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This paper is an attempt towards developing a theory of the self-motion of atoms in monatomic classical
fluids, based on a simplified Liouville equation and on a knowledge of the interaction potential V (r) and
the static pair correlation function g(r). A nonlinear integral equation for the velocity autocorrelation
function ®(¢) is derived which under certain approximations can be written as

avs(t ¢
92 () >+/ K(—i")®()dt'=0,

dt 0
where the kernel X (¢) is an implicit function of ®(#). An expression for K (£) in terms of V (r) and g(r) has
been given. Explicit numerical calculations for the ‘““memory” function K (f) have been made for liquid
argon at 7'=85.9°K, and the results have been compared with those obtained by Rahman from his machine
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computations.

1. INTRODUCTION

ECENT slow-neutron scattering experiments! and
machine computations? have revealed some very
detailed features of the self-motion of atoms in simple
classical liquids. The quantity of main interest here is
the velocity autocorrelation function which has been
shown to have a rather complicated time dependence;
in particular, it is negative in a certain time range.
This, as well as other evidence, indicates that the
motion of an atom has both a vibratory and a diffusive
component. In the past, several models® have been
proposed to account for this kind of motion. By their
very nature, these models involve parameters which
are introduced in a rather ad soc manner and cannot,
therefore, be easily related to microscopic quantities.
The principal aim of this paper is to discuss, essentially
from first principles, the dynamics of single atoms in
simple classical liquids. Our treatment is based on a
knowledge of the interatomic potential and the static
pair correlation function.
It has been shown by Berne et al.* and by others’:®
that it is possible to write an integrodifferential equation

1See, e.g., P. A. Egelstaff, Rept. Progr. Phys. 29, 333 (1966);
K. Skold and K. E. Larsson, Phys. Rev. 161, 102 (1967); K. E.
Larsson, in Thermal Neutron Scaitering, edited by P. A. Egelstaff
(Academic Press Inc., New York, 1965), p. 347.

2 A, Rahman, Phys. Rev. 136, A405 (1964).

8 See, e.g., A. Sjolander, in Thermal Neutron Scattering, edited
by P. A. Egelstaff (Academic Press Inc., New York, 1965), p. 291;
V. F. Sears, Proc. Phys. Soc. (London), 86, 953 (1965); A. G.
Gibbs, in Symposium on Inelastic Scattering of Neutrons by
Condensed Systems (Brookhaven National Laboratory, Associated
Universities, Inc., 1965), p. 155; V. Ardente, G. F. Nardelli, and
L. Reatto, Phys. Rev. 148, 124 (1966); P. S. Damle, A. Sjslander,
and K. S. Singwi, ibid. 165, 277 (1968).

4B. J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 45,
1086 (1966).

5 K. S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967).

¢ R. Kubo, in Many-Body Theory, 1965 Tokyo Summer Lectures
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for the velocity autocorrelation function ®(¢) of the
form

a®(t) ¢

R / K (—\®()dt =0, (1)

dt 0

where the kernel K (¢), using the notation of Berne e al.,
has the physical meaning of a “memory”’ function. The
derivation was based on a general formalism given by
Zwanzig’ and also used by Mori® in similar contexts.
It seems convenient to discuss the velocity autocorrela-
tion function through the memory function for the
simple reason that in this way one can easily incorporate
both vibratory and diffusive kinds of motions. The
former corresponds to choosing a constant for K(%).
Choosing K (#) tobea é function, one recovers Langevin’s
equation, which gives an exponential decay for the
velocity autocorrelation function. Machine computa-
tions of Rahman?® for liquid argon have indicated that
K(t) has two important characteristic features: (a)
that it drops very sharply from its value at time ¢=0
to a value which is smaller by an order of magnitude in
a time range of 3)X107 sec, and (b) that it has a long
tail having a much slower time dependence. It is shown
in the present paper that these two characteristic
features of the memory function computed by Rahman
can be understood in terms of the static pair correlation
function and the interatomic potential, and that the
values of the calculated K (¢) are in satisfactory agree-
ment with those of Rahman.

in Theoretical Physics, edited by R. Kubo (W. A. Benjamin,
Inc., New York, 1966), Part I, p. 1.

7 R. Zwanzig, in Lectures in Theoretical Physics, edited by W. E.
Brittin (Interscience Publishers, Inc., New York, 1961), p. 106.

8 H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

9 A. Rahman (unpublished).
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The basic physical ideas underlying our treatment can
be briefly summarized as follows. We focus our atten-
tion on the atom marked “blue”, having a velocity
vo(#), and ask how the surroundings will respond to
the motion of this marked atom. The change in the
density of the surroundings arising from the motion of
the blue atom is calculated from a simplified Liouville
equation. Knowing the change in the density enables us
to calculate the force on the blue atom from the
surroundings and, hence, to write its equation of motion.
From this equation of motion, we finally obtain an
equation for the velocity autocorrelation function.

2. MATHEMATICAL FORMULATION

In this section we derive an equation of motion for the
blue atom, whose position and velocity we denote by
xo(#) and vo(£), respectively. The one-particle distribu-
tion function fi(x,p,f) of the surrounding medium is
governed by the equation®

af1(1)
ot

+v- V. f1(1)— VV[x—xo(£)]- Vo f1(1)
“/ VV(x—x)-V,f2(1,1)d(1)=0, (2)

where 1 is here an abbreviated notation for (x,p,f), and
V., Vpstand for the gradients with respect to x, and p,
respectively. ¥ (x) is the interaction potential between
two atoms. The third term in the equation is due to
the influence from the blue atom. The last term takes
into account all interactions between the surrounding
atoms and contains the two-particle distribution
function f5(1,1”). Let us write

fl(l) =f1°(1)+f1(1)
and ) (3)
F2(1,1)= (1,1 + (1,17,

where f1°(1) and f5°(1,1") are the equilibrium distribu-
tions around the blue particle at x,(f), and fi(1"),
f2(1,1") vefer to deviations from equilibrium. f,9(1) is
further given by

f2()= o (p)g[x—x(H)], 4)

where fO(p) = (8/2wm)?? exp(—Bp?/2m) is the Maxwel-
lian distribution of momenta, with 8=1/k5T, ks being
the Boltzmann constant. g[x—x,()] is the static
equilibrium pair correlation function centered around
the marked atom at xo(f).

1 M. Born and H. S. Green, Proc. Roy. Soc. (London) AlS8S,
10 (1946); J. Yvon, in La Theorie Statistique des Fluides et I’ Equa-
tion d’Etat (Hermann & Cie., Paris, 1935); N. N. Bogoliubov,
J. Phys. USSR 10, 265 (1946); J. G. Kirkwood, J. Chem. Phys.
14, 180 (1946); E. G. D. Cohen, in Fundamental Problems in
ft(gl;;tical Mechanics (North-Holland Publishing Co., Amsterdam,

962).
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Substituting Eq. (3) in Eq. (2), we have
af1(1)/8t+v- V. f1(1) = VV[x—x0()]- V. f1(1)
—/V,V(x——x’)-fo‘g(l,l’)d(l’)
=—afP(1)/9t, (5a)
where
af*(1)/dt=— o (p)Ve[x—xo()]- vo(2).  (Sb)

Here the major complication arises from the last
term on the left-hand side of Eq. (5a). It is responsible
for the following physical effects:

(i) Asisusual in many-body systems, the interaction
between the particles is renormalized and some effective
interactions enter instead.

(i) The free-particle flow term, represented by the
second term in Eq. (5a), will be modified so as to take
into account the erratic Brownian-type motion of a
single atom.

(il) The surrounding atoms will have a tendency to
reach thermal equilibrium around the blue atom.

Formally, Eq. (5a) can be written as

LODf'l (X,p,t) = fO(p) Vg[x_ XO(D:I * VO(t) ) (6)

where L,, is some complicated operator. In order to
illustrate the point of view we are going to adopt in
our discussion, we will consider the following special
case of Eq. (5a):

0/8t4v-Vo41/1) i) = f(p) Velx—x0() ]- vo(®), (7)

where 7 is some appropriate relaxation time for the
medium. In this way we have incorporated the effects
mentioned under (iii) above, but have disregarded the
other effects.

The above linear equation can most easily be solved
by going over to the Fourier transforms. The solution is

¢ d
f‘l(X)pJ):ﬁ dt’/dx/{/ (2:)3 eXpD(q (X_X’)

—v-q(:—t'»J}exp[— (= )/711(D)

XVg[x'—xo(#) ] vo(t"). (8)

The change in the density is obtained by integrating
over all momenta and we get from Eq. (8)

: 4
p1(x,) =/ dt’/-dx’ exp(-— )G,P (x—x', t—1¢")
0 T

XVg[x'—x(t)]-vo(), (9)

where

G (x,0)=[ma() I** exp[ —*/a()) ], (10)
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and a()= (2kpT/m)?, m being the atomic mass.
GL(x,t) is the classical form of the Van Hove! self-
correlation function for a particle moving freely, and
it has the physical meaning of giving the probability
for a free particle to move to a position x at time ¢, if it
started from the origin at {=0.

In a real physical situation the particle does not move
as a free particle but performs a complicated Brownian
type of motion. One should, therefore, in Eq. (9) replace
the free-particle “propagator” G° by the appropriate
propagator, denoted by G(x¢,x’t'| xo(¢’)). This function
gives the probability of finding an atom at x at time ¢,
if it was located at x’ at time #, with due consideration
of the presence of the blue atom. In this last respect it
differs from the proper Van Hove self-correlation
function.

Therefore, instead of Eq. (9), we write

pl(x,t)=/ dt'/dx’ exp(—t_t )Gs(xt,x'l’lxo(t”))

T

(11)

As G,(--+) was introduced above, it does not take
into account effects stated under (iii) above, which
would be brought about by some complicated Boltz-
mann-type collision term in L,,. In order to proceed,
we have made a standard single relaxation-time approx-
imation. Exp[— ({—#)/7]Gs(--+) represents, before
integration over momenta is performed, the Green’s
function of the operator L,, in Eq. (6). In this way all
the effects mentioned under (i)-(iii) have been taken
care of in an approximate way. The time 7 represents
the average time it takes for the surrounding medium
to establish complete thermal equilibrium.

The equation of motion for the blue atom is then

X Vg[x'—x0(¢) ] vo(').

dvo(?)

m
dat

=— / dx VV[xo()—x]m(x,0),  (12)

which on using Eq. (11) becomes

dVo(t) ¢ =t
m =—/ ar exp(— ) /dxdx’ VV[xo(t)—x]

m T
XG(xt,x't' | %o (t"))Vg[x'—x0(t') ]- vo(¢'). (13)

It should be noted here that V[x,({)—x] above is the
bare potential and not any renormalized interaction
potential.

In writing the above equations we have disregarded
the presence of a fluctuating part of the force, arising
from fluctuations in the density of the surrounding
medium. We shall assume these fluctuations not to
depend significantly on the velocity of the blue atom.
In that case, the fluctuating force will be statistically

1 1. Van Hove, Phys. Rev. 95, 249 (1954).
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independent of the velocity and will disappear in the
equation for the velocity autocorrelation function.

Multiplying Eq. (13) with v,(0) and taking a
statistical average, we get

d
m—vo(£) - vo(0))
dt

t t—t
ar exp(—— ) axdx’
0 T

XAV V[0 (t) —x]G.(xt,x't'| X0 ("))
X Vgl x'—x0(t") Joos (1')20(0)) ,

where (- - -) denotes a thermal average and o, 8 indicate
the three Cartesian components.

Gs(xt,x't'| xo(#"")) depends on the history of xo(f).
However, the most obvious effect, arising from the
presence of the blue particle, is that a surrounding
atom is excluded from a small region around the position
x0(#) at time ¢. We shall average G.(xt,x't'| xo(#"")) over
all various paths of the blue atom which terminate at
xo(#) at time ¢, and we substitute the obtained propaga-
tor for the one introduced earlier. This averaged
propagator will be denoted by G.[x(,xt|x(f)]. We
further define an effective potential V' (x,f) through the
relation

>
af

(14)

/ VV[xo(f)—x]G.[xt; x| () Jdx
=VV[xo(t)—x', t—1"]. (15)
In order to make it evident that the potential so

defined really depends only on the differences [x()
—x"] and {—?, we write

/VV[XO () —x]G[xt; X't | x(£) Jdx
= [ VIO xRy, £, 0Dy

- f YV Txo(r)=x'— ¥IG.Ly, 73 00| xa(r)—x' 1y,

(r=t—"1'), since by definition
G[x+y, ;x| x0()]=G.Ly, r; 00| xo(r)—x].

We thus have
/ VV[xo(t)—x]G[xt; x't'| xo(t) Jdx

= / VooV xo(r)—x'—y]

XGLy, ;00|x0(r)—x'Jdy. (16)
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Here, it is made obvious that our statement above for
V is correct.
Using Eq. (15) in Eq. (14), we have

d
m—(v(£)-v(0))
dt

t

=t
at’ exp(——)
0 T

X< /dx’ VoV [x0()—x', t—2]

=-x
af

><Vﬁg[X'—XO(t’)]va(l')va(0)>, 17

where from now on we shall drop the suffix 0 on v.

It remains to evaluate the expression within the
brackets in Eq. (17). To achieve this we go over to the
Fourier transform and write

< / dx’ Vo V[ xo(t)—x', t—1' TV eg[x'— %o (t') o (') v (0)>

=_/ W T )
(27r)3Qagﬁ qy g q

X{exp{iq-[xo(t)—xo(¢') 1} 95 (¢')2a(0)), (18)
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where V (q,t) and g(q) are, respectively, defined by

_ . d
7= [ 7@ plia )

d
g(X)=/g(q) exp(iq'X)(z;l)3 .

and

Let us consider the expression
Zﬁ gaga(exp{iq- [xo(t)—xo() T} o5 (¢")v(0))

~(eafi v o v@XavO3). @0

The component of v along q will be denoted by v, and
we notice that

—iq<exp[iq f f vq(t”)dt”]vq(t’)vq(0)>
=%<exp|:iq/; vq(t”)dt”:lvq(O)> . @1

In order to simplify this expression, we shall utilize the
same method as was used by Rahman et al. to obtain
the Gaussian approximation.’? This approximation?!?
has been widely used in connection with discussions of
self-motion of atoms in liquids and has been found to
hold well.?

We therefore write as follows:

<exp[iq f j vqo")dt"]vq«» _s / a-- f fdty (a1 - 24(6)24(0))

=0 pl

im0 2ut+1)1 2001 (u-1) 1L

& Ggrrt Qur)l T /'tdtl / jd[z@q(tl)ryq(tg)):lu / jdff(vq(f')v.,(O))

~ig exp[—%qz /t f iy /t dts <vq(z1)vq(¢2)>] ﬁ j a7’ (0a(+)2a(0))

- sigen| ~i¢'[ i =00 | / ar () v0).

(22)

In going from the second to the third step, we have split higher-order velocity correlations into the lowest-order

ones as follows:

(1234)= (12)(34)+ (13)(24)+(14)(23) etc. ,

(23)

disregarding correction terms. For more details we refer to Rahman et al.13

From Egs. (22) and (21) we now have

(o f a-v()a” fa- v a-vO)]Y=3¢t e ~4¢ / i (== (v(r)- v) @)

+%qz{% exp| —4¢ / i = (v(o)- v<o>>]] / j ar (v(r)¥(0).  (24)

____ d
12 G. H. Vineyard, Phys. Rev. 110, 999 (1958).

33 A. Rahman, K. S. Singwi, and A. Sjélander, Phys. Rev. 126, 986 (1962).
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The last term takes into account the dynamical correlation between the exponential term and v4(¢')v,(0) on the

left-hand side of Eq. (20).

Using the above result we can write Eq. (18) as follows:

_ 1
Zﬁ</ dx' Va7 Txo()— X', t— ¢ IVsgx'— xo(¢) g <t'>va<o>>= 73 /

dq
™)

a -¢*V (a,1—1)g(q)

d t
x(expt—%qw(t—t')yv(w)- v+ {5 exp[—%q?a(t-—m} / () v<o>>dr) . 5)

where

a(¢)=§ ﬁ dr (=) () ¥ (0)). (26)

In the Gaussian approximation the proper Van Hove
self-correlation function, denoted by G,(x,), is given
in terms of a(¢) as follows:

Gs(x,f)=[ma(t)]*? exp[—=*/a(t)]. (27)
With the help of Eq. (25), Eq. (17) can be written as

d t
—&b(1)+ / To(t—t)®()dt
dt 0

+K I‘l(t—t')dt'[<1>(r)df=0, (28)

’

where we have defined

®(t)=(v(?)- v(0))/(»», (29)
and where the “memory” functions I'y(f) and I';1(¢) are,
respectively, given by
To(f)= L / ﬂ—qzV(q Dg(q)

3mJ) (2r)3 ’

Xexp(—) expl—2q%a()] (30)
and

IN0)) ! f 2 V(a,)g(q)
(D= —— 2V (q,
( 3m (21r)3q e

AN
xesp( =)= epl-1era01]. 6D
T/ \dt

One objection to our derivation of Eq. (28) might
be that for interaction potentials, mostly used, the
Fourier transforms do not exist. However, we could
have arrived at the same result without going over to
the Fourier space. The memory functions we would
have obtained would be the same as those in Egs. (30)
and (31), but are now written as an integral in ordinary
space as follows:

I‘o(t)=|:—3—1”: /Vg(x)-vff(x—-x', 1)

XG,(x',0) dxdx’] exp(———t) (32)

T

and

Fl(t)=l:—'3im /Vg(X) VY (x—x', 1)

G, (x',1) —¢
X dxdx’:l exp(——) . (33
at T

Gs(x,) is the Van Hove self-correlation function, given
in Eq. (27). When evaluating the contribution to the
memory functions from the hard-core part of the
interaction potential, Egs. (32) and (33) have to be
used instead of Egs. (30) and (31).

It is convenient for the following calculations to
introduce Vst(x,f) and Ve (x,8), defined as follows:

VVest(X, t)= / vV (x—¥, )G(x,t)dx’ (34

and
G (x',1)

ot

dx’.

VVae(x,0) = /VV(X—X’, 1) (35)

In terms of these quantities, our memory functions
have a very simple form;

I‘o(t)=|;—£— /Vg(x)-VVeff(x,t)dx:] exp<——t> (36)

m T
and

1 - —1
I‘l(t)=l:———— /Vg(x)~VVegf(x,t)dx] exp(—) . @3N
3m T
Equation (28) constitutes our basic equation. It is to
be compared with the following equation in Refs. 4-6:

s K(=0)8()dr=0
- <t>+/0 (= )3 (1)dr =0,

where K (f) has been referred to in the Introduction as
the memory function. In general, Eq. (28) cannot be
brought in the above form, unless the term containing
I'1(?) is negligible. Indeed, we do not expect this term
to be very significant but certainly not completely
negligible. This does not imply any contradiction, since
in the derivations of Eq. (1) one has forced the equation
to have the particular form given above. In fact, from
Eq. (28) we could determine ®(f) and then always
define a function K(#) through Eq. (1). Qur memory
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functions T'4(f) and I'y(f) are, therefore, in principle
quite different from the one in Eq. (1) and we stress
this by using different notations.

It is evident from Egs. (26)-(28) and from the
definitions of the Is, that our equation for ®(f) is
nonlinear and can only be solved numerically. In our
subsequent discussion, we shall make use of earlier
knowledge of how a(f) varies in time, noting that
the detailed form of ®(¢) will have a quite small influence
on the integrated value in a(f).

3. CALCULATION OF THE MEMORY
FUNCTIONS

It was stated earlier that the function G,(xt; x't'| xo)
describes the probability that an atom arrives at the
position x at time ¢, if it was at x” at time ¢’ and the blue
atom is at the position X, at time ¢ This probability is
obviously zero for |x—x¢| <o, where ¢ is the radius of
the hard core of the interatomic potential. It is import-
ant to keep this fact in mind. We may write

Gu(xty, 15 %, 0| x0) =a(x-+ y—x0Ga(y,1) /
f a(xty—x)G.(y'; DAy, (38)

where G,(y,f) is the Van Hove self-correlation function.
The normalization condition

/ Gu(xty, 1%, 0] x)dy =1 (30)

is automatically fulfilled. The function a(x—x,) should
be such that it drops sharply to zero for |x—x| <o,
and is of the order unity whenever |x—xo|>o. Its
precise form is not known to us. It plays the role of
excluding a certain volume, corresponding to the hard-
core radius around X,. Some of our further discussion
will not be based on any detailed knowledge of o (x— xo),
not_even on the assumption in Eq. (38) of the form
of G,.

We shall first derive asymptotic expressions for I'g(f)
and I'y(¢) and shall later make more explicit calculations,
based on a certain form of a(x—x,).

For the interatomic potential we shall in the present
context use a 6-12 Lennard-Jones potential,

V(x)=4€ (o/2)"— (o/x)°].

For mathematical reasons the above potential will be
divided into a hard core and a soft part,

V(x) =V (0)+V,(x) ’

(40)

(41)

such that V.(x) does not contain any of the smoothly
varying attractive part of the potential (see Fig. 1).
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Fi16. 1. Lennard-Jones potential (in units of e=120%k3) and the
pair correlation function g(#) (based on Rahman’s computations
for liquid argon at T'=85.9°K) versus distance (in units of
o'=3.817 A). The dashed curve represents the assumed Gaussian
form for the soft part of the potential.

Case 1: Hard-Core Contribution
t=0

For this case we have by definition

Gs(x, t; X'0| X) = 6(x—x") (42)
and
Go(x,0)=5(x), (43)
and hence from Eq. (15)
Vo(x)=V(x). (44)

Substituting the above expression in Eq. (32) we get

T (0)= ! fov d 45
. ——ng (0 Ve(dx.  (45)

From the knowledge that a(f), appearing in Egs. (28)
and (27), varies as # for small times, we can also
conclude that

T'°(0)=0. (46)
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The expression above for T'¢¢(0) is known to be an
exact result.t®

a()>A

The function V,’(y)a(y), V' denoting the derivative
of V, has a sharp peak at y=o0o=0¢ with a width 4/A.
The area under the peak will be denoted by C and is
defined by

0

/ Ve (aly)dy=—C. @)

We shall here consider times such that the width
a(t) of Gs(x,t) is much broader than A. In that case we
have

x'—x

vV.x—x, )=C /—l————IGs(x”—x’, £)dSyrs
x"—x

/ Gs(x;—x/, )dx1, (48)
|x1—x| 2> 09

after using Egs. (47) and (38) in Eq. (15). The integra-
tion in the numerator extends over the surface of the
sphere |x"—x| =a,. It is straightforward to show after
angular integration that Eq. (48) becomes

Vo (#,0)= = Cool [1—7 (2,) 1Gs(x—00, 1)

Ly ()]G (w00, £)) /

/ WG (=, ) — G (', ) ]dx (492)

~—CooGs(x—00, t)// #'Gy (' —x, §)dz’
4
(49b)
where v (x,0)=[a(f)/200x] is much smaller than unity,
since only x>0, is of importance for calculating T'o(¢)
and T'1(¢) and ¢(f)<Ko¢® for times of interest. In Eqgs.

(49a), (49b) and in what follows, the bar on G denotes
the one-dimensional Van Hove correlation function

Gi(wt)=[ra() T exp[—2*/a(1)].

_ For Ve°, defined by Eq. (34), after replacing V by
V., we have after angular integration

(50)

1) > 2
V'effc(x,t)=22£—z/0 dy V(3,0 “:a_a(cg_ I]C—r's(y—-x, 1)

X
2xy ~
{1 o) 610
a(f)
1 = _ ~
~ [ 57008020,

%
a(f)Kae?. (51b)
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For 7’.°(x,) we have exactly the same expression,
except that G,(y—x, £) is replaced by dG.(y—x, 1)/9t.

Now, using Eq. (51b) in Eq. (36) with V.’ given by
Eq. (49b), we have for the hard-core contribution

exp(t/f)rw(z)f—’g—“ / " {[ya(y—oo, 9/

0

/ Y'Gs(y'—y, t)dy':l
ag

00

X / ds 1 ()G (—, t)} . 62)

which is valid for a(f)<<o?. After the following change
of variables,

x—o9p— 1@,

and replacing —oo/4/@ by — « and further neglecting
terms like y(y/a)/o, relative to unity at appropriate
places, Eq. (52) becomes

exp( t)l“ov(t)=il—(\—/§i)—c—“12 /_ Zdy f®)

T m

y—oo—> y\/a> y’_do——) y\/d,

0

X/ exp(—a2)g (et yvVetava)dxz, (53)

where f(y)={exp(y?) Sw? exp(—#u?)du}~’. That a
depends on time is implicit here.

The function g’(x) has a narrow positive peak at
x=1x, with a half width 4/A, and a somewhat broader
and smaller negative peak at x=ux;, (x1>x), having
the half width 4/A; (see Fig. 2). x, is very close to oy,
and we shall for simplicity put xy=0o. On the other
hand, «; is significantly displaced from . We shall
approximate g'(x) by the following expression:

g (%) =Ao(rAo) ™2 exp[ — (v —x0)*/ A ]

— Ay (wA) 72 exp[— (x—21)*/A1],  (54)
where A, and A, are the areas under the two peaks.
Since the function g(x) is known, we can determine all
the parameters in Eq. (54). In Fig. 2 the function g’ (x)
has been plotted for liquid argon at T'=285.9°K. The
values of the parameters chosen are

VA0=019A, /A=038A, x=3.4A, x=40A4,

and

Ao=3.0n, A1= 201’1«,
where # is the particle-number density. The approx-
imated g’(x) is shown as the dashed curve in Fig. 2.
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Fic. 2. The derivative g’(r) versus r
(in units of ¢'=3.817 A). The solid curve
is based on Rahman’s numerical computa-
tions for liquid argon at T'=85.9°K. The
dashed curve represents a Gaussian
approximation, Eq. (52), with the values
of the parameters given by Egs. (83)
and (84).

9'(r) in arbitrary units

Substituting Eq. (54) in Eq. (53) and integrating,
we have

exp<T>I‘o°(t)

=4(\/32C002{(a+A0)1/2/ J0) ex [(z:—: 1)]

Al d( —77)2
T RCL e v
(a+A1)”2 — (a+4y)
where 7= (x1—%0)/4/a¢. We have then assumed ao= xo.
Equation (55) is valid for AKa<<o 2.

For a>>A, Ay, and A; such that 5 is small, but still
ako¢?, the above expression reduces to

exp<;)roc<o= {4(‘2")@ " 1)

m —w

Xem(—yz)dy} (56)

a

Proceeding in the same way as for I'y*(£), we have for
T'1¢(¢), analogous to Eq. (52),

ol
:47;3:02 /:o dy H:Gs(y—tro, t)//:c Gi(y'—y, t)dy’:‘
)(/00 dx g,(x)wﬁ} . (87
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o'
Using the relation
3G, (x,1) _ 22 1\d
-6 ), (58)
e 2/a

where ¢ is the time derivative of a¢(f), and making a
change of variables as before, we get

exp( - )nc@—%[ [_ w 1o [ -1

—00

a
Xexp(——xz)g’(ao+y\/a+x\/a)dx]—2——, (59)
a
valid for e<<o¢*>. Analogous to Eq. (56), we have
¢ 4(\/ m )CU of [
e Jre={ == [ =110
T m o
% (—y)d }Ao—/h a (60)
€ - )
Xpl—y%)ay Vo 2

for a>>A, A, and A4, but a<Lo’.

Case 2: Soft-Part Contribution

The calculation of the contribution to I'y(f) and
T'1(¢) from what we have referred to as the soft part of
the interaction potential proceeds in an analogous way
as for the hard-core part. The main difference, however,
lies in the evaluation of V,(x,f). The width A, of V, (x),
whose form we have taken to be Gaussian for mathemat-
ical simplicity, is much larger than the width a(f) of
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the Van Hove correlation function for all times of
interest. Therefore, we can write for V,(x,f), which is
defined by Eq. (15) after replacing V (x) by V,(x),

Va(xi)= [vvs(x— Valx—y)

XG.(sdy / / a(x—¥)G.(y,)dy’

=VV,(x). (61)

This follows from the fact that VV,(x—y) is a very
smooth function of y compared to G,(y,f) for a<kA,,
and as such it can be taken out of the integration sign.

Substituting Eq. (61) in Eq. (34), we have for the

same reason as above
YVt (x,0)=VV,(x), (62)

and inserting this in Eq. (36) we have finally

exp(;t)I‘o“(t)= —sim /V Vs(x)-Vg(x)dx. (63)

Thus for all times of interest (< 10~ sec), exp(¢/7)To* (¢)
remains constant.

_In order to determine I'i*(#), we first calculate
V’e°(x,) from the expression [see Eq. (51a) for V/e°
and the remarks below ]

2xy l\aés(y— x, 1)
a / ot

- a e
V’eff(x,t):;—; / dy Vs’(y,t)[(

X" Jo

+<2xy = 1\6G,,(y+x, ?)
a / at

We can here neglect the second term within the curly
bracket as long as a<lo¢?, remembering that only x> g,
is of interest. Furthermore, as above, we take V' (y,f)
=V,/(9,f) out of the integration sign and write

o

- a * 1 2x
Vet (x,f) =—V ' () I:_(y+x)_ 1:|
22 a

—T

6@3 (y)t)

dy. (65)

Extending the lower integration limit to — o, the
integral is easily evaluated and found to be zero. We
thus conclude that for a<<e?, V’es® within the present
approximation is equal to zero, and hence

Iy (t) =0

for all times of interest.

(66)

4. MODEL CALCULATION

The formulas for the memory functions T'¢(f) and
T'1(?), derived in Sec. 3, are quite general in the sense
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that they do not depend on the precise form of the
function a(x), about which we have no detailed knowl-
edge. As far as the soft-part contribution is concerned,
one need have no knowledge of this for all times of
interest. On the other hand, for the hard-core part of
the contribution, one is forced to assume some reason-
able form for a(x), if one wants to obtain numerical
results covering all times of interest. The interatomic
potential has for mathematical simplicity been divided
into a hard core and a soft part. A Gaussian form for
the soft part is assumed, and the parameters were
chosen so as to give a good fit for the major part of the
attractive potential (see Fig. 1). The difference between
the actual 6-12 Lennard-Jones potential and the soft
Gaussian part was taken as the hard-core part. The main
physical reason for making such a division is that the
two parts give rise to very different time dependence
for Ty(f) and T'1(¢).
Adopting the form given in Eq. (38), we have

YV (x,0) = / lz:ilv°/(x_ Va(x—y)
XG.(y)dy / / a(x—y)G.(y)dy’, (67)

which after angular integration can be written as

(7 ¢ — @ N ’ %?62_ 2l _
7, (’“")‘Ei / V., <y>a<y>{(a 1>Gs<y %)

+<%§z+1>(_}s(y+x, t)}dy//: ya(y)

X (Galy—, O)— Gy, t)}dy] . (68)

As stated earlier, V,/(y)a(y) has a sharp peak around
y=0o with halfwidth 4/A. We shall choose the following
form:

Ve ()a(y)=—C(rA)~™* exp[ — (y—00)?/A], (69)

which has the correct width and whose area is C.

We expect intuitively that a(y)=exp[— V.(y)/ksT]
or some other similar function of V,.(y). Adopting this
assumption, it follows that

—ksTd (9)=V.)a(y), (70)

where now kg7 is the area which was denoted by C
above. Integrating Eq. (70), we have

()=~ (1/ksT) / Valy)dy.  (71)

Guided by this, we write for a(y),

a(y)= (wa)2 / expl— (' —o0)?/ATdy".

0

(72)
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From our reasoning here, we should expect C to be of
the order k5T and the width AY2 to be rather close to
the width, given by the function {V.'(y) exp[—V.(v)/
kgT]}, which was found to be 0. ZOA for liquid argon
at T=85.9°K.

For ey and x2Zap, which are the only x values
entering in our final expression, Eq. (68), can be
written as

7./ ()= —C expl— (x—00)*/(a+4) ] /

f T el (@A) et (73)

—00

For a detailed derivation of Eq. (73), we refer to the
Appendix.

Substituting the above expression for V.’ in Eqgs.
(51a) or (51b) and proceeding as in Sec. 3, we get

¢ 4(/7)Co®
eXP(—>Po‘(t) = — | dyf()| exp(—x?)
T 3m —» —
Xg'lootyla+A)2+Hxv/a]dx, (74)
where, as before,
v 1
1)~ e [ exp(-aan| . a9)

We are reminded that Eq. (74) is derived under the
assumption that a<c¢®. The above expression should
be compared with Eq. (53). We see that it reduces to
the latter for a>>A.

Using the form for g'(x) given in Eq. (54) and
performing the integration over x, we have finally

t 47(\/1F)C0'02
exp(;)I‘o 0= 3m { (a+ Ag)” 2 / 16)

><expE—y2 (a+A4)/(a+A0) Jdy

o f 76) expl— (y—m)?

X (a+4)/ (a+A1)]dy} , (76)

where #1= (x1—x0)/(a+A)"2. This is analogous to
Eq. (55) and reduces to the latter for a>>A.

With proper choice of a(y) we should get the correct
value for I'¢°(0), which is also given by Eq. (45).
Hence we should choose the constants C and A such that

A(/m)Cod Ao
o / o) exp(

The last term in Eq. (76) has been dropped, for it turns
out to be small. With our lack of knowledge of the
function «(y), one parameter is left undetermined

Ty (0) —

>dy. 77

3m
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besides the relaxation time 7, which has to be fixed in
some other way.

For Ty°(f) we have from the expression for 7ege
[see Egs. (51a) and (51b) and the remarks below]
and Eqs. (58) and (37), in analogy with Eq. (74),

t 4(v/7)Coo® > *
exp(—)F;”(t)=T/ dy f() dx (222—1)

Xexp(—#?)g'looty(a+A)2+2v/a]d/2a.

After evaluating the second integral, using Eq. (54)
we get finally

ol

4(\/7r)C00[ a Ao *
\a+4, (a+a0)v2 L {
X f(y) exp[—y?(a+4)/ (a+A0) Jdy
S, / ) {za+A(y-m>2—1]f(y)
a+A4y (a+ADY2 ) | a+4,
Xespl— O—n(a+-2)/(at 203520, (79
with, as before, 71= (x1— %)/ (a+A)'2,

(78)

2y

e+ A 1}
a"I—Ao

3m

5. NUMERICAL RESULTS

Equation (76) can be written in the following form,
which is more convenient for numerical calculations;

¢ 4(v/m)Cae® Ao *
—_ Oc — d
EXPOF 0= v/m Qo /_w y I
Xexp(—gy?)[1-F()], (80)
where
@) A‘( = )l{ " ay 1)
Ao\r+AY/A /_w o
xe[—¢G—m)]/ / dy f) esp(— &)} (81)
t=a/hy, Et=(+A/M0)/(+1),
= (+A4/40)/+A1/A0), (82)
m= (+A/Ag) ™2 (21— x0)/A/ Ao.
For liquid argon at 7'=85.9°K, we have chosen
Ay/Aov=3%, A/Ac=4, (x1—x0)/2/Ac=3 (83)
and
V/8=005 (0.194), +/A=0.10 (0.384), &b

x0=0.90 (3.44A), x;=1.05 (4.04),
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Fi16. 3. The width a(f) (in units of 1072 A% and A2 for the insert)
of G.(r,) versus time for liquid argon at 7=85.9°K based on
Rahman’s machine computations.

when expressed in units of ¢/=3.817 A, which is the
distance to the minimum of the interaction potential.
With slight adjustments of the above parameters,
one could obtain a somewhat better fit to Rahman’s
g (r) (see Fig. 2). Since it would have no significant
effect on our final results, we did not attempt to do
this.

We shall for the moment disregard the factor
exp(—i/7). In calculating the ratio T'y(£)/T¢(0), the
only unknown quantity is then the width 4/A of the
function V,/(x)a(x). Using Rahman’s numerical values
for the velocity autocorrelation function for liquid argon
at T=85.9°K, we have calculated a(f) as a function of
time (see Fig. 3). Rahman solved on a computer
Newton’s equations for 864 argon atoms corresponding
to a density of 1.407 g/cc and a temperature 85.9°K,
and it is his numerical results for ®(¢), g(x), and I'(¥)
that we have been referring to. The integrals in Egs.
(79) and (80) were evaluated for a few values of A/A,,
which then enabled us to calculate the corresponding
ratio T'o(£) /T'x¢(0).

The choice A/Ay=0.5 gave a reasonable over-all
fit to Rahman’s curve.

We have seen in Sec. 3 that for all times of interest
exp(¢/7)To*(f) is constant and is given by Eq. (63).
The soft part of the potential was taken to be a Gaussian
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function (see Fig. 1)
Vs(x)=—A4 exp(—2¥/A,), (85)

with 4=4.9¢ (e=120k5) and 4/A,=0.80 (3.1A) in
units of ¢’=3.817 A. Using Rahman’s g(x) and V,(x)
above, we have evaluated the integral in Eq. (63) and
the result is

o (0) = — 2.3 X 10% sec2. (86)

In q space, Eq. (63) can be written as
Lo (0)=[A4A,%2/6(v/m)m]

00

X / ¢* exp(—1¢*As)g(g)dg, (87)
0

where g(q) is the Fourier transform of g(r). In order to
get an estimate of I'¢*(0), which does not depend on
Rahman’s calculations, we shall evaluate T'¢*(0) from
Eq. (87). We first remark that the main contribution to
the integral arises from values of @2<4/A4,=0.5 A2 In
this region of ¢ values, g(g) lies between —1 and —0.8
(from x-ray scattering experiments).” Taking g(g)
= —0.9 and integrating, we obtain

To*(0) = —0.9(24 /mA,) = —2.25X 10% sec?,  (88)

which is in good agreement with the value given in
Eq. (86).

In Fig. 4, we have plotted the resultant I'o(£)/T'4(0)
for A/Ay=0.5and 7= o (full curve) and have compared
our curve with that of Rahman, obtained from his
computer calculations (dashed curve). For A/A,=0.7,
our calculations gave a nearly perfect fit for < 107 sec,
but it gave a significant increase in the height of the
tail. On the other hand, for A/A,<0.5, the height of
the tail became less and the peak for small times
became narrower.

Tt is unreasonable to expect 7= . For illustration,
we have also plotted (dotted curve) in Fig. 4 the results
obtained for 7=10""2 sec, which we believe is a reason-
able value. The calculated curve is now in much better
agreement with that of Rahman.

The diffusion constant of the liquid in terms of I'¢(f)

is given by*®
kT i
D=b—// To(d)dt,
m 0

which, for =102 sec and using our calculated T'¢(¥)
for A/A=0.5, gave D=2.2X1075 cm?/sec, whereas the
value of D obtained from Rahman’s T'y(¥) is 2.10X 105
cm?/sec.

Also, the calculated value for the constant C which
we have obtained from Eq. (77) using Rahman’s value
for T'4(0)=T4°(0)4T*(0)=53.5X10* sec™? and our
T (0)= —2.3X 102 sec™?, is, within a few percent, equal

(89)

4N, S, Gingrich and C. W. Tompson, J. Chem. Phys. 36,
2398 (1962).
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Fic. 4. Ratio T'e(#)/T'e(0) versus
time and versus the parameter { =a/A,.
The solid curve represents our calcula-
tions for 7=« and the corresponding
dotted curve is for 7=1.0X10712
sec. The dashed curve represents
Rahman’s machine computations for
liquid argon at T=85.9°K.

rit)/rol

%
®e
.... ® o e,
S ————

0, \ 15 x10Psec

to kgT. We remark that the half-width, chosen for
V. (x)a(x), A/A=0.036, is not very far from that of
V' (x) exp[— V. (x)/ksT], which is 0.052 (0.20A) in
our units.

We have in the comparison above disregarded the
influence of T'i(f). Before we make the numerical
estimate of T'1(¢), let us rewrite Eq. (28) in the form

o
“r / To(t— )8 () dt
a

+ / TL(@—t) (t—1t)3(t,t")dt'=0, (90)
where ’

1
B =— /, a(n)dr (o1)

is the average value of ®(f) in the interval (¢,¢/). It is
evident from Eq. (90) that we should compare I'1(Z)
with To(#) to get an idea of the magnitude of the
correction term.

In the time region where a(f) « £, the factor d/2a in
Eq. (79) is equal to 1/t, whereas in the region where
a(t) « ¢, this factor is equal to 1/2¢. We have estimated
the ratio T':1°(#)/To°(f) from Egs. (79) and (76) and
found its value to be less than 0.3 in the time interval
of interest and most probably much less. For the soft
part we have earlier [Eq. (66)] found that I'y*(£)=0
throughout the whole time region of interest. Thus we
expect the error we make in the equation for the velocity
autocorrelation function not to be very significant for
our conclusions (certainly less than 309%,), when we
neglect the term containing I';(#). In that case our
equation is of the same form as Eq. (1). However,
we cannot exclude the possibility that the correction
is larger in certain time regions, particularly where
& (#)=0. At the present stage of the theory we have not

10 20 30 40 b=a/a,

considered this point to be essential, but we intend to
investigate it further, among others.

6. CRITIQUE AND CONCLUSIONS

From an inspection of Fig. 4 it is evident that the
calculated memory function I'(f) has two important
characteristic features: (1), it decreases sharply from
its value at £=0 to a value which is one order of magni-
tude less in a very short time interval 0-4X 107 sec;
and (2), it has a long tail. Both these features are in
general agreement with Rahman’s numerical computa-
tions. In the region of the tail and for 7 very large, a
quantitative agreement with Rahman’s T'(¢) is lacking,
but this can be easily achieved by a suitable choice for
the value of the relaxation time parameter. For instance,
in the present case with 7= 10712 sec, which as we know
from other considerations is not an unreasonable value,
a quantitative agreement has indeed been achieved
(seedotted curvein Fig. 4). In the time region 2-4X 101
sec, our calculated values are much higher than those
given by Rahman. This discrepancy could possibly be
due to our neglect of the I'1(¢) term, which may not be
justifiable in the region where ®(f)=0. Whether this is
so could only be checked by a proper numerical solution
for ®(#) of our basic integrodifferential equation [Eq.
(28)]. At the present stage of the development of the
theory, we did not think it worthwhile to undertake
such an elaborate numerical task.

A weak point of the present theory is our lack of
precise knowledge of the function a(x) and the relaxa-
tion time 7. This lack of knowledge results in our
introducing three parameters, the half-width 4/A and
the area C of the assumed Gaussian function V. (x)a(x)
and 7. Unfortunately, to fix the values of these param-
eters we have only two relations, one involving T'¢(0)
and the other involving the diffusion constant. The
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former is known, if one has a precise knowledge of the
static pair correlation function and the interatomic
potential. In practice, the situation regarding the
choice for the values of the parameters seems to be
fairly restrictive. We have made the observation in
Sec. 3 that the area C is very nearly equal to 25T If this
is generally true, the half-width 4/A is determined from
our knowledge of T'g(0). The parameter 7 can then be
uniquely fixed through the relation for the diffusion
constant. These ideas need further confirmation by
doing numerical computations of the kind Rahman has
done for liquids with various interatomic potentials
and at various temperatures. We should mention here
that at present even inelastic neutron-scattering experi-
ments, which of the various experimental techniques
give the most detailed information on the motion of
atoms in solids and liquids, do not furnish enough
details to make a comparison between our theoretical
results and experiments very useful.

In our numerical evaluation of I'y(f), which depends
on ®(¢) through a(¢), we have used the values of a(f)
obtained from Rahman’s computed ®(¢). The justifica-
tion for doing this is that the former, being an integrated
quantity, does not depend significantly on the detailed
shape of the latter. Nevertheless, a self-consistent
solution of Eq. (28) is desirable and should be
undertaken.

We would like to emphasize once more the fact that
the width of the rapidly falling part of T'y(¢) is deter-
mined by the half-width 4/A of the function V' (x)a(x),
whereas the width of the tail is essentially governed by
the relaxation time 7. The value of T'y(¢) for {=0 is
determined precisely by the static pair correlation
function and the interatomic potential. It is important
to realize that the shape of I'y(f) depends sensitively on
the detailed shape of the main peak of the static pair
correlation function.

It is also worth remarking that the time expansion
of T'g(?) is valid only as long as a(f) <A, i.e., for t£0.4
X103 gec. This is indeed an extremely small time
region. The smallness of the radius of convergence
is responsible for the failures'® of recent attempts
towards time expansion of the velocity autocorrelation
function.

In conclusion, we might say that the present approach
enables us to understand the main features of the
memory function and, hence, of the velocity autocorre-
lation function in a classical monatomic liquid in terms
of basic physical quantities like the interatomic poten-
tial and the static pair correlation function.

From the point of view of the present treatment, it
would be highly desirable to have available machine
computations of the memory function and the static
pair correlation function for a hypothetical fluid at

18 B. R. A. Nijboer and A. Rahman, Physica 32, 415 (1966);
P. Schofield, in Inelastic Scattering of Neutrons in Solids and
Liquids (International Atomic Energy Agency, Vienna, 1961),
p- 39.
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liquid densities with only a hard-core interaction of the
type considered here.

Note added in proof. Since this paper was sent for
publication, a paper by J. P. Boon and S. A. Rice has
appeared in J. Chem. Phys. 47, 2480 (1967), dealing
with the same questions as here. We have, therefore,
not been able to comment on their paper, nor have we
referred to it before. The reader should compare the
results and the arguments given in the two papers.
Also, since this work was finished, extensive numerical
calculations have been taken up by G. Bjérkman, based
on our general results here. It has been shown that
[#'1(5)/To(2)] in our paper is for all times less than 0.1
for the case of liquid argon.
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APPENDIX

In calculating the numerator in Eq. (68) we insert for
V¢ (y)a(y) the expression in Eq. (69). The two terms
in the square bracket divide the integral in two parts.
In the first part we change the integration variable to
y'=y—x, whereas in the second part we change to
y'=y4x. We then get for the numerator

« —(y'— —00 2 2
_C(ﬂ.2aA)~1/2{/ eXp[_._(gl_Zx—.._)-jH_a_x(yr_i_x)_l}

—_—2 0 _— [V 2
Xexp( Y >dy’+ / expl:—-(z ? —Uﬂl]
a z A

— g2

)dy’! . (A1)
a J

X {i—x(y’-—x)—l} exp(

Considering a<<o¢® we can in the first integral approx-
imate the curly brackets by 2x2/a and also extend the
lower integration limit to — . The whole second
integral can be neglected, remembering that x>0y and
A<Lo®. The numerator can then easily be evaluated
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and gives
— (2C«?/a) exp[— (x—00)*/(a+A4) /[ (a+4)]". (A2)

We proceed in a similar way to evaluate the denom-
erator in Eq. (68), inserting for a(y) the expression in
Eq. (72). Neglecting as above the part containing
G.(y+=,1) and changing the integration variable to
y'=vy—x, we have

) Y+ — ( /I_o. )2
(m2aA)~1/2 / dy’ ' f expl:—y—o—:ldy"}
—z 0 A

12

). o

a

X (y'+x) eXP(

The integral within the curly brackets can after change
of integration variable be written
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Here, we can extend the lower integration limit to — «,
for AKLa¢?. Likewise, we change in Eq. (A3) the inter-
gration limits (—x, «) to (— o, ), which is justified
as long as a<o¢®. We further use the relation

y exp(—y*/a)=—(3a)(3/9y) exp(—y?/a). (AS)

Equation (A3) can then be written
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which after partial integration of the second part
of the integral and evaluation of that final integral
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gives
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When evaluating the first integral we first notice that
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which after integration with respect to x gives
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We can now neglect the second term in Eq. (A7)
compared with the first one as long as a<<a2(x>ay).
Finally, using Egs. (A2), (A7), and (A9) we get from
Eq. (68)
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