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Theory of Atomic Motions in Simple Classical Liquids
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This paper is an attempt towards developing a theory of the self-motion of atoms in monatomic classicaI
fluids, based on a simplified Liouville equation and on a knowledge of the interaction potential V(r) and
the static pair correlation function g(r). A nonlinear integral equation for the velocity autocorrelation
function 4 (t} is derived which under certain approximations can be written as

dC (t) + It (t—t')C (t')dt'=0,
o

where the kernel E(t) is an implicit function of 4 (t). An expression for X(t) in terms of V(r) and g(r) has
been given. Explicit numerical calculations for the "memory" function E(t) have been made for liquid
argon at T= 85.9'K, and the results have been compared with those obtained by Rahman from his machine
computations.

l. INTRODUCTION

ECENT slow-neutron scattering experiments' and
machine computations' have revealed some very

detailed features of the self-motion of atoms in simple
classical liquids. The quantity of main interest here is
the velocity autocorrelation function which has been
shown to have a rather complicated time dependence;
in particular, it is negative in a certain time range.
This, as well as other evidence, indicates that the
motion of an atom has both a vibratory and a diffusive
component. In the past, several models' have been
proposed to account for this kind of motion. By their
very nature, these models involve parameters which
are introduced in a rather al hoc manner and cannot,
therefore, be easily related to microscopic quantities.
The principal aim of this paper is to discuss, essentially
from erst principles, the dynamics of single atoms in
simple classical liquids. Our treatment is based on a
knowledge of the interatomic potential and the static
pair correlation function.

It has been shown by Berne et al.' and by others '
that it is possible to write an integrodiGerential equation

' See, e.g., P. A. Egelstaff, Rept. Progr. Phys. 29, 333 (1966);
K. Skold and K. E. Larsson, Phys. Rev. 161, 102 (1967); K. E.
Larsson, in Therma/ Neutron Scattering, edited by P. A. Egelstaff
(Academic Press Inc. , New York, 1963), p. 347.' A. Rahman, Phys. Rev. 136, A4Q5 (1964).

See, e.g., A. Sjolander, in Thermal Neutron Scattering, edited
by P. A. Egelstaff (Academic Press Inc. , New York, 1965), p. 291;
V. F. Sears, Proc. Phys. Soc. (London), 86, 953 (1965); A. G.
Gibbs, in Symposium on Inelastic Scattering of Neutrons by
Condensed Systems (8rookhaven National Laboratory, Associated
Universities, Inc, , 1965), p. 155; V. Ardente, G. F. Nardelli, and
L. Reatto, Phys. Rev. 148, 124 (1966);P. S. Damle, A. Sjolander,
and K. S. Singwi, ibid. 165, 277 (1968).

4 B. J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 45,
1086 {1966).

~ K. S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967).
'1 R. Kubo, in Many-Body Theory, 1965 Tokyo Summer Lectures
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for the velocity autocorrelation function C(t) of the
form

dC (t)
E(t—t')C (t')Ct'= 0,

dt

where the kernel E(t), using the notation of Berne et at. ,
has the physical meaning of a "memory" function. The:
derivation was based on a general formalism given by
Zwanzig' and also used by Mori' in similar contexts. .

It seems convenient to discuss the velocity autocorrela-
tion function through the memory function for the
simple reason that in this way one can easily incorporate
both vibratory and diffusive kinds of motions. The
former corresponds to choosing a constant for E(t).
Choosing E(t) to be a 5 function, one recovers Langevin's.
equation, which gives an exponential decay for the
velocity autocorrelation function. Machine computa-
tions of Rahman' for liquid argon have indicated that
E(t) has two important characteristic features: (a)
that it drops very sharply from its value at time 1=0
to a value which is smaller by an order of magnitude i~
a time range of 3&(10 "sec, and (b) that it has a long
tail having a much slower time dependence. It is shown
in the present paper that these two characteristic
features of the memory function computed by Rahman
can be understood in terms of the static pair correlation
function and the interatomic potential, and that the
values of the calculated E(t) are in satisfactory agree-
ment with those of Rahman.

in Theoretical Physics, edited by R. Kubo (%'. A. Benjamin,
Inc. , New York, 1966), Part I, p. 1.

R. Zwanzig, in Lectures in Theoretical Physics, edited by %.E.
Brittin (Interscience Publishers, Inc. , New York, 1961), p. 106.

H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).
9 A. Rahman (unpublished).
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ATOMIC MOTIONS IN SIMPLE CLASSICAL LIQUIDS

= —dfis(1)/@, (Sa)

aft'(I)/dt= —f'(p)Vg[x —x,(t)] v, (t).

Here the major complication arises from the last
term on the left-hand side of Eq. (Sa). It is responsible
for the following physical sects:

Thebasic physical ideasunderlyingour treatment can Substituting Eq. (3) in Eq. (2), we have
be brieRy summarized. as follows. We focus our atten-
tion on the atom marked blue having a velocity r)fi (I)/ctt+ v '

V ef i (1) V V[x xs(t)] ' Vyf i (1)
vs(t), and ask how the surroundings will respond to
the motion of this marked atom. The change in the V,V(x—x') V~fs(1,1')d(1')
density of the surroundings arising from the motion of
the blue atom is calculated from a simplified Liouville
equation. Knowing the change in the density enables us
to calculate the force on the blue atom from the
surroundings and, hence, to write its equation of motion.
From this equation of motion, we finally obtain an
equation for the velocity autocorrelation function.

2. MATHEMATICAL FORMULATION

In this section we derive an equation of motion for the
blue atom, whose position and velocity we denote by
xs(t) and vs(t), respectively. The one-particle distribu-
tion function fi(x, y, t) of the surrounding medium is
governed by the equation"

haft(I) +v. V.fi(1)—VV[X—xs(t)] V,fi(1)
Bt

(i) As is usual in many-body systems, the interaction
between the particles is renormalized and some effective
interactions enter instead.

(ii) The free-particle flow term, represented by the
second term in Eq. (Sa), will be modified so as to take
into account the erratic Brownian-type motion of a
single atom.

(iii) The surrounding atoms will have a tendency to
reach thermal equilibrium around the blue atom.

Formally, Eq. (Sa) can be written as

VV(x—x') V,f,(1,1')d(1') =0, (2) L,efr(x, y, t) = f'(y) Vg[x—xs(t)] vs(t), (6)

where 1 is here an abbreviated notation for (x,y, t), and
V„V„stand for the gradients with respect to x, and y,
respectively. V(x) is the interaction potential between
two atoms. The third term in the equation is due to
the inRuence from the blue atom. The last term takes
into account all interactions between the surrounding
atoms and contains the two-particle distribution
function fs(1,1'). Let us write

fi(1)=fr'(1)+fi(1)

fs(1,1')= fs (1,1')+fs(1,1'),

where I.,~ is some complicated operator. In order to
illustrate the point of view we are going to adopt in
our discussion, we will consider the following special
case of Eq. (Sa):

(8/r)t+v V+1/ .)f, (1)= f'(y) Vg[x—x,(t)] vo(t), (7)

where ~ is some appropriate relaxation time for the
medium. In this way we have incorporated the e6ects
mentioned under (iii) above, but have disregarded the
other eBects.

The above linear equation can most easily be solved
by going over to the Fourier transforms. The solution is

where fts(1) and fss(1,1 ) are the equilibrium distribu-
tions around the blue particle at xs(t), and fi(1'),
fs(1,1 ) refer to deviations from equilibrium. fi (1) is
further given by

fi(x, y, t) = dt' dx'
Q

exp[i(q (x—x')
(2s) s

(4)
—v q(t —t'))] exp[—(t—t')/r]f'(y)

where f'(p) = (p/2s. rrt)st' exp( —pp'/2ttt) is the Maxwel-
lian distribution of momenta, with p= 1/ktsT, )'sir being
the Boltzmann constant. g[x—xs(t)] is the static
equilibrium pair correlation function centered around
the marked atom at xs(t).

&C Vg[x xp(t )]' vp(t ) ~ (8)

The change in the density is obtained by integrating
over all momenta and we get from Eq. (8)

( t t'—
dt' dx' exp~ — G,'(x—x', t—t')

X Vg[x —xp(t )]' vp(t ) (9)

G, (x,t) = [s.u(t)] st' exp[ —x'/a(t)], (10)

"M. Born and H. S. Green, Proc. Roy. Soc. (London) A188,
pr(x, t) =

10 (1946); J. Yvon, in I,a Theoric Statistiqne des Flashes et 1'Eqna
tion d' Etat (Hermann R Cie. , Paris, 1935); N. N. Bogoliubov,
J. Phys. USSR 10, 265 (1946); J. G. Kirkwood, J. Chem. Phys.
14, 180 (1946); E. G. D. Cohen, in FNndameetal Problems irl,
Statistical Mechanics (North-Holland Publishing Co., Amsterdam,
1962),
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and a(t) = (2k&T/m)ts, m being the atomic mass.
G,'(x, t) is the classical form of the Van Hove" self-
correlation function for a particle moving freely, and
it has the physical meaning of giving the probability
for a free particle to move to a position x at time t, if it
started from the origin at t=o.

In a real physical situation the particle does not move
as a free particle but performs a complicated Brownian
type of motion. One should, therefore, in Eq. (9) replace
the free-particle "propagator" G,' by the appropriate
propagator, denoted by G,(xt,x't'

~
xp(t")). This function

gives the probability of finding an atom at x at time t,
if it was located at x' at time h', with due considera, tion
of the presence of the blue atom. In this last respect it
divers from the proper Van Hove self-correlation
function.

Therefore, instead of Eq. (9), we write

( t t'—
p&(x, t) = dt' dx' exp~ — G, (xt,x't'

~
xp(t"))

r

&& Vg[x' —xp(t')] vp(t ) . (11)

As G, ( ) was introduced above, it does not take
into account effects stated under (iii) above, which
would be brought about by some complicated Boltz-
mann-type collision term in I.,~. In order to proceed,
we have made a standard single relaxation-time approx-
imation. Exp[—(t t')/r]G, (— ) represents, before
integration over momenta is performed, the Green's
function of the operator L,p in Eq. (6). In this way all
the effects mentioned under (i)—(iii) have been taken
care of in an approximate way. The time v represents
the average time it takes for the surrounding medium
to establish complete thermal equilibrium.

The equation of motion for the blue atom is then

independent of the velocity and will disappear in the
equation for the velocity autocorrelation function.

Multiplying Kq. (13) with vp(0) and taking a
statistical average, we get

m (v—p(t) vp.(0))
Ch

t t—t')
dt' exp —

~

dxdx'

&((V' V[xp(t) —x]G (xt, x t
~
xp(t ))

&& Vpg[x —xp(t )]ppp(t )pp (0)), (14)

where ( ) denotes a thermal average and n, P indicate
the three Cartesian components.

G (xt x t
~
xp(t )) depends on the history of xp(t).

However, the most obvious effect, arising from the
presence of the blue particle, is that a surrounding
atom is excluded from a small region around the position
xp(t) at time t. We shall average G,(xt,x t'~ xp(t")) over
all various paths of the blue atom which terminate at
xp(t) at time t, and we substitute the obtained propaga-
tor for the one introduced earlier. This averaged
propagator will be denoted by G,[xt,x't' xp(t)1. We
further define an effective potential V(x, t) through the
relation

V V[xp(t) —x]G,[xt; x t'~ xp(t)]dx

In order to make it evident that the potential so
de6ned really depends only on the differences [x,(t)—x'] and t t', we write—

dvs(t)
m = — dx V V[xp(t) —x]py(x, t),

VV[xp(t) —x]G [xt; x t
~
xp(t)]dx

(12)

which on using Eq. (11) becomes VV[xp(t) x y]G [x +y, t; x t
~
xp(t)]dy

dvp(t)
m dt' exp — dxdx' V V[xp(t) —x]

0
V V[xp(r) —x' —y]G,[y, r,.00

~
xp(r) —x ]dy,

)&G (xt x t
~
xp(t ))Vg[x xp(t )]' vp(t ) ~ (13) r h h ~, since by de6nition

It should be noted here that U['xp(t) —x] above is the
bare potential and not any renormalized interaction
potential.

In writing the above equations we have disregarded
the presence of a fluctuating part of the force, arising
from fIuctuations in the density of the surrounding
medium. We shall assume these Quctuations not to
depend significantly on the velocity of the blue atom.
In that case, the fluctuating force will be statistically

"I.Van Hove, Phys. Rev. 95, 249 (1954)

G,[x'+y, t; x't'~ p(t)x]=G [y r'0
) 0px(r) —x].

V V[xp (t)—x]G [xt; x t
~
xp (t)]dx

V„V[xp(r)—x'—y]

XG,[y, r, 00~ xp(r) x ]dy. (16)



ly, dined b~here &(q~ )

dq
) fT(q t) exp q

(2 )o

dq
g(x) = g(q) ~

(2Ã)'

167

ent abpve fprhat our sta™de obyjpus tHere, it is ma e
g;s correct.

(14), we heveUsing Eq (

L1gUC LASS I CAIN SIMPLMp TIQNS

„respect»e

ATpMIC

] andg q '"'

(19)
v(t)

dt

aP 0

;der the exPres o

„,(h) —xo(h') j)")) 'q.q,&e~{zq C

'(o)j~ ~

~

~
~

pg)chil Lq v(t )]Lqexp
tt

ed by Pqa

t)y
t exp

h
Id„g.f'Lxo(t)

we notice tha

(e')e)t e, O, ')e ( ))xp q
t'

dill be denptt of y alpng 0The compo0 (17)x&):L*' *''

on we shall drop
on within theIt remains to

hieve this we go. (17)brackets in q
d writFourier transfor

d 'V' f' x, —', —' q x' —x,(t')jo, (t')v. (0)dx' V' V(xo(t) —x', t—t'$V'h)gLx' —x()

q.qo~(q, t—t')g(q)
(2')'

xp q
dt' — '

h ll utilize tha
~

~

]jf this expre»io
~

t z~ tp obtain
rder tp si™p

by Rahman emethPd as was
~2 &his aPProx

same me
oximation

-
h d'scussions o

the G«ss'a
in connectio n

fpund to

pl
with been widely u . l' ids and ha, s

as
f atoms in iqulf motio

hpld wel -'

rite as follpws'.~ theref(18)h —xo(t') j)vt)(t')v (0))X&exp(iq Lxo(t) —xo

t

Ch„&v, (tg). v, (t,)v, (0))

t

Ch) Ch. &vo(tg) v, (to))

- (iq)"

(e
'

v (t")Ch" v, (0)exp zq v,

oo+& (2p,+2) Izq

1)!2"+'(~+1))- )) =o (2y,
c '( ( ') (0))

1=zq exp Ch, dt, &o, (t&)v, (ho)) c '
& .( ') .(0))

1 2= ~~zq exp —
3q dr (t—t'—r)(v(r) v(0 dr' (v(r') .v(0)).

m the second to the third st p,

234 —1 14)(23) etc. ,

n going from e

234 = (12)(34)+(13)(24)+(
ones as follows:

to Rahman et ul."more details we refer to a mterms. For more e ai
2 d (21) o h

correction . more e
From Eq 22 an

(23)

s. ( )

q v(t" t ' v")ch" Lq v(h')jLq v( =o ' —oq'v O)j =-'oqoem —-',q'(exp v(0)) (v(t') v(0))dr (t—t' —r)&v(r) v
0

dr (t t' r)&v(r) v 0——d'& ('). (0))+—qo —exp
dt

ar, . 110, 999 (1958).
$962)» A. Rahman, K. S. )n

ns
'

h lowest-order
' nsintot e o

0

er veoci yer 't correlations
'

e we have sp is lit higher-orderI



SJOLANDEK INGKI ANj.56

Tl, last «rm a
)lef t-hand

esult we can
ide of Kq.

Using the above resu

,(0) on thet' l term and &~etween the pex onentia
~

l correlationthe dyn, mica

'te E (18) as followswri q

~i.„(. .,(~—)i„(i,.o)=—'
dx' V V[xo(t) —x', t t' —

t,g
'— '

v t v

at(
q'V(q, t—t')g(q)

(2')'

—exp[——,'q'u(t —t')j—-' 'a(t —t') j(v(t') v(0))+ p, q&&/ exp[——'q'(i t (v(r) v(0))d77 (25)

where and
t

u(t) =- (t—)( ( )' (0)). (26) ri(t) =—
'

n the proper Van Hovea roximation t e
a io

'
denoted by G.(x, , iation function, deno eself-correla io

terms of (r(t) as o ow:
t -'&'exp[ —x' aG, (x,t) = [mu(t)7

. (17) can be wri eWith the help of q.E . (25), Eq.

—4 t r, (t—t')c (t')dt'

=0, (28)+ rit t-i( t')dt' —C (r)dr=

vg(x) vV(x —x', t)

BG.(x', &)

Bt

3m

tion function, given
11 o ib27 . W en

hard-core pa

30) dused instead o

( x,t) and U, ff xpintroduce Veff x,

ere we have defined

C (t) =(v(t v

e " "functions I'0(t) anh e the "memory uand w ere
respective y, g iven y

—,q'V(q, t)g(q)ro(t) = — —
q

and
(»)

vV(x —x', t)G, (x,t dxVU, ii(x, t)= v —, x t dx

BG,(x', t)
Qx .V'U. (((x,t) = v.((, — V x—x', t)

(34)

(35)

functions, our memoryn terms of these quantities,
have a very simp le form;

exp[——,'(7'a(t) j (30Xexp ri
r, (t)=— 36)() . (,t dx exp~Vg x

r, (t)=— vg(x) vV(x —x', t)

(—t
G, (x', t) dxdx' exp

~'. I

(32)

,v'V(q, t)g(q)
3m (27r)'

~ —em[—-'q'~(t)3 (31)(Xexp
i exp, q a . 31

n o
' ' fE. (28)mightn o tion o q.
t'nt"1

d t
t for interaction po, s

in over toth same resu
r transforms o

' edatt es
functions wier s ace. e
as those in qs.

and (31),but are now wn e
spacece as follows:

t dx exp . (37)
3m

~(t a(t —t')C (t')dt'= 0,
0

n asd to in t e nh Introduction a
K . (28) or bIn general, Kq.
h

fF . (1)o h sfoq.
t' lar form givee the par icu

4 t anwe could determine() )4 (d,efine a function E t . 1 .

ri()

our basic equation. It is toonstitutes o
'

h h follobe compared with the o o



ATOMIC MOTIONS IN SIMPLE CLASSICAL LIQUIDS

functions Fp(t) and Fi(t) are, therefore, in principle
quite different from the one in Eq. (1) and we stress
this by using di6erent notations.

It is evident from Eqs. (26)-(28) and from the
de6nitions of the F's, that our equation for C(t) is
nonlinear and can only be solved numerically. In our
subsequent discussion, we shall make use of earlier
knowledge of how a(t) varies in time, noting that
the detailed form of C (t) will have a quite small influence
on the integrated value in u(t).

ger)

4 "-2

—Y&r)

3. CALCULATION OF THE MEMORY
FUNCTIONS

It was stated earlier that the function C, (xt; x't'~ xp)
describes the probability that an atom arrives at the
position x at time t, if it was at x' at time t' and the blue
atom is at the position xo at time t. This probability is
obviously zero for

~
x—

xp~ (o, where o is the radius of
the hard core of the interatomic potential. It is import-
ant to keep this fact in mind. Ke may write

G, (x+ y, t; x, 0
~
xp) = n(x+ y —xp)G, (y, t)

n(x+y' —xp)G, (y', t)dy', (38)

where G, (y, t) is the Van Hove self-correlation function.
The normalization condition

so
hC

2-- 1

Cl
CV

II
Qf

O

w 3

0.5

/
/

/
/

/ S
/ Y(K)

/
/

r

2.0 f/Iy I

G, (x+y, t; x, 0~ xp)dy= 1 (39)

V(x) =4eL(o/x)" —(n/x)'j.

is automatically fulfilled. The function n(x —xp) shoukl
be such that it drops sharply to zero for ~x—xp~ (&,
and is of the order unity whenever ~x—xp~ )o. Its
precise form is not known to us. It plays the role of
excluding a certain volume, corresponding to the hard-
core radius around xo. Some of our further discussion
will not be based on any detailed knowledge of n(x —xp),
not even on the assumption in Eq. (38) of the form
of 6', .

We shall 6rst derive asymptotic expressions for F p(t)
and Ft(t) and shall later make more explicit calculations,
based on a certain form of n(x —xp).

For the interatomic potential we shall in the present
context use a 6—12 Lennard-Jones potential,

Case I:Hard-Core Contribution

1=0

For this case we have by de6nition

and
g, (x, t; x'0~xp) =i)(x—x')

G, (x,t) = lI(x),

(42)

(43)

and hence from Eq. (15)

V, (x) = V,(x). (44)

Substituting the above expression in Eq. (32) we get

FIG. 1. Lennard-Jones potential (in units of s= 120ke) and the
pair correlation function g(r) (based on Rahman's computations
for liquid argon at T=85.9'K) versus distance (in units of
a'=3.817 J)). The dashed curve represents the assumed Gaussian
form for the soft part of the potential.

For mathematical reasons the above potential will be
divided into a hard core and a soft part,

F, (0)=— VV, (x) Vg(x)dx. (45)

Ft'(0) =0.

V(x) = V, (x)+V, (x), (41) From the knowledge that a(t), appearing in Eqs. (28)
and (27), varies as t' for small times, we can also

such that V, (x) does not contain any of the smoothly conclude that
varying attractive part of the potential (see Fig. 1). (46)
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Substituting Eq. (S4) in E . '"g U'sing the relation

aG, (x,t)=G.(x,t)i ———,
&a 2a (58)

exp —li's'(t)
r)
4(+or) Co.s' where ti is the te time derivative of a t

ibl bfas e ore, we get
Ap —ap

f(y) exp dy
-(u+~o)-

exp —li'r'(t) =
(u+ 60) '~'

dy f(y) (2x'—1)u(y —n)'
f(y) exp y , (SS)

where rt= (xr—xs u.r—xs)/gu. We have then s
——xs.

(55) i lid fu va i or 5((a((0p'.

p, and A~ such that
expression reduces to

expl —lFs'(t =)t 4

Xexp( —*')g'(uo+yv'u+xV' )dx u x —, (59)
2a

valid for a& cT'«cTp . Analogous to Eo q. 56), we have

4(+s.)Coos
(2y' —I)f(y)

Ap —Ag (i
)dy —

, (6o)
Qu 2u

exp —li'r'(t) =
ri 3m

Ap —A
Xexp( —y') dy (56)

Case 2: Soft-Part Contributi

Proceeding in the sam

Qu
Xexp( —y'

e same way as for F ' t

, analogous to Eq. ~i52
, we have for

f t)

for a))A b,p, and A~, but a((o.p'

expl —lr (t)

4mCfTp'
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OP

BG,(x y, t)—
dx g'(x) —. (57)

8$
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for all times of interest.

4. MODEL CALCUL ATION

functions ro(t) andr the memory ue
ri(/), derived in Sec.

+)
X G, (y—x, t) G, (y+x, &) }dy .—68
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t e ', ' u )hasas arph peak aroun
th AW h 11 hoo th foHo/=00 Wlwith halfwidt

form:

'6, (69
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Appendix.
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exp( —x')
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S. NUMERICAL RESULTS
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function (see Fig. 1)

V,(x) = —A exp( —a'/A, ), (85)

with A=4.9e (e=120kn) and gt), =0.80 (3.1A) in
units of o'=3.817 A. Using Rahman's g(x) and V, (x)
above, we have evaluated the integral in Eq. (63) and
the result is

Fp'(0) = —2.3)&10"sec '. (86)

In q space, Eq. (63) can be written as

I'p'(0) = PAD Pt'/6(+n)m]

20 q' exp( —-', q'A. )g(q) &q, (87)

c IS

10

Fzo. 3.The width a(t) (in units of 10~ L' and A' for the insert)
of G, (x,t) versus time for liquid argon at T=85.9'K based on
Rahman's machine computations.

when expressed in units of a'=3.817A, which is the
distance to the minimum of the interaction potential.
With slight adjustments of the above parameters,
one could obtain a somewhat better fit to Rahman's
g'(r) (see Fig. 2). Since it would have no significant
eKect on our final results, we did not attempt to do
this.

Ke shall for the moment disregard the factor
exp( —t/r). In calculating the ratio I'p'(t)/Fp'(0), the
only unknown quantity is then the width Qt), of the
function V,'(x)n(x). Using Rahrnan's numerical values
for the velocity autocorrelation function for liquid argon
at T=85.9'K, we have calculated a(t) as a function of
time (see Fig. 3). Rahman solved on a computer
Newton's equations for 864 argon atoms corresponding
to a density of 1.407 g/cc and a temperature 85.9'K,
and it is his numerical results for 4 (t), g(x), and F(t)
that we have been referring to. The integrals in Eqs.
(79) and (80) were evaluated. for a few values of A/Ap,
which then enabled us to calculate the corresponding
ratio I'p'(t)/I'p'(0).

The choice A/Ap ——0.5 gave a reasonable over-all
6t to Rahman's curve.

%e have seen in Sec. 3 that for aH times of interest
exp(t/r)I'p'(t) is constant and is given by Eq. (63).
The soft part of the potential was taken to be a Gaussian

where g(q) is the Fourier transform of g(r). In order to
get an estimate of Fp'(0), which does not depend on
Rahman's calculations, we shall evaluate Fp'(0) from
Eq. (87).We first remark that the main contribution to
the integral arises from values of q'&4/A, =0.5 A '. In
this region of q values, g(q) lies between —1 and —0.8
(from x-ray scattering experiments). " Taking g(q)
= —0.9 and integrating, we obtain

I"p'(0) = —0.9(2A/mA, ) = —2.25)&10'4 sec ' (88)

which is in good agreement with the value given in

Eq. (86).
In Fig. 4, we have plotted the resultant Fp(t)/Fp(0)

for d, /Ap ——0.5 and r= po (full curve) and have compared
our curve with that of Rahman, obtained from his
computer calculations (dashed curve). For A/hp=0. 7,
our calculations gave a nearly perfect fit for I,&10 "sec,
but it gave a significant increase in the height of the
tail. On the other hand, for A/d, p(0.5, the height of
the tail became less and the peak for small times
became narrower.

It is unreasonable to expect r= ~. For illustration,
we have also plotted (dotted curve) in Fig. 4 the results
obtained for r = 10 "sec, which we believe is a reason-
able value. The calculated curve is now in much better
agreement with that of Rahman.

The diffusion constant of the liquid in terms of Fp(t)
is given by'5

(89)

which, for r= 10 " sec and using our calculated I'p(t)
for A/Ap ——0.5, gave D= 2.2&&10 ' cm'/sec, whereas the
value of D obtained from Rahman's Fp(t) is 2.10X10 '
cm'/sec.

Also, the calculated value for the constant C which
we have obtained from Eq. (77) using Rahman's value
for Fp(0)=F '( )+0F(p)=03.5&&51 40sec ' and our
Fp'(0) = —2.3&(10'4 sec ', is, within a few percent, equal

¹ S. Gingrich and C. W. Tompson, J. Chem. Phys. 36,
2S98 (i9|2).
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Fro. 4. Ratio I'p(t)/I'p(0) versus
time aud versus the parameter I =a/6 p.
The solid curve represents our calcula-
tions for v= ~ and the corresponding
dotted curve is for z=1.0X10 "
sec. The dashed curve represents
Rahman's machine computations for
liquid argon at T=85.9'K.

.3

.2

0.5

5 10 i . i 15 & 10 sec

10 20 30 $0 P= l o

to k~T. Ke remark that the half-width, chosen for
V,.'(x)rr(x), +6=0.036, is not very far from that of
V,'(x) exp) —V, (x)/k~T], which is 0.052 (0.20A) in
our units.

Ke have in the comparison above disregarded the
influence of Ft(t). Before we make the numerical
estimate of Ft(t), let us rewrite Eq. (28) in the form

where

(91)

is the average value of C (I) in the interval (t,t'). It is
evident from Eq. (90) that we should compare tF&(I)
with Fp(t) to get an idea of the magnitude of the
correction term.

In the time region where a(t) o: t', the factor rI/2u in
Eq. (79) is equal to 1/t, whereas in the region where
rs(t) o: I, this factor is equal to 1/2t We have esti.mated
the ratio tFt'(I)/F, '(I) from Eqs. (79) and (76) and
found its value to be less than 0.3 in the time interval.
of interest and most probably much less. For the soft
part we have earlier (Eq. (66)$ found that Ft'(I) =0
throughout the whole time region of interest. Thus we

expect the error we make in the equation for the velocity
autocorrelation function not to be very significant for
our conclusions (certainly less than 30%), when we
neglect the term containing Ft(t). In that case our
equation is of the same form as Eq. (1). However,
we cannot exclude the possibility that the correction
is larger in certain time regions, particularly where
C (t)=0. At the present stage of the theory we have not

considered this point to be essential, but we intend to
investigate it further, among others.

6. CRITIQUE AND CONCLUSIONS

From an inspection of Fig. 4 it is evident that the
calculated memory function F(t) has two important
characteristic features: (1), it decreases sharply from
its value at t= 0 to a value which is one order of magni-
tude less in a very short time interval 0—4X10 "sec;
and (2), it has a long tail. Both these features are in
general agreement with Rahman's numerical computa-
tions. In the region of the tail and for v very large, a
quantitative agreement with Rahrnan s F(t) is lacking,
but this can be easily achieved by a suitable choice for
the value of the relaxation time parameter. For instance,
in the present case with v-= 10 "sec, which as we know
from other considerations is not an unreasonable value,
a quantitative agreement has indeed been achieved
(see dotted curve in Fig. 4). In the time region 2—4)& 10 "
sec, our calculated values are much higher than those
given by Rahman. This discrepancy could possibly be
due to our neglect of the Ft(t) term, which may not be
justifiable in the region where C (I)=0. Whether this is
so could only be checked by a proper numerical solution
for C (t) of our basic integrodifferential equation $Eq.
(28)j. At the present stage of the development of the
theory, we did not think it worthwhile to undertake
such an elaborate numerical task.

A weak point of the present theory is our lack of
precise knowledge of the function rr(x) and the relaxa-
tion time r. This lack of knowledge results in our
introducing three parameters, the half-width Qh and
the area C of the assumed Gaussian function V,'(x)a(x)
and r. Unfortunately, to fix the values of these param-
eters we have only two relations, one involving Fp(0)
and the other involving the diffusion constant. The
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liquid densities with only a hard-core interaction of the
type considered here.

&Vote added im Proof. Since this paper was sent for
publication, a paper by J. P. Boon and S. A. Rice has
appeared in J. Chem. Phys. 47, 2480 (1967), dealing
with the same questions as here. We have, therefore,
not been able to comment on their paper, nor have we
referred to it before. The reader should compare the
results and the arguments given in the two papers.
Also, since this work was Gnished, extensive numerical
calculations have been taken up by G. Bjorkman, based
on our general results here. It has been shown that
L1r&(~)/Pe(1)) in our paper is for all times less than 0.1
for the case of liquid argon.
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APPENDIX

In calculating the numerator in Eq. (68) we insert for
V,'(y)u(y) the expression in Eq. (69). The two terms
in the square bracket divide the integral in two parts.
In the 6rst part we change the integration variable to
y'=y —x, whereas in the second part we change to
y'= y+x. We then get for the numerator

—(y' —x—a.p)' 2x—(y'+x) —1—C(m'uA) '~'

—(y' —x—o e)'-y"
Xexp dy'+ exp

2$
X —(y' —x)—1 exp ~dy' . (A1)

a a i j

Considering c«o-p' we can in the first integral approx-
imate the curly brackets by 2x'/a and also extend the
lower integration limit to —~. The whole second
integral can be neglected, remembering that x&o'p and
6«op'. The numerator can then easily be evaluated

"B.R. A. Nijboer and A. Rahman, Physica 32, 415 E,'1966);
P. Schofield, in Inelastic Scatter&sg of Eeutrons in Solids and
LiggÃs (International Atomic Energy Agency, Vienna, 1961),
p. 39.

former is known, if one has a precise knowledge of the
static pair correlation function and the interatomic
potential. In practice, the situation regarding the
choice for the values of the parameters seems to be
fairly restrictive. We have made the observation in
Sec. 3 that the area C is very nearly equal to k~T. If this
is generally true, the half-width gD is determined from
our knowledge of I'p(0). The parameter r can then be
uniquely fixed through the relation for the diffusion
constant. These ideas need further conlrmation by
doing numerical computations of the kind Rahman has
done for liquids with various interatomic potentials
and at various temperatures. We should mention here
that at present even inelastic neutron-scattering experi-
ments, which of the various experimental techniques
give the most detailed information on the motion of
atoms in solids and liquids, do not furnish enough
details to make a comparison between our theoretical
results and experiments very useful.

In our numerical evaluation of I'e(t), which depends
on C (t) through a(1), we have used the values of a(1)
obtained from Rahman's computed C (t). The justifica-
tion for doing this is that the former, being an integrated
quantity, does not depend significantly on the detailed
shape of the latter. Nevertheless, a self-consistent
solution of Eq. (28) is desirable and should be
undertaken.

We would like to emphasize once more the fact that
the width of the rapidly falling part of I'e(/) is deter-
mined by the half-width gA of the function V,'(x)tr (x),
whereas the width of the tail is essentially governed by
the relaxation time r. The value of Pe(t) for t=0 is
determined precisely by the static pair correlation
function and the interatomic potential. It is important
to realize that the shape of Fp(1) depends sensitively on
the detailed shape of the main peak of the static pair
correlation function.

It is also worth remarking that the time expansion
of Pe(t) is valid only as long as a(1)&d, , i.e., for 1&04.
)&j.O—"sec. This is indeed an extremely small time
region. The smallness of the radius of convergence
is responsible for the failures'5 of recent attempts
towards time expansion of the velocity autocorrelation
function.

In conclusion, we might say that the present approach
enables us to understand the main features of the
memory function and, hence, of the velocity autocorre-
lation function in a classical monatomic liquid in terms
of basic physical quantities like the interatomic poten-
tial and the static pair correlation function.

From the point of view of the present treatment, it
would be highly desirable to have available machine
computations of the memory function and the static
pair correlation function for a hypothetical Quid at
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