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A method of solving scattering equations is discussed which enables one to exhibit explicitly the oft-shell
solutions. Results are derived for nonrelativistic scattering from superpositions of exponential and Yukawa
potentials. As a byproduct, we make use of our representation for the partial-wave amplitude to prove
meromorphy in the left half l plane, as well as giving simple derivations of some well-known results by
Regge. The technique is easily generalized to other equations and potentials; in particular, we state the
result obtained for the Slankenbecler-Sugar equation.

I. INTRODUCTION

~ 'HIS paper is concerned with the development of
a method of solving integral equations of the type

corrnnonly written for scattering amplitudes. The
method is applicable to a large class of scattering equa-
tions, and enables one to construct explicit representa-
tions for the off-shell solutions of these equations. The
solutions are expressed as the ratio of two convergent
series in the coupling parameter, the terms of which are
generated by a simple iterative procedure. As we shall
show, the form of the solutions is particularly convenient
for discussing ana1yticity properties in the energy and
angular momentum.

The basic idea behind our approach lies in the simple
observation that an analytic function is completely de-
termined by its singularities, provided that it ap-
proaches zero at infinity. The integral equations which
we shall consider are written in terms of a single real
variable: the absolute value of the oG-shell center-of-
mass (c.rn. ) momentum. Their solution is therefore some
function defined on the positive real axis. By working
directly with the integral equation, we shall show that
it is possible to analytically continue this function into
the complex plane. Furthermore, in a large number of
cases it is possible to do so in such a way that we can
explicitly determine all its singularities, i.e., the posi-
tions of all its cuts and poles, and the values of the corre-
sponding discontinuities and residues. Having done so,
it is trivial to write a representation for the function.

We will illustrate this approach in Sec. II by consider-
ing the s-wave Lippmann-Schwinger (LS) equation for
an exponential potential. By a series of simple ar~onents
we will obtain an explicit form for the oG-shell solution.
The on-shell version of this solution coincides with the
well-known analytic result. In Secs. III and IV we again
consider the LS equation, extending the result of Sec.
II to superpositions of exponential and Yukawa poten-
tials and arbitrary /.

In Sec. V we discuss the properties of these solutions
when / is allowed to become complex. The form of our
solutions is such that we easily prove and extend. some
well-known results of Regge. In particular, we show
that. the partial-wave amplitude is meromorphic in the
entire l plane. This is to be compared with the results
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of Regge, ' who proved meromorphy for Rel ~&
—-'„and

Mandelstam, ' who extended this domain to include the
entire left-hand plane, provided that the superposition
weight function decreases exponentially. Our condition
on the weight function is simply that it approaches zero
at infinite mass.

It was also shown by Regge that the partial-wave
amplitude approaches the Born term as Il~ -+ m, for
Rel ~&

—~, and physical values of the energy. We extend
this result to a domain in the complex energy plane, and
allow / to approach infinity in any direction such that

~ arg (l—la)
~

~& —,'s, where lo is any finite complex number.
Finally, in Sec. VI we discuss applications in addition

to those of potential scattering. In particular, we give
a result obtained for the Blanokenbecler-Sugar equation.

ao(p', p; s) =no(p', p)-

where

I1pl/ s

p p s—se

Xeo(p', p")a (p",p; s), (1)

p, 'G
&o(p' p) = (2)

pp' (p' —p)'+~' (p-'+p)'+ '-

and as(gs, gs; s) is the s-wave scattering amplitude
with normalization such that as(Qs, gs; s)= —2e'"
X(sinls)/mQs. The solution of this problem is well

known, ' and bo is expressible in terms of Bessel functions
of imaginary argument and order. Our method, how-

ever, does not rest upon the special features which make
this problem exactly solvable. We will work directly
with Eq. (1) for the off-shell amplitude as(p', p; s), as-
suming only that a solution exists for real p', which is
a fact that has been well established. In obtaining our
solution, we assume that 0&Imps&le. Since our result
will be analytic in s, this imposes no restriction.

T. Regge, Nuovo pimento 14, 951 (1959}.' S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (19S9).
s H. A. Bethe and R. Bacher, Rev. Mod. Phys. 8, 111 (1936).

i505

II. EXPONENTIAL POTENTIAL

The technique mentioned above is best illustrated by
applying it to a particular example. We consider non-
relativistic potential scattering for an exponential po-
tential V(r)=pPGe o". The l=0 partial-wave LS equa-
tion then has the form
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0(Imp'(2p. (7)

We may now de6ne the analytic continuation of
ao(p', p; s) across the line Imp'= p, and throughout strip
(7), by writing

We begin by assuming that ao(p",p; s) is a solution
of Eq. (1) with p fixed and positive. We may then
regard the right side of (1) as a representation of
ao(p p; s), and use it to extend p' to complex and nega-
tive values. Since ro(p', p) =io(—p', p) it follows that

Qo —,
~ S =8{) ~ i S (3)

which defines ao for negative real values of p'.
We may rewrite (1) in the form

p, 'G 1
a, (p', p; s) =

~pp' (P' P-')+—I" (P'+P)'+~'
p'G " dp"p"ao(p", p; s)

~p' = (P"'—s)L(P' —P")'+u'j

Using Eq. (4), we may determine the singularities of
ao(p', p; s) in the entire p' plane, for fixed p and s.
Considering Grst the inhomogeneous term, it is clear
that ao will have four poles at p'=& (+p+ip), with
the respective residues + (p'G/2mip) XL1/(p&ip) j.
Additional singularities arise due to the integral term
in Eq. (4). It is sufhcient to consider only singularities
for which Imp') 0; from Eq. (3) we may later determine
all singularities in the lower half-plane. The integral
term is analytic for p' in the strip —p(Imp'(p, thus
a, (p,p; s) is also analytic in this strip. We define

" dp"p" ao(p",p; s).p'"—s (p' p" i ~zo—)(p' ——P"+i )
and

ol p zp
~(p')= , , —o(P os P' s). —

p (p' —ip)' —s

The function I (p') is analytic for Imp'(p, while
I~(p') is analytic for p(Imp'. From the analyticity of
ao(p', p; s) in 0~& Imp'(p, we see that 6(p') is analytic
except for poles in the strip p&~ Imp'(. 2u.

It is easy to verify that the function F (p'), defined by

F(p') =I (p') for 0~&
—Imp'(p,

F(p') =I~(p')+D(p') for p(Imp'(2p, (6)

is continuous across the line Imp' =p. From the above it
then follows that F(p') is analytic, except for poles, in
the strip

~(p')= , , -ao(p' iu, P; s)—
~ (P'—i~)'—s

(9)

for the additional region 2p &&Imp'(3p and extend Fq.
(8) to this region. The function F(p') is now analytic in
the strip 0~& Imp'(3y except for the singularities al-
ready mentioned and additional poles at p'=~p+2jp
and p'= (gs)+2ip The la.tter arise from the previously
determined singularities of ao(p' ip,p—; s) , through Eq.
(9). By Eq. (8), ao(p', p; s) is now analytic in the ex-
tended strip 0&~Imp'(3p, except for known poles.

It is clear that we may repeat this procedure indef-
initely, obtaining exact knowledge of the singularities
of ao(p', p; s) in the entire p' plane.

Combining (8) and (6) we may write

p'G
ao(P', P; s) = oo(P',P)— I+(P')

p, 'G p' —iy
ao(P' —iu, P; s), (10)

p' (p' —i~)'—s

which is valid for all p' such that Imp')p. Equation
(10) provides an iterative formula from which we may
determine the singularities of ao(p, p; s) strip by strip.
We Gnd that ao is analytic everywhere except for poles
at

p'=&(imp+p), with residue &E (—p; s),
p'=&(imp p), with res—idue +E (p; s),

3 0 ~ ~

p'= a (imp+Qs),

with Eq. (4). Analyticity of ao in the extended strip (7)
then follows from the analyticity of F(p') and the in-
homogeneous term.

The singularities of ao(p p; s) in this extended strip
consist of the inhornogeneous term poles at p' =+p+iy,
and the singularities of 6 (p'). From Eq. (5) we see that
D(p') has a pole at p'=iy+Qs with residue (vr/2p) X
ao(gs p s). It follows that ao(p', p; s) has a pole at
p'=iy+gs with residue

L
—~'G/2(i~+gs)ga, (v's, p; s).

As a result of the above procedure, we have extended
our knowledge of the analytic structure of ao(p', p; s)
from the strip 0&&Imp'(p to the strip 0~& Imp'(2p.
Returning to Eq. (5), we define

p,'G 1
ao(p p s)

-pp' (p' p) +" (p+»+"--
p, 'G

,F(P'). (8)

Within the original strip 0~& Imp (p, Eq. (8) coincides

with residue

Wi7r(+s)ao(+s p' s)E (—Qs' s).
The residue functions E (p; s) are defined by

p, 'G
Ri(p; s) =

2ortp p zli
(12)
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and

R„(p; s)=—( +2G)m

2rrip p i—mp [p—i(m —1)p]' —s

It then follows that

Gm ( 1)n+1

D(s) =1+Z
~=t m! n=r (m —n)!

~ ~ ~X
[P—i(m —2)g]s—s [P—ip,]'—s

for m&~ 2.
It is clear from Eq. (4) and the resulting development

t»t I~p(p', p;s)I ~.. ~
. 0 at leas«s «s«»/Ip'I ~

Kith the above information it is then trivial to write
the solution of Eq. (1).We obtain

X — . (19)
(n 1)—!n i—2(+s)/l

Equation (19), for gs=k)0, is simply the series ex-
pansion for the mell-known result4

D(k) =Js,s(—2i+G) (—i+G)-"'/I'(I —2ik) . (20)

R„(—p; s)(imp, +p)
ap(p', p; s)= —2 p

is=1 (im++. p) s p 2

From the form of Eq. (17) and the fact that

iim [kf,(—k)]=0, (21)

- R-(p; )(' ~—p)—2 p +2mi(gs)ap(gs, p; s)
(imp —p)' —p"

R (—gs; s)(imp+Qs)

(imp+Qs) ' p"—
If we define

(imp —p)R (p; s)
r(p', p; s)=——2 2 —.

m=r (imp —p)' —p"

we may write (13) more compactly in the form

~p(p', p; s) =r(p', p; s)+r(p', p; s)—
irr(gs)r(p', —g—s; s)ap(gs, p; s),

where, by setting p'=ps, we have

r(Qs, p; s)+r(gs, —p; s)
Qp sq j s

I+i7r(+s)r(&s, —Qs; s)

(13)

(15)

(16)

which is easily proved, we can make the identification

f(k,0) =1—'
k jo(k), (22)

where f(k,0) is the Jost function.
Application of our technique to the exponential po-

tential thus results in an explicit form for the scattering
amplitude which coincides with the known solution. In
deriving this result, we have not made use of any in-
formation other than the integral equation itself. As we
shall demonstrate, the technique employed may be ap-
plied equally well to a wide range of potentials and in-
tegral equations.

In addition to determining ap(gs, gs; s), we have
also determined explicit forms for the off-shell and. half-
on-shell amplitudes, as well as completely determining
their analytic properties. This information is essential
in formulating many-body equations such as those pro-
posed for three particles by I'addeev. '

III. SUPERPOSITION OF YUKAWA POTENTIALS
The off-shell solution is thus

a& ', , s =r ', ;s r ', —;s—iz s

r(V's, p; s)+r(V's, p; s)—
Xr(p', —gs; s)

I+is-(Qs) r(Qs, —gs; s)
(23)V(r) =2+' da o(n)

Defining fp(gs)—=r(Qs, gs; s), the on-shell solution
takes the simple form Below, we shall put some mild restrictions on o (n). The

integral equation for partial-wave amplitude ut(p', p; s)
(17) is given by

A(V's)+fo( V's) &(s)—
ap(gs, gs; s) =-

I+i (v's)A( —V's) D(s) I
l pl

Ip

Kith only minor modifications, the derivation given
above can be applied to a considerably more general
situation. We consider a superposition of Vukawa po-
tentials, such that

(15')

(imp Qs)R (Q—s; s)

(imp Qs)' s——
Cm

27ri+s m!

This result can be put in more familar form by noting
that

«(p', p; s) = V~(p', p)—

with

V(p'p)=
pp'

X V (p', p")~ (p",p; s) (24)

(pls+ps+rrs)
d o(~)Q~I-

2pp'

(—1)"+' 1 1
(18)

~=t (m n)! (n —1—)! ni+(+2)/sp

4 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
5L. D. Faddeev, Zh. Kksperim. i Teor. Fiz. 39, 1459 (1960)

!English transl. : Soviet Phys. —JETP 12, 1014 (1961)j.
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We now have

/i( P'—P' )=(—&)' (p', P; ). (25)

Keeping p 6xed, as before, we see that V~(p', p) is
analytic in the p' plane, except for cuts along the lines

p'=&(podia) f'or p&~/r& ~. Comparing this with the
exponential potential, we see that we now have branch
points where we previously had poles. As we shall see,
this analogy will continue to hold when we consider the
analytic continuation of a~ into the entire complex p'
plane. To avoid repetition, we will sketch a derivation
which exploits this similarity.

We 6rst note that the Q~ function appearing in Eq.
(24) may be represented in the form'

Qi(nt P',Pj) =kFi(ALP' Pj)
(P'+P)'+~'

Xln -- +Xi,(ri), (26)
2 Ot2

where ALP', pg—= (p"+p'+u')/2pp' and Ei i is a poly-
nomial of degree 1—1 in ALP', p]. It follows that we may
represent V~(p', p) in the following form:

properties which are identical to those of Vi(p', p)
witlliil tile stilp —M(Iilip (M. alice llaviiig obtained
the solution for fixed M, we will take the limit M ~ ~
and show that it converges to the correct result.

We thus rewrite (27) in the form

M

p p
do. np/(o. ; p', p)

X — — +pi (p', p). (30)
2 ~2 ~ 2 ~2

VP(p+io. +e, p) —UP(p+io. —e, p) ~
f -+O

The function PP, so de6ned, has no singularities within
the strip —M & Imp' &M, and we may therefore regard
V&~(p', p) formally as being a superposition of exponen-
tial s-wave potentials with respect to its analytic
properties.

Applying the procedure of Sec. II, we Gnd that
V~~(p', p) is analytic in the strip 0&~Imp'(M, except
for cuts along the lines p/= &p+i/r, with o.~&g;

2Ã
V (P',P)=,

PP
dQ Qpi(Q/ p /p)

D

while
Xt.—2~"~(p+i~)pj»(~ P+i~, P), (3&)

Vi (—p+io.+e, p) Vp—( P+i—cr e, p)—~
I 2g

(p'+p) +- pp
dn ~(~)z, ,(&LP',p)) De6ne

XL2 'I(—p+ )P7~(;-p+, p).

-(p'+p) +-—
+ pi(/r PP) l'n

p'p (p' p)'+-~'—
F~(; p)'=

for

" dP"P" w(~; O',P")«(P",P; s)

-- p"'- (P'-P"- — )(p'- p"+ -)

where we dered
and

a fp '+p'+p'i.(;P',P)= 4-(~)F—
I

2pp' / /r/

dp//p//

—S

0~& Imp'(n;

(a)

(b)

o (n) is integrable,

io(n)i &Eo/
(2g)

with e&0 but arbitrarily small. It is not our purpose
here to determine in what way condition (b) may be
weakened, and we will henceforth assume that Eq. (29)
ls satls6ed.

Although this guarantees that the integral de6ning
V~(p', p) converges, it is by no means certain that each
term of Eq. (27) will be separately 6nite. To avoid this
dif6culty, we will approximate V~(p', p) by replacing
~ everywhere in Eq. (27) by a large but 6nite number
M. The function Vi (p', p) so de6ned has analytic

~P. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., Inc., New York, 1953), p. 1328.

So far, however, we have said nothing about conditions
on o (n), although we have tacitly assumed it to be such
that Eq. (24) for V~(p', p) is de6ned for all real p' and

p. For this to be true, it is suKcient that o (n) satisfies
the two conditions:

~/(~; p')=
n (p' —io.)'—s

Xp)(a; p', p' io.)a/, (p' ic/, p; —s). (33)

Fi(n, p') is analytic in the strip 0&~ Imp' &rr+p, except
for the pole of d, &(a', p') at p'=in+Qs The ana. lytic
continuation of a~(p', p; s) across the line Imp'=/M, and
throughout the region 0&~ImP'(2li, is then defined by

M

ai(p', p; s)= Vi (p', p) — do'aF/(c/; p')—
eo KEPI/p//i

4i~(p', p")«(p",p; s)
2 „p"'—s

+~-(p',p), (34)

.(', p', p") (p",p; )
X +6/(n; p'),

(P'—p"— + )(P'—p"+' )

for n(Imp'& p+n, with
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where Ci~(p', p) is a correction term which arises from

using t/'~~ in place of VE. From the previous discussion,
Ci~(p', p) is analytic in the region —M (Imp'(M. All
functions appearing in (34) have been chosen in such
a way that the equation is identical with (24) in the
strip 0& Imp'(p.

Besides the cuts of Vi~(p', p), the function ai(p', p; s)
will have an additional cut in the strip 0&~Imp (2p,
coming from the second term in (34). That is, the pole
of Fi(n; p') at p'=in+V's becomes a cut in ai when we

integrate over n. This cut is along the line p'= in+v's
for p ~& n(2y —ImV's. The discontinuity is easily calcu-
lated from

ai(in'+V's c;—p; s) ai(in—'+V's+c, p; s) —+

$—2m/(in'+v's) j du nlht(n; iu'+V's+ e)

—a, (u; in'+V's —.)j~ P~'/(~'+V's) j
Xpi(n';iu'+gs, V's)ai(V's, p; s). (35)

Since the singularities of ai(p', p; s) are now known

exactly in the strip 0~& Imp'(2p, we may extend Eqs.
(32) and (33) to the new region 2@~&Imp'(3p, and de-

termine all singularities of hi(n; p ) in this region. For
example, the cut of ai(p', p; s) along p'=iu'+V's, for

p, &~n'(2p —ImV's, produces a cut in Ai(u; p') along
p'=in+in'+v's Exte.nding (34) to the new strip
2p&~Imp'(3p, we may determine all singularities of ai
in this new region. Equations (32)—(34) together define

an iterative procedure from which the cuts and discon-
tinuities in each strip can be computed from the previous
strip.

It is now clear that we may apply the arguments of
Sec. II to the present case, determining exactly strip by
strip all singularities of ai(p, p; s) in the region —M
(Imp'(M. It is also easy to show that

dh'(n p s) —=

u2 P2

e .-(tI)~
I
1+

2( ply)( + ply))

di (n; p; s)=2s'tI(u —m)
(41)

'dP Pi(n, P; P)di" '(P Ps)'
(p+i ply)'+ s/IJ, '

the desired result. The final solution can be written in

the form

(P'; p, )= (P',p; )+(-1)"(P', -p; )
—(—1)'i~(V's)ri(p', —V's; s)ai(V's P' s), (3g)

which, bv setting p'=V's, becomes

(v', P; )+(—1)' (V', —P; )
ai(V's, p; s) = . (39)

1+ix(V's)( 1)'r—i(Qs, —v's; s)

The oG-shell solution is then

«(P', P; s) =«(P',P; s)+(—1)'

X (P', -P; )-(-1)' (V') (P', v";-)

(&,p; )+(-1)"(v, -P; )
X . (38')

1+is-(V s)(—1)'ri(V's, —V's; s)

The function ri(p', p; s) is defined by

2~ihip'l '

ri(p', p; s)=
p &p)

dudi (u;p;s)
(40)

(n+~p~p) E(u+~p/9) +P /p'j

in terms of functions di (n', p; s) defined by the follow-

ing iterative procedure:

and

lim ai(p', p; s) =cp"

lim
~

ai(p', p; s) (
=0.

(36) for m~& 2. Here, in order to make our integrals dimen-

sionless, we have de6ned new quantities 0 and p~ by the
relations

u(P) =—u(Pp),
Ke de6ne the contour C~ to be along the large "rec-
tangle" formed by the lines Imp'= &M and closed at
&Rep'= 00. Applying Cauchy's theorem to the function
ai(p', p; s)/p", we have

ai(p', p; s) 1 dp"ai(p", p; s)
M (37)

a~ P"'(P" P')—
where Zd, ,j,~ represents a sum of integrals taken along
the cuts of ai(p', p; s) within C~. The procedure above
has provided the information to calculate Zd, ,I,~ and
shown us that ug has no poles. The integral term is the
only unknown in Eq. (37), which is exact. If we take
the limit M-+ ~, the integral vanished by (36), while

Zq;, t,
~ approaches a well-defined limit. This establishes

pi(u, P; P) =(Il~)pi(~n pP;6 u P, i —0 P)——

e"-(~')

Q

XP
i
1+ i. (42)

2(n+ip/y, )(p+ip/p)1

fi(v's)+f'i( v's)—
ai(V's, V's; s) =

1+ (V )f ( V's)—(43)

with

fi(v's) =«(V's v's —s)'
The solution for on-shell amplitude ai(V's, gs; s) has the
particular form
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It is easily proved that the infinite sum defining
ri(p', p; s) in Eq. (39) converges for all p and p' such that
p/@Win, (p&p')/@Win, where 1&~n(~. The integrals
involved all exist due to (29). For the on-shell ampli-
tudes, the expressions defining ji(&gs) converge for all
s except the left-hand cut, Ims=O, —~ (s/p'( —~.
We defer a proof of this until Sec. V, where we will also
allow i to become complex. (We have derived the above
result assuming i to be an integer. )

f(k,O) =1—irrk jt(k).

Considering the special case k= 0, this becomes

"dn de"(n k)
f(k,0)=1+2~' P

n(n+ i2k/p)
with

(4g)

(49)

In a fashion similar to Eq. (22), the function fi(gs) is
related to the Jost function by the equation

IV. SUPERPOSITIONS OF EXPONENTIAL
POTENTIALS and

de'(n; k) =p(n)

In this section we discuss briefly the modi6cation
needed in the work of Sec. III to deal with potentials
of the form

de"(n; k) =2~'8(n —m)

.-' dp p( p)-
d m—l(p. k)

i P(P+i2k/p)
(50)

V(r) =2~r dn p(n)e
—". (44,)

We shall be interested primarily in comparing the result
with previous results found by Martin. " '

The derivation given in Sec. III is valid for the above
potential, provided that we require that

~ p(n)
~

(Cn' ',
with e)0. It is convenient to distinguish two cases: If
p(n) is diGerentiabie, we define o.(n)—=dp(n)/dn+p(p) X
b(n —p) and proceed exactly as before; if p(n) is not
differentiable, we delne the function

p&2+ p2+n2)
~i(n' p p') —=p(n)&t

Co ~2 2 2

X dP Pp(P)I't'I I, (45)
2pp' )

where Ei'(r)) =dpi(r))/dry. The solution is identical in

form to the result of Sec. III, except that pi(n; p', p) is
replaced everywhere by Et(n; p', p), and

If we now define a function ft.(n) such that

2'"
fe(n)=— 2 do"(n; k),

n(n+i2k/p) ~=i

the Jost function can be expressed as

(51)

f(k,0)=1+ fg, (n)dn (52)

X 2 ' ( —P)f (P)dP. (53)

Equation (53) is identical with the result which Martin"
obtained for this problem, although we have derived it
from a completely different point of view. In Martin' s
work, it is assumed that U (k,r)=—e '~"f(k,r) is a solu-
tion of Schrodinger's equation, and that

Alternatively, we may regard f&(n) as being the solution
of the integral equation

n(n+i 2k/p) fi (n) = 2rr'p(n)+ 8(n 2)—

d'(; p; )=.-(.)+ .
(ip/p) (n+ip/p)

n2 p2

dPPp(P)I 1+
2(ip/P) (n+ip/P)

with p(n) =p(pn)/p. —
In particular, the solution for the on-shell amplitude

is given by Eq. (42), with

—2~ 'gs) t-t
z S =&z S, S;S

dndi (n;gs; s)
. (4n"-' i E~+i(V'e)/p j'nLn+i2(V'e)/p j

' A. Martin, Nuovo Cimento 14, 403 (1959).' A. Martin, Nuovo Cimento 15, 99 (1960).' A. Martin, Nuovo Cimento, Suppl. 21, 157 (1961).

f(k, r) = 1+ p„(n)e-""dn,

with f(k,0) =lim„e f(k, r). Equation (53) is then ob-
tained by substituting Eq. (54) into the Schrodinger
equation and making use of the properties of Laplace
transforms. In a later paper, ' Martin extended his result
to the case of higher partial waves, lNO.

Our solution to the superposition problem, therefore,
is not new, although it does possess several advantages.
Among these are an explicit form for the o8-shell am-
plitude, and a form for /~0 which is considerably more
compact. The latter is particularly convenient for study-
ing analyticity in the / plane, as we shall show in Sec. V,

However, the most important feature of our result is
that we have derived it directly from the integral equa-
tion (24) without reference to the associated differential
form, i.e., the Schrodinger equation. For this reason, our
method is extensible to more general integral equations.
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7. EXTENSION TO COMPLEX ANGULAR
MOMENTUM

In Sec. III we obtained an explicit representation for
the partial-wave amplitude at(gs, Qs; s)—= Tt(s), which
is valid for superpositions of Yukawa potentials. In de-
riving this result we assumed l to be a positive integer
and that 0(Im(+s)(p. We shall now show that our
expression for Tt(s) is a meromorphic function of I for all
complex I, for all fixed s except the left-hand cut
—~(s(—~p, 2. It is convenient to use the variable
k—=gs and to write Tt(s) in the form Xt(s)/Dt(s),
where we have established that

The constant C~, so de6ned, is independent of 0, and n,
depending only on L By making use of the following rep-
resentation for the I'~ function, ' we can put a bound on
C).

Pt(s) =— Ls+(z' —1)'t' costj'dt.
0

(61)

I
p (&) I

(eltstrl&+tat&le+(& i)1/21 (62)

Equation (61) is valid for all I, and all s except the
negative real axis. For our purposes here we will always
have Res) 0. Consider first Ret) 0. Letting I=li+il2,
it follows that

&t(s) = A(k)+A( —k)

D (s)=1+i kft( k)— (55)

in Eq. (43).The function A(k) is analytic in k in the cut
Plane Rek =0, saP& Imk( ae, and is given by (47), which
we repeat in the form

Thus

with

Q (er 4 sup (elg R a, P, tt' )
a, P, P'

P+ik/p
&(.,pP) = L+("-I)"'3

n+ik/p,
(63)

ft(k) = —(2sr/p) (ik/tt) '-'

dn dim(n; k; s)
(56)

(a+ik/p) 'n(n+ i2k/p)

where

I.(i,k) = dt"(n; k; s)

(a+ ik/p) 'n(n+i2k/p)

From Eqs. (41) and (42) it follows that

di"(n; k; s)
&2sr'8(n n)

Cga-

'

(+

ikk/tt)

'

dp' n(p') I. i(t,k), (58)

where we have defined

(P+ik/p)' — ( P)' P"--
Ct= sup I't I+ (59)

(n+ik/p) ' 2(a+ik/p)(P+ik/p)

to be the maximum of the absolute value shown in (59)
for all n and for all P, P' such that

It is clear from (41), which defines dt (n; k; s), that
each integral is well dehned unless k is on the cut. In
fact, since Et(s) and x are entire functions of /, it is easy
to show that each term of the sum in (56) is an entire
function of I and analytic in k in the cut k plane. The
same will be true of A(k) provided that the sum con-
verges uniformly.

To prove this convergence we write

2sr ik)' '1

I A(k) I
&——

I 2 1.(I,k),

dp' u(p') & (n m+1)—i (64)

(Here we have chosen 0& e(1,which is always possible. )
Ke also have

"dn(n —nt+I)' '

nIn+ik/p I

- d«-&~+ ~

(65)
A enz'

where'=2ifImk(ap'~= IRekI/IkI if Imk)-,'p. Re-
turning to (58) and making use of the above estimates,
we finally obtain

1/ 2~'K )I„(t,s)(—
I Ie 1ts1+"~I„ i(l s) .

rt'Ue(1 —e)f
(66)

This is sufIicient to prove the uniform convergence of

Q~ 2 2

2(a+ik/p, )(P+ ik/p)

Making use of (60), it is easy to establish that Ct is
6nite for all k not on the cut. In particular, for k re-
stricted to the region Imk (p, we find that

P+ik/p0( Ls+ (s2—1)»sj (1
a+i k/p

as a purely algebraic consequence. We may therefore
regard C~ as being of the form C~&e I "t+"& where 5(0
for Imk(p, . For Re/(0 we may establish a similar
bound by a simple modification of the above analysis.
The important observation is that z+(s' —1)'t' cost is
bounded from below for all values of the parameters,

We have restricted
I
a(n)

I
(En ', so that

a—tn+1

1(P(n—P',
1&/'& o.—1. (60) H. Bateman, Higher Trartseelderttat Fstrtetiorts (McGraw-Hill

Book Co. Inc., New York, 1953), Vol. 1, p. 155,
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(56), providecl that (ik/p)' 'Ii(l, s) is bounded. An
analysis similar to the above then shows that

(
ik)' X—

I
I,(l,s)& ~m f Z2(~5'ZI

is ) Ae(1 e)
(67) I

—I
I

2

jP(k) =
—2rrlik '-'

Is ~Is

dn di'(n; k; s)
(68)

(o+ik/p) 'rr(o. +/2k/p)

We have thus established that fi(k) is analytic in k for
k in the cut plane and analytic in / (except possibly at
infinity). It follows from (55) that Ni(s) and Di(s) are
analytic in /, Di(s) is analytic in k for k not on the
lower cut Rek=0, —oo &Imk& ——,'is, and Ni(s) is
analytic in. k for k in the doubly cut plane Rek=0,
-,'~& IImkI & ~.

The analyticity properties in s and k are, of course,
well known for potentials of this form. What is more
interesting is the analyticity properties we have estab-
lished in the complex / plane. We note in particular that
the analytic properties shown by Regge' (and subse-
quently Calogero "'s Martin, " etc.) involve only
Re/& ——,'. The importance of proving analyticity in the
left-half / plane is that the Regge representation of the
scattering amplitude contains a so-called background
integral. This background integration can be pushed
farther to the left if Ti(s) is known to be analytic for
Re/& —2. With this end in mind, Mandelstam' proved
such analyticity under the condition that the weight
function a.(n) decreases exponentially as rr —+ ~. Our
restriction (29) on o.(n) is much weaker, and the result is
manifestly given in Eq. (56).

To prove the Regge representation it is necessary to
show that

I Ti(s) I~ 0 as I
l I-+ ~, Re/) —s.Thisinvolves

proving the limit for both Rel~ ~ and IIm/I ~ ~.
Calogero ~" under essentially equivalent conditions on
o(n), established both results for all k in the doubly cut
plane. More precisely, however, it has been conjectured
that the Born term TP(s) = Vi(k, k) dominate—s as
I
l

I
~ ao, for some domain in k not yet precisely estab-

lished. This has been shown by Regge' for Rek, and for
Re/& —rs. Beginning with Eq. (56), and utilizing some
of the estimates derived earlier, we will give a simple
proof that Ti(s) —+ TP(s) as

I
l

I

—+ ~, for s in the para-
bolic region IIm(gs) I &is. We have plotted this in
Fig. 1. The result is valid in any direction such that
I arg(/ —/s) I

&-,'s., where ls is any (finite) complex num-
ber. We note that this is in agreement with the result of
Cheng and Wu, '4 who showed that gi(&k) increases
exponentially when -', rr&arg/&ssrr, for IlI —+ ~. Thus
we have proven our result in the maximum allowable
region.

We begin by de6ning

I

2

so that

Fro. 1. Domain in k plane where Ti(s) -+ TP(s)
as Il~ ~ ~ (shaded area).

If (k)-A (k) I
- I.(l,k)

(69)
(2-/. ) I('k/. )' 'II (/, k)-.- I (/, k)

Here I (/, k) is given as before by (57) and we may make
use of the estimate given in Eq. (66). It follows that

I.(l,s) ( l&m c88 Rez —0
Eel~a& I (/ s) Eel~co

(70)

since we have established that 8&0 for Imk(p. From
(67) we find that I(ik/p)'IIr(/, s) also decreases expo-
nentially as Rel —+ 0o. Together with (70) this implies

lim
I f((k) —fP(k)I=0,

Rel ~oo (71)
hm

I
j'P(k)

I
=0,

ReZ~oo

for any Axed Im/, provided that Imk &p. The latter con-
dition has been chosen primarliy as a convenience to
simplify the algebra involved in proving 8&0; it should
be possible to extend (71) to a larger domian in k.

We have thus shown that Di(s) ~ 1 as Rel —+ ~, for
Imk) —is. For

I
Imk

I
&p, , it also follows that

lim Ni(s) =gP(k)+ fi (—k) . (72)
ReZ~oo

We must now demonstrate that the right-hand side of
(72) is indeed the Born term NP(s) = Vi(k, k). Using the-
definition of di'(n; k; s) as given in (41), we may rewrite
(68) as

2rr(ik ' '
fi'(k) = ——

I

— dl/ o(P)
Is ~Is

"drr Pr $1+(ns —P')/(2/k/is) (u+ik/is) j
X (73)

(n+ik/p) 'n(n+2/k/p)

De6ning the complex variable
"F.Calogero, Nuovo Cimento 28, 66 (1963)."F.Calogero, Nuovo Cimento 28, 761 (1963).
3 A. Martin, Nuovo Cinmnto 31, 1229 (1964).

'4 H. Cheng and T. T. Wu, Phys. Rev. 144, 1232 (1966).
9——I

(2ik/u) (n+ ik/p, )
(74)
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and using Pl( r/—)= (—1)'Pl(r/), we may rewrite (73) in the form

f '(k) = 27' p
dt/.-(~)

k2 &(~2 1 gas/k2) 1/2

Pl(n)
X- = (75)

r/+ (r/2 1 Ps@2/k2) 1/2jl —1{P5+ (52 I Ps+2/k2) 1/2 j2 1}

The r/ integration is along the contour defined by (74) as n varies from P to ae . Considering the analogous expression
for jP(—k) explicitly, we obtain similarly

2x'p
A'( —k) = 4 (//)

(1/2 1 p2/12/k2) I /2

c'

Pl(n)
X —,(76)

Lr/+ (r/2 I Pcs/k2) 1/s jl—1{(0+ (92 I Pcs/k2) 1/2js I}
where the contour now is given by

lr2 ps

(2ik//1) —(n ik/P)— .

as n varies from P to ae .We have taken the square-root branch line in both (75) and (76) to be along the positive real
axis of its argument. It follows that we may distort the contours as we choose, provided only that we'keep Imp'&0.
We may then combine (75) and (76) to obtain

A'(k)+8'( —k) =— &// (P)
1 (1Is I Pcs/k2) 1/s

Pl(r/)
X (77)

Lr/+ (r/2 1 Ps~2/ks) 1/2]l—1{L~+(r/2 1 Psps/k2)1/2j2 1}

2&p
fl'(k)+5'( —k) =

P2/12

d//. (//)Q I
1+ l. (78)

2siS 1

Since we have defined 0(P)=0 (P/a), the right-hand side
of (78) is identical with the expression for Vl(k, k) given
in (24) with p'= p =k. We thus obtain the desired result:

The second integration in (77) may be performed ex- Imk(1, —Im/~ ~; (b) Rek)0, Imk)0, —Im/~ ~;
plicitly, and (77) thus reduces to and (c) Rek(0, Imk(0, Im/~ ae.

Considering first case (a), we refer once again to Eqs.

lim /1/l(s) =/l/ls(s) = Vl(k, k),
Rel ~oo

lim Tl(s)=TP(s)=iVP(s),
Ref~no

(79)

valid for region ~Imk~ (/a, which we have plotted in

Fig. 2.
It remains to prove the dominance of the Born term

in the limit ~Im/~ ~ ae for fixed Re/. In establishing
this, it will prove advantageous to employ the so-called
extended unitarity relation

(80)

which follows directly from (56) and the representation

(61) for the Pl function. It is then necessary to consider
only three distinct cases, all with fixed Rel: (a) Rek(0,

FIG. 2. D0111ain in s plane where T& (s) ~ Tp(s)
as )l~ ~ ~ (shaded areal.
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pIG. g. Domain in k plane where(i(k) ~fPQ)
aa Imt ~ —~ (shaded area). pro. 4. Domain in k plane where Ji (&) ~gP (k)

as Iml ~ +~ (shaded area).

(58) and (59).Denoting the argument of the Pi function
in (59) by z, we may easily show that

argL(P+ik)/(n+ik) (&0
and

argLz+(z' —1)'I' cost//z&0. (81)

It follows that C~&ce ~' ' as —Iml —+ ~, with 8(0.
We may employ the remainder of our estimates without
change to obtain

I„(t,k)
lim -- =0' '""I r(lk)

(82)

Equation (69) establishes that

lim fi(k) =jP(k), (83)

for Rek(0, Imk(. 1, and Rel Axed.
We prove cases (b) and (c) by showing that

lim P di"(n; k; s) =di'(n; k; s) (84)

in either case. To do so we recall that

di"(n; k; s) =2s'8(n —nt) dp' e(p')

a—P' dP
PI 1+

i P(P+i2k/p) 4 2(n+i k/ti) (P+ik/p) J
( p)'-

Xd™1(p k s) (85)

Denoting the argument of the Pi function in (85) by z,
we easily find that argus+ (z' —1)'ts costj(0 in case (b).
and arg/z+(z' —1)'I costj&0 in case (c). From (61)
it then follows that

lim (
di"(n; k; s) (/ [di"- (n; k; s) (

= 0

in either case, establishing (84).
Having proven our three particular cases, it is trivial

to obtain the final result. We find that ji(k) ~ fP(k)
as Im/~ —~, for all k except the region Rek&0,

Imk) p. This is shown in Fig. 3. The limit also holds as
Iml-++Do for k not in the region Rek&0, Imk&p,
plotted in Fig. 4. From (55) it then follows that

lim Ti(s) = TP(s)
i&l

(86)

for ~Imk( (ti, (arg(t —Eo) ( (~7I.
We note that (86) is valid for any fixed Ret&0,

~
Imt j

~ ~, which has not been obtained elsewhere to
our knowledge. We also observe that in the region where
our result duplicates the results previously quoted, we
have demonstrated a particularly simple direct proof.
It would be interesting to use our representation for
Ti(s) to obtain the other Regge results, but it is less ob-
vious how to proceed. Instead we shall turn to a dis-
cussion of other promising areas of application.

T(u, «) = l'(u, «)— T(i,«), (87)
(k'+1)'" k' —z

I'(p, «) =g'/L(1i —«)'+t 'j.
~~ R. Blankenbecler and R. Sugar, Phys. Rev. 142, ioSi 1966 .

VI. ADDITIONAL APPLICATIONS

Although the previous discussion has been restricted
to potential scattering, the method developed is not.
The same technique may be applied to many integral
equations of physical interest. This is because the pri-
mary requirement for applicability is that the kernel
and inhomogeneous term have simple analytic proper-
ties. This is almost invariably the case for scattering
equations. In fact, from the point of view of solving suc
equations, the only important restriction is that the in-
tegral equation be one-dimensional. This excludes direct
application to equations such as the Bethe-Salpeter
equation. However, the method is applicable to the
various approximations to the Bethe-Salpeter equation
which are reducible to one dimension.

A particular example is the equation proposed by
Blankenbecler and Sugar. "They consider the Bethe-
Salpeter equation for scattering of two unit-mass par-
ticles by exchange of a particle of mass p. By introducing
an approximate Green's function they derive an equa-
tion of the form
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Here the on-shell. condition is p'= q'= s, where s—= i4s —1,
and s is the square of the c.m. energy. Equation (8/) has
exactly the form of the LS equation for a Yukawa po-
tential except for the factor (k'+1) 'I'. We may project
out partial waves in the usual way to obtain

og

dpfl pl/ 2
~~(p', P; s) = ~~(p', P)

p
l/2

I (P',p")~ (P",P; )X, (88)
(P"'+1)"'

with
g' (P"+P'+I"t

I'(p', p)=,Q I

pp' ~

Except for the (p"'+1)'~' factor, Eq. (88) is the same as

(24) with 0 (n) = (g'/2m)8(n —p). However, as Blanken-

becler and Sugar point out, the square-root factor
severely complicates the analytic structure. The second

Born approximation of (87) contains a left-hand cut
starting at s=4—4(1+p)'. This is not present in the
correct second Born term as calculated from the original

equation. However, an explicit calculation by Blanken-

becler and Sugar found the relative difference to be less

than 10% at threshold and decreasing above threshold

(s=4).
If we begin with (88) and proceed as in Sec. III, we

again arrive at (34), except that now

Pi(n; p') =
gpll plf

g2 p"+ (-p' i )'+—p' (-p' —in) & i(p' —in, p; s)

2n 2p'(p' —in) L1+(p'—in)' ]'" (P' —in)' —s

(g'/2m) /P+P +&lIl
—.p"'—s (P"'+1)'"(P'—P"—i —i ) (O' —P"+~)

for n(Imp'(p+n. Just as before, (34) and (89) provide
us with an iterative scheme for calculating the singu-
larities of A ~(p', p; s). It is evident from (89) that the
additional square-root factor will affect our result in two
ways. The first is trivial and merely involves putting an
extra factor in the discontinuity formulas derived previ-
ously. The second is more serious and arises from the
branch cut of the square-root function. To insure that
the (p"2+1)'I' term in (88) is well defined for real p"
we take the cut along p"'+1&0; or Rep"=0,

~
Imp"

~

&1. It then follows from (89) that F~(n; p') will have
a cut along p'=i(x+n), with x&1.

The result is that Ai(p', p; s) has all the cuts found
previously in Sec. III, but with slightly modi6ed dis-
continuities. In addition, it has a cut along the imagi-
nary p' axis for jImp'~ &1+@.The discontinuity across

this cut is not given explicitly, although it is possible to
develop an additional iterative scheme to compute it.
We shall show, however, that it is consistent with the
approximations already made by Blankenbecler-Sugar
to ignore it.

The off-shell solution to (88) can be written in the
form

~ (p', p; )= (p', p; )+(—I)"(p', p; )—
—(—I)' (v') (P', —4; )~ (v',P; )

" f~(p'*)

i+8 P ++

where the last term is the contribution from the new cut.
The function r&(p', p; s) is given by (40), with

and

g2

dP(n; p; s)= Pi 1+
2(ip// ) (n+ip// )-

(91)

X'g

d("(n; p; s) = 0(n —m)
p

'&/3~(1+L( 0)' 1jl2( +—P/~)—(P+ P/N))d" '(p P

m—1 L1 (&~+ip)'3"'L(&+—ip/~)'+s/I" j

If we now put p' on-shell, we have p"=s= 4s —1. From
(90) we see that the last term will produce a left-hand
cut in s for s&4—4(1+p)'. In view of the discussion
prior to Eq. (89), we observe that this term cannot be
large. It is consistent with Blankenbecler and Sugar to
drop it altogether. By doing so we obtain an e6ective
solution to (88) which is a simple modification of our
earlier results for potential scattering. In contrast, Eq.

(88) is suKciently different from the LS equation to pre-
clude the application of standard methods. The associ-
ated differential form is exceedingly complicated, unlike
the extensively studied Schrodinger equation. In such
cases our method should be especially useful.

In addition to relativistic two-body equations such
as the above, some especially interesting applications
can be found in the field of many-particle equations.
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The ability of this method to generate o8-shell solutions
becomes extremely important for this purpose. For ex-
ample, off-shell two-body solutions such as those ob-
tained in Secs. II and III become the input for equations
describing three-particle scattering. The resulting three-
body equations may then be solved directly by the same
approach. Preliminary results for a particular set of such
equations indicate that the method may prove espe-
cially valuable in this context. These results and a dis-

cussion of additional possibilities will appear in a forth-
coming paper with R. F. Peierls.
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A mirror relation is defined as I.(x„yb, s„ws) = vL(s„we, x,yb), with v =+1 or —1, where I.(x„yb, s„we)
is an observable for an arbitrary four-particle reaction a+9 —+ c+d, and x, denotes the polarization state
of particle u, etc. Invariances under the transformations P (space reflection), T (time reversal), C (charge
conjugation), 8 (detailed balancing), and products of these, are considered. First, the types of reactions
are listed which transform into themselves under any one of these transformations. The 3II matrix of
these self-transforming reactions will therefore be restricted by the requirement of invariance under these
transformations. This allows a study of the validity of a particular conservation law using one single re-
action. The restriction on the M matrices of one kind of self-transforming reactions can be expressed very
simply in terms of the requirement that the number of occurrences of each of the three unit vectors used
to span the space of momenta be either even or odd throughout each term of the M matrix. Under the
transformations T, PT, TB, TC, PTC, TCB, PTB, and PTCB, these restrictions are expressed in terms
of the number of one of the unit vectors or in terms of the sum of the numbers of all three unit vectors.
We call these transformations of the odd type. On the other hand, under transformations P, B, PB, PC,
CB, and PCB, the restrictions are expressed in terms of the sum of the numbers of two unit vectors. We
call these transformations of the even type. Under transformations of the even type, about half of the
observables identically vanish. It is then shown that mirror relations among all observables arise under
any of the transformations of the odd type. On the other hand, the only reaction for which mirror relations
hold for all observables as a result of any of the transformations of the even type is the reaction 0+~

—+ 0+~.
The factor n for mirror relations for the odd type is shown to be (—1)'e, where as is the sum of the numbers
of those types of unit vectors appearing in the observable that are involved in characterizing the restriction
of that particular transformation on the M matrix of its self-transforming reaction. It is shown that in
order to distinguish among invariances under the various transformations of the odd type, observables in
the eve or ooo subclasses are useless, and the observables in at least two other subclasses must be measured
in order to pick out unambiguously the transformation under which the reaction is invariant. As a by-
product, the number of terms in the M matrix of a self-transforming, but otherwise arbitrary, reaction
under any of the various transformations is derived, thus generalizing the results of a previous paper.

I. INTRODUCTION

q
XPERIMENTAL tests of the validity of conserva-

~ tion laws and the determination of quantum num-
bers of particles with respect to such conservation laws
have been, and continue to be, in the center of interest
of particle physics. Among such tests, some are com-
pletely independent of the dynamics of the reaction
under investigation and hence have a solid foundation
even in instances when our knowledge of the interaction
among the particles in the reaction is fragmentary, such
as is the case in most of elementary particle physics.
Such tests are called nondynamical.

~ Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

t Present address: Institute of Theoretical Science, University
of Oregon, Eugene, Ore.

Among such nondynamical tests, there is a type which
is particularly simple. In general, nondynamical tests
involve linear relations among a number of observables.
There are, however, tests which involve only two ob-
servables, and in fact are of the type

~(Xa&3 bi S~&~d) t~(xe&~@i X&V b) &

where rt is +1 or —1. The notation here is as follows:
L(x„yb, s„wd) denotes an observable for a four-particle
reaction a+ 5 -+ c+d, and the spin states of the particles
a, b, c, and d are characterized by x„y&, s., and ~&,
respectively. Connections of the type (1.1) among ob-
servables are called mirror relations.

Mirror relations constitute particularly convenient
tests of conservation laws, since they involve only two
observables. Furthermore, when used to determine


