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The relations among the superconvergence conditions for the forward elastic scattering of two particles
with spin are discussed. Because of the existence of identities among the t-channel helicity amplitudes at
t=0, the corresponding superconvergence conditions are not independent. It is shown that there exists a
set of t-channel helicity amplitudes with the following properties: (1) The corresponding superconvergence
conditions are independent; (2) the superconvergence conditions for any other t-channel helicity amplitude
are linearly related to the superconvergence conditions for this set of amplitudes.

The forward amplitudes in group A satisfy the
following identities:

I. INTRODUCTION
' 'T has been shown by Truernan' how to obtain super-
& ~ convergence conditions' for arbitrary spin in a
general way. The idea is to construct amplitudes free
from the s kinematic singularities directly from the
t-channel helicity amplitudes. The f-channel helicity
amplitudes are kinematically-independent except at
values of s and t where higher symmetry exists, for
example, the forward elastic scattering. In the case of
forward elastic scattering, it is well known that the
t-channel helicity amplitudes are related to each other. 3

Therefore, the corresponding superconvergence condi-
tions must also be related to each other.

The relations among the superconvergence conditions
for forward elastic scattering are investigated in a
series of papers. In the previous paper, 4 we discussed
the general properties of the forward amplitudes and
investigated the special case where one of the scattering
particles is spinless. In this paper, we shall consider
the elastic scattering of two particles with spin and
discuss the linear relations among the t-channel helicity
amplitudes at t=0. The linear relations among the
derivatives of the t-channel helicity amplitudes at t=0
are discussed in the following paper.

A brief review of Ref. 4 is given below. I.et us consider
the elastic scattering of the particles tt (spin J, mass M )
and b (spin J, mass Ms): tJ+b —+ tt+b. Their helicities
are denoted by n, p, n*, and p*, respectively. We use
the convention J&~ J'. The crossed channel is defined
to be b+b —+ a+a where a means the antiparticle of a
and the corresponding helicities are P', P", tr', and n",
respectively. The square of the invariant mass in the
direct (crossed) channel is denoted by s(t). The s-
channel helicity amplitude f *p* p'(s, t) has the kine-
matic factor t~"* &'~ts where X*=cr—p and tt*=n*—p*.
The t-channel helicity amplitudes f,p p. '(s, t) can
be divided into two groups according to whether the
numbers X+tt ()t=cr' —tr", tu=P' —P") are even (group
A) or odd (group 8).

* Supported in part by the U. S. OQice of Naval Research.' T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966).' V. de Alfaro, S. Fubini, G. Rossetti, and F. Furlan, Phys.
Letters 21, 576 (1966).' See, e.g., M. L. Goldberger, Comments Nucl. Particle Ph s.
j., 63 (1967).

e K. Y. Lin, Phys. Rev. 163, 1568 (1967).

f ..-,p.p-'(s, o)d.-. (sar)dp-p '(-', m)
I II pl pll
) +p =even

Xd;.*'(,'~)dp -p* '(sw)-
=0 if A*&p*)

=f.*p...p (p, o) if )~*=t *. (1)

Xd. .* (-',~)dp p* '(-', w)

=0 if ))*—tt*) A1,
=f,...,* (.,o) f )x*—t*)=1, (2)

where the modified s-channel amplitudes f *p» p*'(s,o)
are defined in Ref. 4. Hereafter, we shall call the
t-channel helicity amplitudes in group A and the
modified t-channel helicity amplitudes in group J3 the
t amplitudes.

The s kinematic factor of the t amplitude is given bys'
Ls—(M, Ms)s]t~~+&~P [—s (M,+Ms)']—~" "~t'. We shall
call the redefined amplitude, which is free from this
factor and (in the case of group 8) the factor t'I', the
invariant amplitude.

In the rest of this paper, we shall use the following
simplified notations:

d(nn') =d .l(-,'7r),

~(-*P-p)=f-*p,-p (,o)
=0

if X*=p,*,

if X+tt =even,
if h+tt = odd,
if
if X*—p* Q1.
if X+tu =odd,
if )t+tt =even.

T(n'ot"P'P") =f..- p.p. '(s,o)
=0

~*( *p* p) =f:p*.-P (,0)
=0

T*(ot'ot"p'p") =f ~ "pp"*'(s,o),
=0

' Y. Hara, Phys. Rev. 136, B507 (1964).
'L. L. C. Wang, Phys. Rev. 142, 1187 (1966).
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The amplitudes in group 8 have the kinematic factor
t'" and vanish at t=0. However, the rnodified ampli-
tudes f*'=f't 'I' do—not vanish at t=o. The forward
amplitudes f' (s,o) satisfy the following identities:

f- -- pp-*'(.p, O)d---'(s~)dp-p'(s~)
I II pl pl I

'A+fM, =odd
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Under parity symmetry, we have'

Time-reversal invariance implies that F(a*P"nP)
=F (uPo.*P*) and F*(n*P"aP)= F*—(nPn*P~). These re-
lations plus the crossing relations imply that T(n'o."P'P")
= T(n"n'P"P') and T"(n'a"P'P") =—T"(n"n'P"P') The.
s-channel forward amplitudes F and Ii* are kinematic-
ally-independent if those amplitudes related by parity
symmetry or time-reversal invariance are considered as
the same amplitude.

In general, we have several superconvergence condi-
tions for each invariant amplitude. Since the t-ampli-
tudes are not independent at t=0, the corresponding
superconvergence conditions are related. The special
case of J'=0 is studied in Ref. 4. In general, there are
several t-amplitudes which have the same s kinematic
factor; it is shown that only one of them needs to be
investigated. However, the superconvergence conditions
corresponding to t-amplitudes with diGerent s kinematic
factors are independent. In this paper, we generalize
this result to the case where J'/0. It is shown that
there exists a set of t-amplitudes with the following
properties (hereafter referred to as P1 and P2 respec-
tively): (1) They are independent. (2) Any other
t-amplitude is linearly related to them with constant
coeS.cients, and the corresponding s kinematic factor is
the common factor of all terms with nonvanishing
coefficients. The first property means that the super-
convergence conditions for this set of amplitudes are
independent. The second property means that the
superconvergence conditions for any other t-amplitude
are linearly related to the superconvergence conditions
for this set of amplitudes. 4 Therefore, we have the
following conclusion: Ie order to obtain alt Azdepertderft

supercouvergeuce conditiorts for the t amplitudes a-t t=0,
it is sufhcient to consider a particular set of independent
t amptitudes. -

In Secs. II and III, we shall discuss how to select a
set of amplitudes from group A (8) which satisfy these
two properties. In general, it is not sufficient to consider
just one amplitude among all t-amplitudes having the
same s kinematic factor. The mathematical details are
given in the appendices.

II. SUPERCONVERGENCE CONDITIONS FOR
THE FORWARD AMPLITUDES IN

GROUP A

In this section, we shall consider the forward ampli-
tudes in the group A. The total number nf independent
forward amplitudes in group A is the same as that of

~ M. Jacob and G. C. Kick, Ann. Phys. (N. Y.) 7, 404 (1959).

p=0, X=0241 7 1

In Appendix I, we shall prove that this set of ampli-
tudes have the properties P1 and P2.

In the case where J'& —', is more complicated, in order
to obtain a complete set of independent amplitudes, it
is not enough to choose just one amplitude among all
amplitudes which have the same factor. For example,
let us consider the case of J'= 1. We choose one ampli-
tude from each subgroup of amplitudes which are
classified by

p, =0, X=0;
p, =1, X=~1, &3, etc. ;
p, =2, X=O, ~2, etc. ;

t =0 (P'=1, 0), X=2, 4, etc.

These amplitudes satisfy the properties P1 and P2
(see Appendix I).Notice that we choose two amplitudes
which are classified by the same set of X and p if +=0
and) &~2.

In the general case, the amplitudes which satisfy
the properties P1 and P2 can be chosen in a similar

way. We divide the t-amplitudes into several subgroups.
The amplitudes in each subgroup have the same ) and

p. Ke use the convention that X&~ 0 since the subgroup
of amplitudes classified by 'A=m, p, =e is identical to
the subgroup of amplitudes classified by X=—ns,

p, = —e. In general, we choose several amplitudes from
the subgroup of amplitudes which have the same X and
p. The number of amplitudes chosen from the subgroup
of amplitudes classified by X and p, is denoted by
1V(X,u).

In general, we have (remember that X+u=even
and J&~ J'):
Ã=-', (Z—~u[)+1 if 2J'&Z&~ ~p~,

=-,'(fp/ —)) if fu f)X,
=1+~(2J lu I) if X)2J' and X+2J'=even,
=

~ (2J'—
~ p ~+1) if X)2J' and X+2J'=odd.

the s-channel forward amplitudes F(n~P~nP). This
number is

E(2J+1)(2J'+1)(2J'+2)
—2J'(2J'+1)(2J'+2)3 '+e]4 '

where

v =2J'+1 if both particles are fermions,
=2J'+2 if both particles are bosons,
=0 otherwise.

The simplest case of J'=0 is discussed in Ref. 4. Let
us consider the next simplest case, J'= —,'. A set of
independent t-amplitudes of group A can be chosen in
this way: Let us choose one t-amplitude among all
amplitudes which have the same kinematic factor. In
other words, the amplitudes are simply classified by
(i&i &2J)
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TABLE I. The numerical values of Z(X,p) for the case of J'=3. TABLE II. The numerical values of N(X,p) for the case of J'=-', .

0
&1
+2
&3

wS
~6

0 1 2 3 4 5 6 2m~ 2~+1
1 2

2 2

0
&1
+2
+3
~4
+5

am)~3

0 1 2 3 4 5 2m 2m+1

3

The numerical values of E for the cases J' =3 and J' = ~

are given in Tables I and II, respectively. If S is bigger
than i, the amplitudes are chosen in this way:

P'(i) =J'—i+1, i=1, 2, , N —1

J' N+1 ~&
—P'(N) ~& J'+

I p'
—

I +N 1, —(3)

if X&p&~0; replace P' byP" in (3) if X)—p)0; replace
P' by n', J' by J, »d q by ) in (3) if

I ~ I ».
In Appendix I, we shall prove that the amplitudes

chosen in this way satisfy I 1 and I2.

N*=
I (l~l —

ls I) I+1
= l(1+2J'-

I ~ I )
=1+»'—

I u I

= r (2J'—li" I)+I

=l(»' —I~I+1)

lul &2J' and l~l &2J'

if II" I
=2J' and IP I

2J',

if J+J'=half integer

and X=2J,
if J+J'=integer and X=2J;

III. SUPERCONVERGEN CE CONDITIONS FOR
THE FORWARD AMPLITUDES IN

GROUP 8
In this section, we are concerned with the forward

t-amplitudes in group B. The total number of in-
dependent amplitudes is —', (N —2J'—1) if both particles
are fermions or bosons; otherwise it is ~~ E, where
N= (2J+1)(2J'+1)'—sJ'(2J'+1)(2J'+2).

The simplest case of J'=0 is discussed in Ref. 4.
In order to obtain all independent superconvergence
conditions in this case, it is sufFicient to consider just
one amplitude among all amplitudes having the same
kinematic factor. In the general case where J'&0, we
have to choose several amplitudes from the subgroup of
amplitudes which have the same X and y.

A set of amplitudes satisfying I i and I2 can be
chosen in the following way. I-The proof is given in
Appendix II and the number of amplitudes chosen
from the amplitudes classiied by X and p. is denoted by
N*(X,l'). The subgroup of amplitudes classified by X

and f" is identical to that classified by —), and —p.)

n', J, X, respectively, in (4) if
I p I N 2J' and

I p I )'A & 0;
P'(~) =P'(~+ ', N* -', )=—J—' ~y1,

n= 1, 2, , —,'N*——,', (5)
J' sN*—+s ~&P'(N*) &~

—J'+ I~I+sN*—s

if 2J)X)p~& 0 and N* odd; replace P' by P" in (5) if
2J)X& —p &0 and E*=odd;

P'(e) =J'—e+I, e= 1, 2, , N*—1,
J'—N*+1& p'(N*) & —J'+

I f I +N*—1, (6)

APPENDIX I ' RELATIONS AMONG THE
SUPERCONVERGENCE CONDITIONS

FOR FORWARD AMPLITUDES OF
GROUP A

We shall generalize the method used in Ref. 4. Ke
need a set of special solutions for Eq. (1).Let us define
the function F (n*p*np) to be the coefEcient of the term

(&')' y
' '(y*)' 'L(J+u)!(J—u)!(J+u')!

x (J—*)!(J'+P)!(J'—P) '(J'+P')!(J'—P*)!g "'
in the expansion of

(1+x~*).'(I—xx*).(1+yy*)s'(I —yy*) '
x I (I+%)(I+**y*)1'I(1-~y) (1—~*y*)j"

where a+b=even, a'+u+c+d=2J, and b'+b+c+d
= 2J . This function satisfies the conditions: F(u*P*nP)
=F(nPneP") =F(—n —P—n*—P*), and F=0 if X*&p*.
For each set of admissible values of a, e', b, b', c, and d,
the function F generates a special solution of Eq. (1),
namely,

&( ""P'P")= 2 F(.*P* P)d( *)
a, 8, 0f+, P+

Xd(P'P*)d(n"u)d(P "P)

if X= 2J and y, &~ 0; replace P' by P" in (6) if X=2J and
p(0' replace P', J', p by n', J, X, respectively, if

I p I

=»' and X&0.
The numerical values of E* for the cases J'=3 and

~5 are given in Tables III and IV, respectively.

The numerical value of the d(u'u) is givens by the
p (~)=p (~+sN )=J + ~= » ' ' sN (4) coefficient of the term (—g)~—~t(J+n)!(J—n)!g—iis in

if 2J&X)&&~0 and N*=even; r la e P by P i (4) sA. R. Edmonds, Aeref 3f0 ig
'

Q t ~ /

if 2J&X)—p)0 and N*= even; replace p', J', y by (Princeton University Press, Princeton, N. J., ]9~57)~ p. $7~.
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Twsrz III. The numerical values of X*(X,y) for the case of J'=3. Tasz,E IV. The numerical values of X*(X,p) for the case of J'= —',.

0 1 2 3 4 3 62m2m, +1(2J 1)'2J'(2J 1) 2Js

0 2 4 6 7 7
2 2 4 6 6 6 3

~2 2 2 4 5 3 5
~3 4 2 2 44 2
&4 4 2 2 3 2 3
&5 6 4 2 22 2 1
~6 3 2 1

a J=half integer.
b J =integer.

the expansion of

2 ~(1—x)~ n'(1+x)~+ '[(I+ 'n)!(I n')—!$ 'i'.

A straightforward calculation shows that the special
solution T(n'n"p'p") is given by the coefficient of the
term

"y' '(g)' "[(I+ ')!V —')!
X (&+n")!(I—n")!(&'+P')!(&'—P')!

x(J'+p")'(J' —p") q '»

in the expansion of

(1+**).'(.+*).(1+yg)'(y+g) '
X[(1+xy)(1+xg)j'[(*+y)(*+g)3"

A. Case of J'=0

This case has been discussed in Ref. 4. We shall give a
brief review here. The function f„=(1+xx)'~ '"(x+x)'"
generates a special solution of Kq. (1) which has the
following properties:

T„(n',n",0,0)=0 for all n' and n" if ~n' —n" ~)2n,

WO for all n' and n" if ~n' —n"
~
=2n.

Let us choose one t-amplitude among those amplitudes
which have the same s kinematic factor. The amplitudes
chosen in this way are denoted by I

I = T(n ', n ",0 0), fn= 0, 1, ~ ~ ~

where tn
' —n "~ =2'. We shall prove that the ampli-

tudes I have the properties P1 and P2.
Let us assume that the amplitudes I are not

independent. This assumption means that the I are
linearly related; namely, we have the identity P C I~
=0 where the C are constants. This identity is satisfied

by any special solution. In fact, each special solution
gives a linear relation among the coeKcients C .
Starting from the special solution To which is generated
by f,, we have Cs ——0. The special solution T& which is
generated by f& implies that C& is proportional to Cs.
Since we know CO=0, it follows that C~=O. Ke can
continue this procedure to prove that all of the C
must be zero. In other words, the I are independent.
Since the total number of the I is the same as the
number of independent s-channel forward amplitudes,

0 1 2 3 4 5 2m 2m+1 (2J—1)n 2J' (2J—1)b 2Jb

2 4 6 6 6 30
+1 2
+2
~3 4

+5 3

3 5

2 3

1 1

2 4 5
2 2 4

2 3
24 2

2 1 1

a J =integer.
b J =half integer.

any other t-amplitude is linearly related to the I and
we have

T(n', n",0,0)=Z„h(n', n",fn)I",
where the h are constants. These linear relations are
identities and are satis6ed by any special solution. Each
special solution gives a set of linear relations among the
h. The property I'2 means that h=0 if ~n' —n" ~)2m
but&/0 if ~n' —n"

~
=2'. To see this, let us start from

the special solution To. This solution implies that
h (n', n",0) =0 if and only if

~

n' —n"
~
)0. The same kind

of argument can be used to the special solutions T~, T2,
etc. Notice that all nonvanishing constants h can be
determined in this way.

B. Case of /'=-,'
The amplitudes corresponding to diBerent kinematic

factors are independent. To see this, let us associate
each amplitude with a generating function of a special
solution in the following way:

(1+xx)'~—'"(1+yg) (x+x)'" for X= 2n, p, =0
(1+xx)'~ '" '(1+xy) (1+xg) (x+x)'"

for X=2n+1, p = 1

(1+xx)2J'—2n—1(x+y) (x+g) (x+x)2n
for X=2n+1, —@=1.

The rest of the discussion is essentially the same as
before.

C. Case of J'& —,
'

We shall prove that the amplitudes chosen according
to our rules have the properties P1 and P2. For con-
venience, we use the following notations: [+]= (1+xy)
X(1+xg), [—3=(x+y)(x+g), X=1+xx, Y=1+yg,
and I (X,p) =the neth amplitude chosen from the
subgroup of amplitudes classified by X and p.

We associate each of these amplitudes with a generat-
ing function of a special solution in this way:

I(n, an) with X'~ nF'~' n[a]n,
I(n ana2) with X' "F' ' " '(y+g)'[a)n
P(n/2 +n) with X' " 'F' "(x+x)'[&g"
Is(n+2 +n) with X'~ " 'F'~' " '[&.1n+'[Wl
I'(n+4, ~n) with Xs~-"-4F"'-"(x+x)'[~j-,
I2(n+g ~n) with X2J—n 4F2J' n 2( +x)x2[~] +n1[~ j- ——

I3(n+ 4 ~n) w&th X2J n 4F2j' n —4[—~jn+—2[~—p
etc.
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If these amplitudes are not independent, they must
satisfy a linear relation

P C (Z,p)I (X,p)=0.
X,p„, m

where the coefficients h are constants. The property I'2
means that the constants h vanish if

or if
Ix+pI ( In' —n"+p' —p"

I

I~-.I
(I-'--"-p'+p" I,

and at least one of the h" with X=n' —u" and p =P' —P"
does not vanish. Let us denote the special solution
associated with I (X,p) by T"» "(n~n2P&P2). One
observes that the following conditions hold for all
X and p, '.

T=Q if IP+p, I
( Iui —u~+pi —P2I,

I
l —~ I

( lu~ —~2—p~+ P2I

and there exists at least one ns such that T&0 if
A=uq n'2 and —

p, =Pq —P2. These conditions have the
following consequence: If there exists one amplitude
T(n'n"P'P") which does~not satisfy F2, then those
amplitudes I (&,p) with„' &+pI (In' a"+p' —p"

I
or—

IX—yI(Iu' —a"—p'+p" must be linearly related.
On the other hand, we have shown that all I"(X,y) are
independent. Therefore, we conclude that the property
I'2 is shared by all amplitudes of group A.

APPENDIX II RELATIONS AMONG THE
SUPERCONVERGENCE CONDITIONS

FOR FORWARD AMPLITUDES OF
GROUP 3

The discussions given here are closely related to
those of Appendix I. Again we need a set of special
solutions for Eq. (2). Let us define the functions
Fi*(a*P*nP) and F~*(a*P*nP) to be the coeKcients of
the term

*'- (**)'-.*y'-'(y*)'-~'I (J+ )!(J—)!(J+*)t

X(J—u*) !(J'+P)!(J'-P)!(J'+P*)!(J'—P*) !g "'

Each special solution implies a linear relation among the
constants C. Let us consider 6rst the special solution
associated with I(0,0). This solution implies C(0,0) =0.
The special solution associated with I(1,1) implies
that C(1,1) is proportional to C(0,0). Since we know
C(0,0)=0, it follows C(1,1)=0. Similar consideration
shows that all C are zero.

The total number of I equals the number of independ-
ent s-channel forward amplitudes. Therefore, any other
t-amplitude can be written as a linear combination of
I (X,p), say,

T(~'~"P'P")= Z &-(~,~)I (~,~)
X,p, m

in the expansion of, respectively, (x x—*)f(u', u, b', b,c,d)
and (y y—*)f(a*,a",b*,b",c',d'), where

f(a',a,b', b,c,d) = (1+xx*)''(1+yy*)~ (1—xx*)~(1—yy*) ~

X I (1+xy) (1+x*y*))'L(1—xy) (1—x*y*)j",
u+b=even, a"+b"=even, a'+a+c+d=2J —1,

b'+b+c+d= 2J', a*+a"+c'+d'= 2J,
b*+b"+c'+d'= 2J' 1. —

These functions satisfy the following conditions'.
PQ Q 'f IlQ +~~1 d F8( QP4 P) F4( P Qg)
=F*(—u —P—a*—P*). Each function generates a
special solution of Eq. (2). The special solutions
T&*(n'n"P'P") and T2*(n'Q."P'P") are given by the
coeKcients of the term

x~ 'x—~ "y~' &'g~' ~"I (J+n')!(J+n")!
X (J—')!(J—")!(J'+P')!(J'+P") '

X(J'—P')!(J'—P")!j"'
in the expressions of, respectively, (x x)f*-
(g y)f* w—here

f*(a',a,b', b, c,d) = (1+xx)' (1+yg) '(x+x)
X(y+g) L(1+*y)(1+v))L(.+y)(*-+g)&.

A. Case of J'=0
This case has been discussed in Ref. 4. The special

solutions generated by

(x—x) (1+xx)2I 2" & (x1g)2", gz =0, 1, 2, ~ ~ ~

satisfy the conditions:

T*=Q if

T*~Q if

B. Case of J'&0
Any linear combination of different solutions of Eq.

(2) is itself a solution. Let us consider the solutions
generated by the following functions:

F'= (x x) (x+x) (y+g) F-,
F'= (y g) (*+*)'F, —
F'= (x—x) (1+xy) (1+xg)F,
F'= (x—x) (1+xx)(1jyg)F,

where F= f~(a', a,b', b,c,d), a+b= even, a'+a+c+d
=2J—2, b'+b+c+d=2J' —1. The following function
generates a solution:

F'+F'+2F' 2F'=2F/(x x) (*x—+yg)+2xx(y—g)j. —

Similar argument leads to the following generating
function:

I (y g) (»+yg)+2y—g(x x)]f*(a',a,b', b,c—,d),
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F» lwl &2J'

P(n+1, an)
P(n+1, +n)
P(n, ~n~1)
P(n an+1)
P(n+3, an)
P(n+3 Wn)

P(n+3, +n)
I4(n+3, +n)
etc.

and X&2J',

(g—x)[~]nX2j " 1Y2j™
with g[~]nX2j " 2Y2j—n—1,

with (y—g)[a]" X' -"Y

with BP+]nX' " 'Y'

with (x—x) (x+x)'[~]nX'
(g x)[~]n+1[~]X2J—n—3Y2j'—n—2

With g (X+.X)2[~]nX2J n 4Y'2j'——n——1

With jl [~]nial[~]X2J n 4Y2J'-—n——3'

For (p( =2J' and X&2J',
I(2J' 1, +2J')—with

(y g)[~]2J'—1X2j-2J'+1

P(2J' —3, +2J') with

(y g) (y+g)2[~]2j'—3X2J—2j'+3

P(2J' 3, +2J') —with

(y g)[~]2j'—2[~]X2j—2 j'+1

etc.

For X= 2J and J+J'=half integer,

I(2J, a2J') with

(g x) (x+x)2j—2j'—1[~]2J'

I'(2J, +2J'W2) with

(g g) (g+g)2 j'—2J'+1[~]2J'-2 Y2

P(2J, +2J'W2) with

(g g) (g+g)2 j—2j'—1[~]2J'—1[~]

where a+b = even, a'+a+c+d= 2J—1, b'+b+c+d
=2J'—2. We use the notations:

2 = (x—x) (xx+yg)+2xx(y —g),
B= (y——g) (xx+yg)+2yg(x —x).

We associate each of the amplitudes I (X,p) with a
generating function of a special solution in the following
way:

P(2J, +2J'W4) with

(x—x) (x+x)2j-2j'+3[a]"'-'Y4,

P(2J, &2J'W4) with

(g g) (g+x)2J—2j'+1[~]2J'—3[~]Y2
P(2J, +2J'T4) with

(g—x) (g+g) 2j—2j'—1[~]2j'—2[~]2
etc.

For ll= 2J and J+I'= integer,

I(2J, +2J'W1) with

(g x) (g+x)2j—2j'[~]2j'—1Y

P(2J, &2J'%3) with

(g g) (x+x)2J—2j'+2[~]2j'—3Y3

P(2J, +2J'W3) with

(g x) (g+x)2 J—2j'[~]2J'—2[~]Y
etc.

For 2J&) &2J',

I(2J'+2n+1, +2J') with

(g X) (g+X)2 [~n]2J~X2j—2 j~—2n—1

P(2J'+2n, &2J'%1) with

(g x) (x+x)2n[~]2 j'—1X2J—2j'—2n Y

P(2J'+2n, &2J'W1) with

g (g+g)2n[~ ]2J'—1X2J—2J '—2n+1

P(2J'+2n+1, &2J'W2) with

(g ) (g+.X) n+2[~]2j' X2J 2J—' 2n 1Y—2——

P(2J'+2n+1, &2J'W2) with

g (x+x)2n+2[~]2j'—2X2J—2J '—2n Y'

P(2J'+2n+1, &2J'W2) with

(* x) (g+g)2nl +]2j 1[~]X2J—2 J'—2n—1

etc.

Using these special solutions, one can use the same
argument of Appendix I to prove that the properties
Pj and P2 are satisfied by the amplitudes chosen
according to our rules.


