf+m/p-
a,

' '
(j'IjP&+.,2g .2

2m/ m; sinh$
(j'll-"I j~&=0~., 3@T

.3

(j+-',) m,
ao +2~r

E,"'

(4.11)

(4.12)

ap= —
q ~

ay= q. (4.17)

Again we can only describe charged particles with
charge q, but the spectrum is now inverted with respect
to the pure Majorana case and is more physical as far
as applications to hadrons are concerned. A spectrum of
the type (4.17) has recently been written on the basis
of a wave equation by Takabayashi. "We see that this
is also the result under the most general linear current.
The solution that we have given of the coupled equa-
tions (4.11') and (4.12') corresponds to two currents of
opposite signs, each one giving a constant charge to
all states.

D. Magnetic Moments and Form Factors

a2= a3= 0. (4.13)

Thus we have the result that the terms LI'"I', and ql" can
never be exactly conserved and the term LI'"q„which is

always conserved, has no effect on the mass spectrum.
In analogy with the usual 6eld theory we may call the
terms I'& and E& the mieinzal clrreets and the term
LI""q„, that comes in with an arbitrary coeKcient, as
the "anomalous" or the "nonminimal current. "

In order that the first requirement holds for arbitrary g

it is necessary that

The explicit form of the transition form factors in
terms of the states (4.1) is given by

F"=(1/cV E)([jojijjm~ I
6 e*'&~pl [joj rJjm~) (4 18)

In order to evaluate these matrix elements explicitly it
is convenient to use the matrix elements of particular
finite O(3,1) transformations. We denote

([joji3jml e"~'I [jo~jjm& =&~"'(p[jo~g) . (4.19)

'o T. Takabayashi, Xagoya University Report, 19&7 (un-

published�}.
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For j'~&j =m, the functions B„:"'((Ijop]) have a
particularly simple form";

alone we get
t =q(-k-3"), (4.27)

I:(j+1)'+"] I:j"+"] "'
X

(2j') l

(4.20)

The matrix elements needed in Eq. (4.18) involve the
combinations

(j j~ I
™Ijj+)—=»""(&Lj"])

=kL»(t,)"'~»(-'.)"'] (4 21)

B.t't((L jop]) —~(.„)t't(sjnh]) 4'—t)e( (e—t(t'+At-~)

XF(j+1—ip, j'+1+j,;2j'+ 2;1—e-2~)

with

(j'+j o) t(j' —j o) l(i'+j)! (2j+1)!
X&"(jop) =2"-'

—(j+jo)lU —jo) (j'—j)' (2j'+1)'

i.e., a negative magnetic moment; in particular, the
Majorana case (p= 0) gives a magnetic moment of ——,'.

The value of p' from (4.26) 6tted to the proton
magnetic moment is 3.43 and fitted to the isoscalar form
factor (Ii= 2) is 0.571. A p value different from zero was
also necessary to 6t the decay rates of baryons. ~

Thus from both the mass spectrum and from the sign
of the magnetic moment we show the existence of the
second "convective" current I'„. The form factors as
compared to the pure algebraic currents are more
slowly decreasing. For example, the electric form factor
goes as

cosh)
G~(k) =v, — B~+"*(&L2p]),

cosh~~ &

t= (m —m') '—2mm'(cosh] —1), (4.28)Using these results we find for the minimal currents
I „and I'„, after some calculation, for the ground state
and for our solution (4.16), with

+o= —+~= —q, C=M =nucleon mass,

the following current components:

P= (-', -,'+
I
G'e'& '

I
—',-,'+ )= q cosh& B~+&&(PL." ])

~'="(&l!+I
I"lll-)B:-»+al+

I

I"I!l+»::&&
+&~( 2+ le" 'I-'-'+)

= q sinhf Bx+»—q(-',K2(9/4+ p') '"B.+I&—-', ipB)-»),
~ ="«;,-',+ Ip I-:—:-»r»

+(x 1+
I
Pll 31+ )B +$$)

= —q(—-,'V2(9/4+ p')' 'B.+t&——;ipB;
—*"-*') .

7. CURRENTS) MASS SPECTRUM) AND
MAGNETIC MOMENTS IN

O(4, 1)—O(4,2) THEORIES

(4.22) Because of the observed spectrum of baryons with
fixed internal quantum numbers and because of the t
dependence of the form factors, the group O(3,2) is not
large enough and therefore the group O(4,2) has been
considered for this purpose. '" The group of the quan-
tum numbers G is now O(4,1), again extended by parity.
The maximal compact subgroup is O(4), with repre-
sentations of dimension n' (2n' with parity doubling).
The O(4,1) states are labeled by lnjm, &) Asimp. le
fermion representation can be obtained by combining
l= J—

g) With S=2) by

The relation between these components and the usual
nucleon form factors is

5'= G@(t) cosh-,'$,
P'=GE(t) sinh~~&,

r'=G (t) sinh-,'~. (4.23)

If we use the expansion of the B functions for small $,

B~ »(~) =1,
Br»(~)=—~,
B:"~(~)=Y~(9/4+")'"~,

lnjm~)= (—1) (2j+1)'I I

(4.24) kr m —r —m

which for v=0 is too slow a decrease compared to the
experimental behavior, and for v/0, it has zeros coming
from the 8 functions. For these reasons we discuss now
the more realistic O(4, 1) theories. It should be remarked
that the neutron form factors as well as a complete fit
to the experimental form factors within 0(3,1) can only
be obtained by using the anomalous current term
I.„„q".(See also the discussion in Sec. V 8).

we obtain

Ge(0) =g, (4.25)

t =G~(0)=v(2+3"), (4.26)

so that G~(0)/q is now Positive We rema. rk, as has
been noted before, ' that with the algebraic current

"S, Strom, Arkiv I'ysik 29, 467 (1965).

so that the electric form factor comes out automatically
to be correctly normalized to charge g, and

XLa,t+ (—1)'ib„t]
I
nl, m —r), (5.1)

where 3=y—~) and

lnlm)= (—1)"(2l+1)"'
-', (n-1) l ~xl,

E ~ (n2 nq+ m) —2(n~ n2 —m) ——m—J

-,'(n —1)

(5.2)

' A. O. Barut and H. Kleinert, Phys. Rev. 161, 1464 (1967).
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and

~n.n2m)=[. ,!(n,+ [m~) |n2!(n,y ~m~)!j ~2

First of all, if no tilting is present, i.e., cosh0„=1,
sinh8 =0, we can solve the equations (5.7) and (5.9),
with

E =n'" X =m '" a2+2ai q-—j S '0 )a tn2+naa tnip~tni+mb tn2~ 0) m) 0
(5.3)

aits 2a2tR i sip its@ 2t'sg m
~
0) m(0

'
and obtain the mass spectrum

On this Hilbert space one can de6ne new operators
L;2 ( =21,2,3), L42, and LM, which together with the
elements of the Lie algebra of 0(4,1) generate the Lie
algebra of O(4, 2). In other words, the representation of
the O(4, 1) group that we are considering is also an
irreducible unitary representation of O(4, 2), the con-
formal group [isomorphic to SU(2,2)].

We now choose L;; and Li4 as the angular momentum
and the analog of Lenz vector operators. Without loss
of generality we can also choose the boosters to be

M,=Lis. (5 4)

m =Cm (5.1o)

for ap ———a&. Again the spectrum is physical and is
inverted as compared to the one obtained from an
algebraic current alone, namely,

ns =Ce '. (5.11)

then
m =X cosh8 /sinh8„, (5.12)

To see the effect of the tilting we now solve the
general equation (5.9). From Imp=0 we obtain, first
the masses in terms of the tilting angles

Among the remaining operators we choose a vector
operator I'„and the scalar tilting operator T;

6= —X(n' sinh8„—n sinh8„).

Hence we must satisfy the simpler equation

(5.13)

I'„=(L22,L;2),

T—L45 ~ (5 5)

The generator L56 has the eigenvalue e is therefore
diagonal. The theory now contains the tilting angles 8
as parameters to be determined from current conserva-
tion as well.

(ae/X rE r)(m„n' cosh8 —m„n cosh8
—X(n' sinh8„—n sinh8„))

= (ai/X„E )(m„'—m„.') . (5.14)

From the first condition (5.7) we choose

1V„=(n cosh8 )'" 1V = ( m)'"
hence

A. Mass Spectrum a2+ 2ai = q. (s.ls)

Again only the two minimal currents I'„and E„con-
tribute, and we obtain from the constancy of charge
the equation

e cosh8 2m
Gp +ai =q

y

(g r)2 (Q P)2
(5.7)

We are now in a position to write the fundamental
equations (3.2) and (3.6) for the most general linear
current of the type (4.7)—(4.10), now between the tilted
states

4 1
F"=p a, (nj''m'~!G;"e'&~'! nj m). (5.6)

i=o g "g'

c'"E ~=X„~~m =Cncoshe . (5.16)
Hence

a2(Cn2 cosh'8„—Xn sinh8„)+ aiCn' cosh'8„= const—=E,
which gives with up= —aj = —

q the tilting angles

sinh8„= (E/qX)n
—', (5.17)

that are no longer free parameters. From (5.12), (5.16),
and (5.17) there is a relation between the constants
q, C, E, and), namely,

Then in order to bring the second condition (5.12) into
a recursion type we set

and from the current conservation

m .(n'~ I"e'&~'[n)=m„(n'~e*& 'I"!n)

C= qA'/E,

(5 g) so that the final mass formula can be written as

(5.1s)

where
(5.2o)nz„e coshe —Xe sinhe„= K

the equation m =Cn[1+(E/qc)n 25"2 (5.1.9)

a2(1/X„rE„r) (m„n' cosh8„—m„n cosh8 +6) For completeness we also discuss the effect of tilting
J P P$ / 2 2$ (5 9)

on the algebraic current alone. The relevant equations
are now

m sinh8 (n'
[ L42T ~

( n) —m, „sinh8„(n'
(
T„.„L42 ( n)

(n'i T;.(n)

—
g
—i8n ~ L45g igL35gi8n L45

m =X cosh8„/sinh8„,

from which one obtains the mass spectrum

m =Kg.2/E2+1/n2j'"

(5.12')

(5.21)
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B. Magnetic Moments and Form Factors

The magnetic moments and the form factors are
calculated from Eq. (5.6) as in the case of O(3,1). We
obtain for the ground state

89
(pp cosh8 —2 sinh8 tanh8 tanhp(-', P))Si'

Iform)=66 'e 6" "Inlm), (5.2g)

with the parameters 0 to be determined.
The condition of the universality of charge for all

states is expressed by

The components of M; commute, as they should. The
n.ew tilted states defined by Eq. (2.4) are given by

Cy

+ 2m coshp(ip$)

sinh(p ])
p3 ego

cosh(-',&)

a6 sinh(-', $)5'= —~ ——cosh'2
1Vr' cosh4(-', 8)

cosh(-',$)

cosh4(-,'p)

(5.22)

0„=inn. (s.3o)

The equation for the current conservation can be
written in the form

(~'I e """"(L66—I-46)e"""'I~)= 8- -q (5 29)

which also shows the orthogonality of the original
states

I 66) and
I
n') with respect to the "metric"

e ""' 4'Foe""~4'. This equation holds if and only if

with
cosh'-'p = (1 cosh'—8t/4m')

(I'I e"""'t.(m" p')—I' ppl—'6&e*&~
I ~)=o, (s.31)

Gii(t) = q(2 cosh'-'$ —1+-,'tanh'8 tanh'-'p)

Xcosh-4-,'p,
(5.23)G6r($) = q-', cosll-'-,'p,

which, when compared with (4.24), give the following
expressions for the form factors:

and gives
Fp 1( 1 1 q' )+ +

q& 2 2' 2,)
=-I z.—~„,+

qk 2m)
(5.32)

so that at zero momentum transfer we have

Gg(0) =q,

and the magnetic moment is given by

p=-', in units of q/2mc. (5.25)

C. Galilean-Invariant O(0,4): Theory

It is instructive to treat the case of the H atom
described by a Galilean-invariant O(4,2) theory ' with
the same methods used for relativistic theories. Thus
we want to derive the mass spectrum of the H-like
quantum systems and the form factors from our funda-
mental requirements of the universality of charge for
all states and the current conservation.

In this theory the current is given by

I'"= (L66—L46,L '6), (s.26)

while the generators of the pure Galilean transforma-
tions (Galilean boosters) are

3f =L5—L;4. (5.27)

Thus the magnetic moment is now positive, in contrast
to the pure algebraic current which gives always a
negative magnetic moment. More detailed comparison
with the magnetic moments and form factors of proton,
neutron, and higher baryon states have been given
elsewhere ip

which is just the type of equation we expect from a
Galilean-invariant theory, where the momentum trans-
fer is to the electron. The electric form factors have
been given elsewhere. '

VI. RELATION TO LAGRANGIANS AND
INFINITE-COMPONENT WAVE

EQUATIONS

For completeness we shall give in this section the
relation of the previous calculations to the infinite-
dimensional relativistically invariant wave equations.
The wave function 0' (x), where n takes an infinite
number of values, corresponds to the states of the
O(3,1) or the 0(4,1) representation that we have
considered.

&= &6+&i+&6, (6.1)

Zo ——4"fF&i 8„%—p% tN,

Z„=n(a„et)(8 e),
Z, =iP(8„%t)L~ (8„%). (6.2)

The wave equation corresponding to Zo is clearly

A. O(3,1):Theory

Our restriction in Sec. IV 8 to current terms linear in
the Lie algebra and linear in the momenta implies that
the most general I agrangian we can write is

'IA. O. Barut, D. Corrigan and H. Kleinert, Phys. Rev.
Letters 20, 167 (1968). (I'~I'„q)@=0, —(6.3)
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(F»P„nP„P—» q)4—=0,
with the current

(6.5)

J~=%tI.'~C —0.% ~P~%, (6.6)

and gives the inverted mass spectrum (4.17); the 6elds
0 here must correspond to the normalized states as
discussed in Eq. (4.10) and following.

The addition of the term Z2 to the Lagrangian does
not change the wave equation. It does change, however,
the current by the amount

iP@tl.»"g„% (6.7)

and adds P to the magnetic moment of the ground state.
The situation here is quite analogous to that en-

countered in ordinary Lagrangian theory, where two
Lagrangians differing by a divergence term lead to the
same field equations as well as same integrated quan-
tities, i.e., total charge, energy, total linear and angular
momentum, but to quite different densities. This
analogy was the motivation of our naming the current
I'&—nP& "minimal, " and the current I.I""g, "nonmimi-
nal" in Sec. IV.

B. O(4,2): Theory

The important feature of this theory as distinct from
the O(3,1) theory is the introduction of new Acids

de6ned by
(6.8)

and the corresponding conserved current is that which
we have called the algebraic current, i.e.,

(6 4)

The mass spectrum obtained from (6.3) is given by
(4.15) and this corresponds to the Majorana theory if
the O(3,1) representation has »=0.

The Lagrangian 20+ Z~ has a wave equation

where O„are parameters to be determined and I.45 is a
scalar generator of 0(4,2).

Some simple choices of Lagrangians in terms of the
new states N„(x) contain an Zo term;

Z, o 4——'(F»i 8„+PS y—)4, (6.9)

where I'» is a vector in the O(4,2) Lie algebra, P and y
are constants, and S is a scalar O(4,2) generator whose
presence in the Lagrangian is necessary in order to
diagonalize the corresponding wave equation in the rest
frame, as will be shown below. A simple term that one
might add to the Lagrangian Zo is

Zi =n(8»@t) (8»0'), (6.10)

and gives rise to the current I'&—ePI" discussed in
Sec. V. One might also add terms like

(B„e')S(8»@), (8„%')I.»"(8„%), . (6.11)

The Lagrangian Zo alone leads to the wave equation

(F»P„+PS q)%=0.— (6.12)

This equation is diagonalized in the rest frame by
choosing tanh8„=P/m„and leads exactly to Eq. (5.20)
and with the tanh9=P/m to the mass spectrum (5.21).

The addition of Zj term gives

$(1/Xr') (1'»P„+PS)—(n/E, ')P„P»—q]0= 0. (6.13)

Again, the requirement that (6.13) be diagonalized for
p»= (m, 0) requires, with the choice (5.16) for the
normalization constants Xr and E„,Eq. (5.12) and the
mass spectrum (5.19).Note, however, that if one starts
directly from the wave equation, it may have other
solutions than those physical ones considered in the
previous sections, for example, solutions with spacelike
momenta.


