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Relativistic Model for Electroyroduction of Nucleon Resonances*
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We have made a simple model to obtain some estimates of the inelastic form factors for electron excitation
of the nucleon resonances. The model is covariant and gauge invariant, and satisfies all the general re-
quirements of the theory. It relies heavily on the lead of previous theoretical work on the form factor for the
as+, v (1238-MeV) leveL The basic idea is to take from experiment the knowledge of which nucleon states
are resonant. We then look at single-pion electroproduction and project out the relevant multipoles from a
covariant, gauge-invariant set of graphs which are thought to play an important role as an excitation mecha-
nism. The multipoles are then multiplied by a final-state enhancement factor which provides a resonance
mechanism. We give some theoretical justification for this procedure. If just the electron is detected, one
measures the virtual-photon width for formation of the resonance, and our result contains the possibility
that the resonance can decay into other channels than just 7f+Ã. We calculate only the inelastic form
factors. The individual contributions of the resonance levels are normalized to photoabsorption, where
such data exist. We keep ~, co, and E exchange as an excitation mechanism, and treat the over-all con-
tribution of the eo exchange as a single parameter, with which we are able to fit all the existing inelastic-
electron-scattering data. We actually find two equally acceptable fits with quite different properties. The
co-nucleon coupling constant we get from this analysis is in reasonable agreement with other determinations of
this quantity. Form factors for all the nucleon levels up through 2650 MeV are presented out to momentum
transfers of interest in the SLAC experiments.

r. INTRODUCTION

HERE are two reasons why electron scattering is
such a powerful tool for studying nuclear struc-

ture. The 6rst is that the interaction is known. The
electrons interact with the local charge and current
density in the target. Since this interaction is relatively
weak, of order n= 1/137, one can make measurements
without greatly disturbing the structure of the target.
Of course, the same holds for real photon processes, but
electrons have the second great advantage that for a
6xed energy transfer, one can vary the 3-momentum
transferred, the only restriction being that the 4-
momentum transferred be spacelike. Thus one can map
out the Fourier transform of the transition charge and
current densities, and this is a rich and unique source of
information on nuclear structure. With the advent of
very-high-energy electron accelerators, for example, the
Cambridge Electron Accelerator (CEA), the Deutsches
Elektronen-Synchrotron (DESY), and especially the
Stanford Electron Accelerator Center (SLAC), electron
excitation has become a practical means for studying
the details of the excited states of the nucleon. To
indicate the richness of possibilities here we show the
"low-lying" spectrum of the nucleon in Fig. j..'

From both a theoretical and experimental standpoint
one would like to have some idea of what to expect in
these experiments. From a theoretical point of view one
would at least like to make some predictions before the
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experiments are carried out. From an experimental
point of view, estimates of the transition form factors
are useful in planning new experiments and in inter-
preting, understanding, and correlating the data as
they accumulate.

The detailed theoretical understanding of the excited
states of the nucleon requires a theory of strong inter-
actions, but reliable, quantitative calculations a.re
exceedingly diKcult and in many cases impossible at
the present time. We shall therefore make a very simple
model to attempt to get some physical insight into wha, t
is going on and to get some feeling for what is to be
expected in these experiments. Although the model can
be, at best, only a crude approximation to the strong-
interaction dynamics, it does have the distinct advan-
tage that it keeps all the general properties of the
theory, including covariance, gauge invariance, analytic
properties, and threshold behaviors.

We 6rst make a general covariant analysis of the
transition matrix element for the process

where y* is the Mufller potential from the electron. In
this we follow the work of Fubini, Nambu, and
Wataghin (FNW)' and find that there are six inde-

pendent kinematic invariants which can be chosen to
be explicitly gauge invariant Lthat is, replacing e„—+ h„
gives identically zero) and six independent invariant
amphtudes which are functions of three scalar variables.
Going to the center-of-momentum frame for the above
process, these invariant amplitudes can be expressed,
in standard fashion, in terms of the independent electro-
magnetic transition multipoles: a transverse electric
and magnetic multipole and a Coulomb multipole. Thus
at this stage, whatever approximation we put in for the

' S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958).
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FIG. 1.The known nucleon resonances (Ref. 1).

individual multipoles, we still have an over-all ampli-
tude which is covariant and explicitly gauge invariant.
From experiment we take the knowledge of which
particular multipoles are resonant. We then choose a
covariant, gauge-invariant set of graphs that we believe
should play an important role as an excitation mech-
anism and project out the appropriate multipoles.
These multipoles are then multiplied by a final-state
enhancement factor; we give some theoretical justifica-
tion for this procedure. The transition multipole ampli-
tudes then resonate at the appropriate energy. The fact
that these resonances may decay inelastically is easily
incorporated into this model.

Since the final-state enhancement factor depends only
on the total energy in the center-of-momentum frame,
the momentum-transfer dependence of the multipole
amplitudes enters through a known function, and we
can calculate the transition form factors. At present, it
is only the form factors that we attempt to calculate.
We normalize the over-all contribution of the various
resonant states to the values known from a phe-
nomenological analysis of photoproduction. There is
thus one scale factor for each state which is taken from
experiment, but the model then predicts the relative
contributions of the multipoles for any given state at
all momentum transfers.

As an excitation mechanism we have kept m. , co, and E
exchanges. The first and last must be included together
for gauge invariance, and we give some arguments that
the second is the most important vector-meson ex-
change. The over-all contribution of the or-exchange
diagram is treated as a single parameter, and we
attempt to fit all the presently known inelastic data.
The value that we obtain for this parameter is found to
be in reasonable agreement with other estimates of this
quantity. Our contributions thus come from three
different regions of the exchanged-particle mass spec-
trum. We have the most peripheral contribution, which
is expected to play a. dominant role in the excitation of
higher spin states at low momentum transfers because
of the centrifugal barrier (kE) '; further, we can
calculate it exactly. Also included is an intermedia, te-

mass contribution about which we have a great deal of
knowledge and a high-mass contribution where our
ignorance becomes glaringly evident. Undaunted by
this, we make predictions for the form factors of all the
known nucleon resonances, and calculate them out to
momentum transfers of interest in the SLAC
experiments. '

Now electron excitation of the as+, ss (1238) resonance
has been studied in great detail and with much more
sophisticated treatments than that presented here,
because starting from the work of Chew and Low4 we
have had some dynamical understanding of this
resonance. The work goes back to FNW' and important
contributions have been made by Dennery, ' by Zagury, '
by Simon and Gutbrot, ~ and by Vik. Vik also calculated
the one-particle exchange contributions in the regions
of the second and third nucleon resonances. The treat-
ment presented here is only a simplified version and
summary of these others, but it does contain the
essential physics of these approaches, we believe, and
we have merely tried to extend these ideas to the higher
nucleon resonances, and to higher momentum transfers.

In Sec. 2 we brieQy review what can be said, on
general grounds, about the electron excitation of
nucleon resonances. In Sec. 3, we review the general
analysis of single-pion production by electrons. In
Sec. 4 we discuss our model for the resonant multipoles.
In Sec. 5 we calculate the multipole contributions of the
graphs which we use as an excitation mechanism. In
Sec. 6 we present the numerical results and a com-
parison with the existing experiments; Sec. 7 is a
discussion and summary.

2. ELECTRON SCATTEMNG

We first give a very brief review of the theory of
electron scattering. We concentrate on the case where
only the final electron is detected, as in most of the
experiments which have been done so far, and as will be
the case in the SLAC experiments. ' Bjorken and
Walecka' have given a relativistically covariant analysis
of the process of electron excitation of the nucleon and
have discussed all that can be said, on general grounds,
about the transition form factors. They also show the
relation to photoexcitation of the nucleon resonances.
We summarize their results here.

The kinematical situation in the one-photon exchange
approximation is shown in Fig. 2. The angular

3 W. Panofsky, D. Coward, H. DeStaebler, J. Litt, L. Mo, R.
Taylor, J. Priedman, H. Kendall, L. VanSpeybroek, C. Peck, and
J. Pine, Stanford Linear Accelerator Center Group A—Proposal
4B (1966) (unpublished).

4 G. F. Chew and F. Low, Phys. Rev. 101, 1570 (1956); 101,
1579 (1956}.' P. Dennery, Phys. Rev. 124, 2000 (1961).

6 N. Zagury, Phys. Rev. 145, 1112 (1966}.'F. Gutbrod and D. Simon, DESY Report iso. 67/1, 1967
(to be published).' R. C. Vik. , Phys. Rev. 163, 1535 (1967).

J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. V.) 38, 35
(1966).
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Axed and varyin~ 0 or by working at 8=180, where
only the transverse contribution remains. The trans-
verse form factor can also be measured at one momen-
tum transfer, namely, k„'=0 or

k*z „h= (M' —zzz')/2M

in photoexcitation,

4m 2m M'
o„(o/) do& =

ilrt2 2
ab; over resonance ivI 8$ m

(2.6)

k = p'-p = k~-k~

2 2p'=-M

FIG. 2. The kinematics for inelastic electron scattering.

momentum analysis is best carried out in the rest frame
of the 6nal isobar, because one then has an eigenstate of
angular momentum and parity. The electromagnetic
vertex is characterized by four reduced matrix elements,
or, equivalently, by the four linear combinations

EE'Q'~ '/' p2 j+1~'"
f.= I Z I

—

I
(J-'4 li1Js+&)

8 Ms) ' &2J+1&

x(~ JIIJ(o)llk*~j), (2.1)
with p=&1,0 and

f,= (EE'Q'/SzrM')'/s(zrzzJIIJs(0)llk*zrJ). (2.2)

In these expressions E&,
'

and E' are the initial and final
target energies, respectively, 3f is the isobar mass, 0 is
the normalization volume, J„(0)=(J(0),iJs(0)) is the
electromagnetic current operator taken at the origin,
and J ~ is the angular momentum and parity of the
isobar. In the rest frame of the isobar one has

&&Elf+I'+ I f I'ja'=-o. (2.&)

Thus with electron scattering, we can add a whole new
dimension onto the photon problem. There is also the
possibility of direct Coulomb excitation.

Detailed properties of the form factors f.,f+ are
highly model-dependent. However, in the limit k~ —+ 0
(which implies ks~ M —m) the form factors have
simple threshold behaviors:

1. Normal parity tr*nsj. t.sons ~+ —+ ~, ~+ ~ ~ ~ .
f ~(ka) J—r/z

f ~()P)J—3/2

2. Abnormal parity transitions -,'+ ~ -', , —,'+, —,
' ~ ~ ~ .

f ~(ke) J+I/2

f ~ (ka), /—I/2

One of the interesting questions which we would like
our model to shed some light on is whether or not these
threshold behaviors are of any use, because only space-
like momentum transfers are available experimentally
[k')0], and it is not clear whether the threshold
behavior still persists there since this implies a minimum
3-momentum transfer

k„=(k*,iko) . (2.3) k*&~ k*zh~, h
——(M' —zzz')/2M. (2.8)

There is still one relation among these four quantities
coming from current conservation and it simply
eliminates fs,

(2.4)fs ——(ks/k*)f.

0.2 COS2&8

(
dO

dQ 4e' sin4sr8L1+2(e/zzz) sin'-,'8j

X ((k'/k*')
I f. I

+(k'/2k* + (M /zzz ) tan -'8)

&&I:If+I'+ If-I'j} (2.5)

In this expression e is the initial electron energy, 0 is
the electron scattering angle, m is the nucleon mass, and
&2=0„2 is the invariant 4-momentum transfer. We see
that electron scattering measures two independent
combinations of form factors, the Coulomb and trans-
verse form factors. These mav be separated experi-
mentally by keeping k' and the energy loss ho= e—e'

The electron-scattering cross section in the laboratory
is then shown to be (we set zzz, =0)

For the normal parity transitions there is an addi. -
tional relation between f, and f~ valid near threshold:

(2.9)

This relation is well known in nuclear physics. In
particular, it is the relation which allows one to get
photon lifetimes for electric transitions from Coulomb
excitation.

3. GENERAL ANALYSIS OF SINGLE-PION
ELKCTROPRODUCTION

In this section we review what can be said about the
process of single-pion electroproduction on general
grounds alone. "We assume a single-photon exchange

"For the special case —,'+~ —',+, f, {k*)'and f &*(f~=0).
"We use a metric so that a„=t'a, igp). Our y matrices are

Hermitian and satisfy p„p„+y„y„=25„„.The Dirac equation is
{zv p+m)N(p) =0 and the spinors are normalized to uzz=1. We set
A=c= 1. Note that e /4zr=n= I/I37 and y5=y1y2y3y4.
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mechanism; the kinematical situation is shown in

Fig. 3. The analysis follows closely that of photo-
production of pions by Chew„Goldberger, Low, and
Nambu (CGI.N)" and of electroproduction by Fubini,
Narnbu, and Wataghin. 2 The results are similar to those
obtained recently by Zagury, 6 although the emphasis is
somewhat different. In particular, we will keep explicit
current conservation (or equivalently gauge invariance)
throughout.

AVe de6ne the quantities

&—=k(P~+P ),
l (p —p~) =—k(k q), —

v= kP—/m—= qP/m- ,
e&=——k.q/2m.

(3.1)
kl J

The c.m. system is de&ned by p&+k= p;+ q=0. In this
frame we write k„= (k*,ik,) and denote the total energy

by tV. The nucleon energies are 1i 1 and F~ and the meson

energy is or, . The following relations exist between these
quantities:

kepi "Q+Pp
k -k~

I

Fr@. 3. The kinematics for electroproduction of one pion
by single-photon exchange.2k'"=5"—m2 —k'

2a&,W= W' —m'+ p,',
p = (1/2m) (W' —m')+ k. q/2m,

tV—m k2ko (3 6)AM&=0, i=1 . - 6

These invariants have the distinct advantage that
(3.2) they are explicitly gauge invariant;

&y+m W+m (W+m)(Eg+m)

For the strong-interaction part of the above process
we need the covariant amplitude

(qP" 'I J".Ip~)
m2

= N(pg) [Q e„M;&3;pV,i12,k')]N(pg), (3.3)

where on the left side we have the matrix element of
the electromagnetic current operator between exact
Heisenberg states. e„ is the Mgller potential

h
e

kl

S2

This is the statement of current conservation for the

strongly interacting part of the process. The invariant

amplitudes are now functions of 8', 62, and k2.

Let us proceed to a further analysis of the invariant
matrix element in the c.m. system. Because of current
conservation we have

&qp2' 'I J kl p~)=(ko/k*)&qp2' 'li I p~), (3 &)

~„=(e/k')u(k, )v„l(k,) (3.4)
p2

and 0 is our normalization volume. AVe have expanded
the Heisenberg matrix element, which is now a Lorentz
scalar, in terms of a complete set of six kinematic in-

variants. Following FNW, we choose [e„M„~"—=M&;&,

i=A,B, ,F]
M.=- v.[b')(v k)-(v k)(v')],
M, =»v, [U'.)(q.k) -(&.k)(q')],
M.=v.[(v')(q k)-(v k)(q')],
MD=2vLb')(I' k) (v k)(&')]— (3.5)

—&mv L(v' )(v k) —(v k)(v' )]
Ms iv5[——(k e)(q k) (q —e)k'],
Mp ——v;[(v k)(k e) —(v e)k'].

G-. I'. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957);106, 1345 (1957};see also, J.S. Ball,
ibid 124, 2014 (1961). .

) s, =),

t
l

Pro, 4, Our choice of angles and helicity unit vectors
in the center-of-momentum frame.
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= 2i„+(g m,G,)2i„, (3.9)

where we have de6ned

and we only need. to analyze the current matrix ele- t'»&E2Esfl''r'I
*2&-& I J el*,

ments, for the charge matrix elements are then deter-
mined. We therefore only need to know the matrix
elements for e„a complete set of three-dimensional unit
vectors, e~q, where

e2+1= W 2 V2 [e121+ie112$,
A

8/0= 8Qg= k
(3 8)

Ke chose our coordinate system in the c.m. system, as
indicated in Fig. 4. In this case we can make a reduction
of the amplitude from Dirac spinors to Pauli spinors,
and we find

Amy= zc'8)
ms=(e q)[e (kxe)),
ms ——i(e k)(q e),
m4 ——i(e q)(q e),
ms ——i(e g)(k e),
ms ——i(e k)(k e).

(3.10)

This expression is still exact, of course. The relation between the two sets of invariant amplitudes is given by

-(E2+m)(E2+m) '~'
Gg=

2mpy k'
(W—m) A+(W —m)D+ (C D)+ — F

8'—m 8"—m

qk*(W+m)
G2=

[4m'(E1+ m) (Es+m) j'"
2mp1 k2

A+(W+—m)D+ (C D)+ —F
W+m W+m

Es+m
Gs ——qka(W+m) C—D+(W—m)B-

4m'(E2+m)
E

W+m
(3.11)

E2+m k'
G4= q2(W —m) C D (W+m—)B+— E

4ms(E2+ m) 8'—m

gk*
G5= (ks[—A+(W+m)(D —F)+2mp1(B —E)j+2m11[C—D—(W+m)(B —E)1},[ 4m( sE+2m)(E2+m) j'~2

G,=k*2
Es+m

[ A 2mv 1(E B) —(W—+m) F (—W —m) Dj. — —
4m'(E1+ m)

The connection with the photoproduction amplitudes
F; of CGLN" is

(m/4~W)G;—= Z;, i =1, .",6

%2(k'=0)=P, " i=1 2 3 4. (312!

We can further make a multipole analysis of our
invariant amplitude in this frame. This is most easily
done through a helicity analysis following Jacob and
Wick." The invariant amplitude can be expanded in
terms of helicity amplitudes as'4

6

n2 ( 2 m2+1) i&1

where 'A~ and X2 are the initial and final nucleon helicities,
respectively, and XI, is the virtual photon helicity. The
Pauli spinor q)„+ can be written in terms of our previous
Pauli spinor 2i„+ (representing spin up and down along
the —k* axis) by

n)„+=Z &~. .."'( 4,0A,)n..+— (3.14)

(3.15)

It is convenient to go to amplitudes of definite parity
by introducing the linear combinations of helicity states

Z (2&+1)&)„-x.~,'(—4,—ItA, )*
(4kaq) 1/2

X(X2IT~(W k') IX24), (3.13)

12 M. Jacob and G. C. Wick, Ann. Phys. {N. Y.l 7, 404 {1959).
'4 We use the angular momentum notation of A. R. Edmonds,

Angular Momentum in Quantum Mechanics (Princeton University
Press, Princeton, N. J., 19573.

for the initial states. These states satisfy

(3.16)

We do the same for the final x-N states. In this case we
can label the states by I since this is the same as specify-
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ing the parity. Therefore,

ll'Mo)=—ov2LI~Mo)~ I~M —o)j (317)
(Note that we use the convention of qo/ ——+1, g = —1,
and g„=—1 for the intrinsic parities in accordance with
Jacob and Wick. ") For the left side we use the familiar
notation l+ for states with J=l&~ and the parity of
these states is again

~
~

l+M-', )= (—1) +'"
i
1+M-', )—= (—1)'+'

i
l+M-,') . (3.18)

The parity amplitudes are then defined by

Tg '~—= (4k*q)—'"(l+i T (W k') i-', 1+),
To o'+= (4k*q) '/o(l~

~
T~(W k')

~

——',,1+), (3.19)
L,~+= (4k*q)-»o(l+

~
TJ (W ko) P P~)

The more familiar electric, magnetic, and longitudinal
or Coulomb multipoles are then obtained from these
quantities by the relations

(l+ 1)Mi+= —oiV2LTy/o ++((l+2)/l) To/o +j
(l+1)E~+=— oi L ~/o'+ (1/(1+2))'"To/o'+j ~

lM) =—'oiV2(Tg/o' —(l—1/l+1)' 'To/o' ] (3.20)

1E&==oiV2ET~/o +(l+1ll 1) To/o~ j
Cr~=—(k*/ko) iL,~= (k*/ko) Ã,~.

We can now use Eqs. (3.13), (3.14), and the orthog-
onality of the X)»~ functions to write the multipole
analysis of the invariant amplitudes;

rg ——P (LlM(p+Eg+]P(+g'(x)+f(i+1)M( +Eg jPg g'(x)},

So=P (L(1+1)M)++.iM) jP)'(x) },

Fo= P ([E)+—M/+]P)+g" (x)+[E) +M) ]P~g"(x)},

S4——P ((Mg~ —Eg+ M~ E) —jP('(x—)}, (3.21)

/k*~
~ —=

I

—i(~+*~.)=Z (LC--C~jP '( )},
&k)

ro =——~(r&+xro+ ro) =g (PC)+P(+&'(x) —C~) r'(x) j})
kpl l

where x—=cos(Qkq) and P&'(x) =dP/(x)/dx. —For k'~ 0, the 6rst four equations are those of CGLN. "
We note equivalently that if we analyze the Coulomb matrix element directly, we And

(2pp, EqEoQ'/m') '/'(q go ) (—)bloop ) Pi) = r/. ,+Pm7G7+m868)g. „
my= —4600"g)

A

m8= —if'"0,
and

(k*q (Eo—m
~ =I —l(~+ ~)= k*((W—m —ko) L

—A+ (W+m) (D—F)jIk,i SprW EEg—m

(3 22)

+poof(W —m) (C—D)+k'E —(Wo—mo)B3+ (k q) LC—D—ko(E—B)—2WBj},
(3.23)

l'k*q 1 (Eo+mq ' '
&o=

I

—I(»+x+o+ +o) = I I
k*((W+m —ko) C~+(W—m)(D —P)3

kk pj 8m W kEg+ml

+a),L( +Wm)(C D)+(W' m')B —k'Ej+(k —q) [C D—+kp(E B)+2W—Bj}. —

The multipole amplitudes here are functions of k' and W Equations (3.21) may be inverted. If we write

Fj(W,k') —= -,' Pg(x) r'(W, k', x)dx, (3.24)
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then

~El— +1 51 1—+ [51+1 +1—1 )+ [Pl Fl—2 ) g

2l+1 2l—1

l3Il —Fl +Fl-1 [Pl+1 Pl 1—) &

2t+1
/+1

(f+1)El+ +1 +1+1 [+1+1 +1—1 ) [+1+2 +l ) y

2l+ 1 2t+3
1

(&+1)~1+=&1'—4+12+
2)+1

Cl+= &1+1 +&1'~

+1— +l 1++l—

(3.25)

These equations can be used for all / provided that we
remember that

These quantities are related to the laboratory
variables by

Mo+= Oo (3.26) W' —m'= —k' —2k p1,

Thus, given a set of invariant amplitudes (A F) we
can construct the multipole amplitudes (M 1~, El~, Cl~).
These relations can clearly be inverted to provide the
invariant amplitudes if the complete set of multipole
amplitudes is known.

For the isospin properties of our amplitudes we know
that the general form of the T matrix is

T=T&+&8 2+T& &-'2[r,22)+T~"2. , (3.27)

where n labels the (Herrrutian) 6nal pion state. The
amplitude for electroproduction of a definite state of
total isotopic spin ~ or 2 from a proton can be related
to these amplitudes by

T(2, proton) = (g—,') (T+—T ),
(3.28)

T(2, proton) = (g2)(T++2T +—3T').

k =4~ye2 sin 20,

k ' pl (pl 42)m ~ (3.30)

d'0 ) u' cos'-'0=, . „-Z(~+2)
dQ2d 42) l~b 41' sin42'8 z~

k4 )1 k' W'
X fclg/'+J — +

k*4 I2k*2 m'

(mq)
X[ITpi"'I'+

I Tli."I'5
I

&Wi

Finally, from Eqs. (3.9), (3.12), and (3.13), we can
write the differential cross section in the laboratory for
single-pion electroproduction in the case where only the
final electron is detected as

Some further kinematic relations expressing every- In terms of the multipole amplitudes these expressions
thing in terms of 8' and k' will be useful in Sec. 4 and become
we summarize them here:

E1+m= [(W+m)'+k')/2W,

E2+m = [(w+m) '—p25/2w',

q= (1/2W) [W—(m+ p))'"[W+ (m+ p) 7'"

X [W—(m Il) 5'I'[W—+ (m p)5'I'—
k*= (1/2W) [(W m)'+k')"'[(W—+m)'+k')'"

(/+12)[( T3/2'+[2+ [T1P'+)')= l[(l+1)M1+)2
+(~+2)[(~+1)E~)',

(3.32)
(~+2)[l Tpn' I'+

I
Tln' I')= (~+1)[&lid 1-5'

+ (i—1)[tE~)2.

The multipole amplitudes are functions of k' and 8'. In
order to integrate over 6nal lab energies, we need

k* (W—m)'+k' '"
E1+m (W+m)2+k2

(3.29)
(BW) 4„, km 21+2(pl/m) sin'-,'0

(3.33)

(W—m)' —lt42 '"
g

E2+m (W+ m) 2—p2

k p= (1/2W) [W'—m' —k') .

4. COVARIANT, GAUGE-INVARIANT MODEL

In this section we discuss a simple model for the
multipole amplitudes. Any simple approximation which

we make for the multipole amplitudes leaves the
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expression

(2(o,ErEsQ') 't'
(psV' 'I "~.lpr&

ni' )

=u(p:)(Z e,lid'"~;)u(pr) (4 1)

1 ImD(W) at.t
Im —= --= —

qf X(W) o,t

(4.4)

where we are allowing for the possibility of inelastic
processes. 0-&,~ and 0;i are the total and elastic cross
sections for the l& channel. Therefore we 6nd

ImD(wtr) ot.t(Wtt)
g'a

E(Wtt) tr, t(wtt)

and we can identify

(4.5)

gauge invariant and covariant. Let us suppose that we
have solved the problem of m-S scattering and have the
solution for the partial-wave amplitudes (l&) in the
form'5

f=e" sinb/t1 =cV(w)/D(w), (4.2)

where 1V(w) has on!y the left-hand singularities and is
real for W) I+tt. If we have really solved the problem
correctly, we will 6nd resonances in the appropriate
partial-wave amplitudes. We can now de6ne a resonance
as the place where ReD(wtt) =0 and in the vicinity of
the resonance we can expand

D(W)=(W WIt) (d/—dW) ReD(W)
~

g =tr
+i ImD(wtt)

= Re'D(wtt) [W—Wtt+-,'iF). (4 3)

Now by unitarity we know

Let us now take the following as an approximate
electroproduction multipole amplitude in the vicinity of
a resonance in the l+ channel:

a(W, k')—an~(w, k')[e"sinb/t1$(W)), (4.9)

a(W, k')—an~(W, k')/D(W), (4.10)

where an~(W, k') stands for the multipole projections of
any gauge-invariant set of exchange graphs that are
believed to play an important role as an excitation
mechanism. This approximation has the following
features to recommend it:

(i) It has the correct singularity structure since
an" (W,k') has the correct left-hand singularities in W,
and D(W) has the physical right-hand cut.

(ii) It has built into it the correct threshold behaviors
in both k* and q.

(iii) In the weak-coupling limit D(W) ~ 1, and this
formula is exact.

(iv) It satisfies the final-state theorem in the region
of elastic scattering since there

D(W) = ~D(W) )e-'s. (4.11)

(v) It is a solution to the Omnes equation" for the
multipole amplitude in the elastic case provided only
that an~(w, k') is a slowly varying function of W in the
region where sin5&0. Note that the approximation is
rot restncted to the elastic region, however.

(vi) The electroproduction amplitude then resonates
at the same place as the scattering amplitude.

Since this result has so many features of the exact
theory in it, we will simply take it as a model of the
electroproduction amplitude in the vicinity of a reso-
nance. An approximate form for D(W), which relates it
entirely to the strong scattering phase shifts in the
elastic case is due to Watson":

2r—
X(wtr) trt. t(wtt)

ga—Re'D(wtr) o, (wt)tt
(4.6)

1 " 5(w')dW'
D(W) =exp

~+„8"—8'—ie

If we further define

E(wtt)
2 I',1

—= gz—Re'D(wtt)
(4.7)

we can write, in the sharp-resonance approximation,

(P " 8(w') dW'-
=e "exp ——

zr ~+„8"—8' (4.12)

In the last form it is clear that ReD(W) vanishes at
resonance, so again, in the sharp-resonance approxi-
mation we can write

e" sinb —F.t/2Il tt

)
t1 W—Wtt+-', iF

which is just the Breit-Wigner form""

(4 g)
D(W)—Re'D(wtt) [W—wit+-', iF$. (4.13)

We shall give two derivations of this model at the
end of this section. We merely note here that in this
model

"We do not discuss the detailed problems of choosing a
normalization for D(W) here. One convenient choice is D($') ~ 1
as lV —+ ~."'Note added ie proof: We are dealing bere, of course, with
just the resonant amplitude. These arguments all go through even
in the presence of an elastic background in the channel under
consideration, but then it is only the resonant cross sections which
we must use in Eq. (4.4). Similarly, it is only the resonant part
of the electroproduction amplitude which we are computing.

a(W, k')—a "(W,k')/D(W). (4.14)

The entire k' dependence is in ae"(Wk') so that we

can evaluate the electron form factors directly from this
quantity. We also note that this expression also predicts

"R.Omnes, Nuovo Cimento 8, 316 (1958).
rr M. L. Goldberger and K. M. Watson, Collision Theory (John

Wiley R Sons, Inc., New York, 1964).
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the shape of the resonance peak; however, this is nothing
but a Breit-Wigner form in the sharp-resonance approxi-
mation. A quantity of interest is the inelastic cross
section integrated over a peak, since it is this quantity
that has a direct interpretation as an inelastic isobar
form factor, as we saw in Sec. 2. We have

2 (r sr )1/2

a(W, k')=
W—W,+-,'tr '

where we have defined

itaBA(W k2)]2
1p g=

qBE(WB)$ Re'D(W—B))

and we therefore find

t'rsl)
dWIa(W»2) I2v*+~-~+-=-'~r 'I —

I

reson Eri

(4.15)

(4.16)

Clearly, if there are inelastic processes present and we
only observe the electron, we want to sum over all of
these processes. The result is just to multiply the above
by o;.t/o. l and

dW
~
a(Wtk ) ~ y pNmsnything

~ i aBA(W„k2)
~

2

=-', r,*(W„k)= (4.18)
gBX(WB)L—Re'D(WB)]

Let us now discuss a derivation of the simple model
presented here. We give two derivations, the first being
a slight extension of the work of Chew and Low on
photoproduction of ~' in the 3-3 resonance region, 4 and
the second essentially an argument contained in
Goldberger and Watson. "

(A) Suppose we have a relation for the tr-1V scatter-
ing amplitude in a given /+partial-wave state

a' "lmf(o)')dto'
Ref(to) =f'"' (co)+—

0' el=—lrr ~, (4.17)
~tytot

where this is the expression for the process

and that this relation, together with the 6nal-state
theorem (time reversal plus unitarity)

a(to, k') =
I
a

I
e" to& 1 (4.22)

completely determine this quantity.
Let us assume that in the region on the physical cut

which is important for our problem Lwe essentially
assume here that f(to) is resonant and that it is the
amplitude in the vicinity of the resonance which is
important) that we can approximate

f"'( )=f"'( ) Z
(o+ tot

al.h.s.(to k2)~al. h.s.(~ k2) Q ~& 1
Q)+ tot

where

(4.23)

t tOB+tOt
(4.24)

Thus, we simply scale the functions by their values at
resonance and assume that they have the same approxi-
mate left-hand singularity structure. This modified
problem can now be solved exactly, and we find

al.h.s.(~ k2)
f((o), (4.25)

l.h.s. ~
a(to, k2) =

1 "h*(to')a(to', k2)dto'
a(to, k2) =a'h' (to,k2)+—

71 1 0) GO Z6

where
k(o)) =e"&") sinh(to)

(4.26)

(4.27)

(we again assume elastic unitarity for simplicity), and

(4.28)

where e is the number of bound states in the particular
channel. This equation was solved exactly by Omnes,
and the solution is"

as can be seen by substituting in Eq. (4.21) for a(co,k2)

and then using Eq. (4.19) for f(o)). This is just our
previous result.

(8) For the electroproduction amplitude, we really
have an Omnes equation to solve";

where f'"' (co) is some given function of &o with only
left-hand singularities, and that this relation together
with unitarity (we assume elastic unitarity here for
simplicity)

a(to, k') =e"&") a'"' (co,k') cosh(to)

(P "a' '
(&,k') sinh($)e "&)d$

+es(~)
7r 1

Imf(to) =tt~ f(o)) (', co&1 (4.20)

completely determine f(to) Suppose also th. at we have where
a similar relation for an electroproduction multipole
into the same partial-wave state

(4.29)

(4.30)

0' "fma(to', k2)de'
Rea(&o,kt) =a'"' (&o,k2)+-

7i" 1 Ct) 07

Let us assume that over the region where sinh($)WO
(that is, essentially over the resonance region) the func-
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(4.31)

148

enoug that we can&.a.a. (L k2) varies slow ytlon
write

167

of the resonanceThen in the vicinity o

e rap s &seed to describeF~G g. Exchang g
chanisme excitation me( k '— k') e"&"& cosh((o)k"—a'"' (a)g e'C(0))

(P "sinb(g)e &«&d&
&~(ee)gp(&)—e

(—x

—=a"'.(cog k')&(co) .

Now we can write

-1 " b(y)dy—
X(co)—=exp—

(4.32)

(4.33)
F (k') =Pg~(k'), (5.1)

S. TH. THE EXCITATION MECHANISM

au e-invariant sete choose a small gaug - tIn this section we c o
a dominant role as ane assume play a omi

exci a
'

comp
in the Introduction, we im'

in Fig. 5. If we assume

where

" h(y)dy
P((u) =—exp ——

el

" sins(()
exp

$—(0—ze

"8(s)ds-

P...(k') =Pg v(k')/P2v(0) (5.2)

. In order to

ge

6
tribution of the as g

to allter and have tried to ma e a one-

actort e
' ' '

astic data. We assthe existing ine as i

el true if theh which is approximate ytg p)

k.nown from t e ~ decay, we are ess
lin ofwhel e we asquantity g &z/g Nx,

thecal

to the nucleon of t e orm

then has the following properties,

tic in co with a cut rom cv =
~ 1 as co~ ~. The secon

co—& ~ and thzero as co—&

ed dispersionan wrste anan t n unsubtracteTherefore, we can t n
relation orl

'
for the quantity P(&o —1.

(5.3)zgca NBAA'M p ~

1 dlsklp(CO )d(0

4(~)—1=-
Vi ]

But from the above

(P "8(y)dy-
disk/(a&) = sin8(&u) exp

use of the smallchar e coupling because o
W

e
isoscalar magne

'
vaue o

h b+' as a vector-meson exc

gp~y 1S I1

ould ive gp ~= .
r hS x

do wit'h
p

but as a rs sfi t step we will see ~us w

l'tud"" th"t'nd"dKecant ere oh f re write our amp i u

XP—1+1j=—. (4 36) fashion as

Therefore, we conclunc ude

(~)=1,
g Q3 1/2

( ~q' 'I "J.IP~)"~.(4»)

where

,k') =u'"' ((ag, k')/D((u),CMk =8' ' (dg,

1 " 8(rv')d(u'
D(co) = exp

odel result.which is our previous mo

(4.38)

(4 39)

(5.4)= —g-»~(P2) L~ ""j~(P~),

mahzed p

. Ph s. (N. Y.) 40, 337, D. Walecka, Ann. ys."G. Segre and
(1966).

as oles in ase contributions as p
e

'
that we use aeor sense indispersion-t eo y

e then haveCOU 111g
1' constants; we
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[.Fz'7 —kFz'~ k ]+[2Fz'&.—zFz'&"k ]-
z(y pz+y k)+m z(y pz —y k)+m

1 1
~.,M„&+~=&., ~, Fzvy„'F—zv-qr k ]+[,'Fzv~„2F—zvo„„k. +5

i(y pz+y k)+m i(y pz —y k)+m

gqqqqygqqN'N Fqqqqz(k )
[27z(7„(P k) . y—kP„) im—pz(y„y k y—ky„)],

gqqNN (k g) +m~

—,'[r.,rz]cV„&-&=-',[r,rz] 7z
i(y pz+y k)+m

1 (2V.—kd—[2Fz'V.—zFz'~.».] yz —iyz F. . (5.5)
i(y p, y.k)+—m (q—k)'+zz'

The 6rst two terms are clearly gauge invariant,
k~„& +&=0. The last term is only gauge invariant if
P —=Fj.~. This is a well-known diKculty, and we shall
make this assumption in the interests of simplicity and
maintaining current conservation. Our conventions on
the nucleon form factors are

Fz'(0) =Fr'(0) =1
2mFzs(0) =)„'+X„=—0.12,
2mFzv(0) = X„'—) =3.70.

(5.6) 1 1
g gm.NN~1

(pz+k)'+m' (pz k)'+—m'

Of course, in adding the amplitudes the sign of P is

important. We shall simply treat P as a parameter and

try and find a one-parameter 6t to all the known in-

elastic data. Note that we will also assume F„,(k')
=Fzv(kz)/Fz~(0), as discussed previously.

Ke can now write the contributions of,the pole terms
to our invariant amplitudes as

[Note that all the form factors in Eq. (5.5) are functions
of k'.] For the a&' contribution, we have assumed an

comp vertex of the form"

1
&= zg-NNFzl

&q ki (P,+k)z+m' (P,—k)'+m'
'

~o17ry =&~go)7ry~a3&pvpa'~p&v&pg zr

and from the decay cu' ~ zro+y we conclude

1' -+ =( m '/24)g . '(1—
i '/ ')'

—1.3 MeV.

Therefore, we have

gtqqqv 9/m

(5.7) 1 1
2 g7rNN~2

(Pz+k)z+m' (Pz —k)'+m'

(5.9)

(5 g) D 2gqqNNF2
(pz+k)'+mz (pz —k)'+m'

(5.11)

(k—q)z+m '

)1 —
b

&= —(g-NN)Fzl
Lq q) (q q)q'+q'-—p'= g...'g.NN'/[—z g.NNF z "(o)]'

=10(g NN/g. NN)'. (5.1o) F=o,

The sign of the coupling is unknown to us. Therefore,
we can only identify

TABLE I. Photoproduction amplitudes.

State Ratio

2+, 2 (1236) E1~/351+
$,~ (1525) Mg /I'. .2
zq, —', (1670) Eq+/3f q„
'+,$ (1688) M /E

Rat jQz p1 I f+ I
+.

(f
z, (1570):$ (1525)
;-(&670):—;~(&688)

Walker'

—0.04+0.08
+0.53&0.2—0.5 +0.5
+0.5 +0.3

0.15+0.2
0.24&0.3

Moorhouse et al.

+0.34

0.07

—0.14
+0.56
+1.4
+0.45

Theory
p= —6

—0.34—0.42—0.34—0.07

—0.62—2.3—0.28—0.24

a Reference 20. b Reference 21.
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where we use the following convention:

Isospin Form
amplitude factor

+
0

Sign

upper
upper
lower

B+

I
0
0

0
0
1

We note that there is an apparent kinematic singularity
1/k q introduced into two of our invariant amplitudes
by our decision to work with explicitly gauge-invariant
kinematic invariants. This singularity is really spurious

since it disappears when we go to the multipole ampli-

tudes, as it must. That this must happen is clear from

Eq. (3.9), which expresses the physical scattering ampli-
tude directly in terms of the transition multipole
moments. For our purpose here, it is enough that this

apparent kinematic singularity disappears from the
multipole amplitudes, " since we will work with these
quantities directly.

We can now write the contribution of the pole terms
to our invariant amplitudes;

gxNN
Fg —— L(E2+m) (E,+m)]'"

16xS'

2P~+F2-—
k' —2k q k' 2k q—+m~2 IJ,

2—
g NN El+m) Fl+(W El)F2—F2I 1a11
162rW E2+m) 8'—m

Pj -5'—m—P2
W+m W+m

(W m—)(Fr+2mF2) W(Eq m)+W—(E2 m)+2—m ' 1
+PS+F2

2k q+W' —m' k' —2k q+m '—p2 2

gaNN qk* Fg W—+m
F2= —P2 w1

162rW L(Eq+m)(E2+m)1'~' W—m W—m

(W+m)(Fq+2mF2) W(E~+m)+W(E2+m)+-', m„' 1
+P~+F2

2k q+W' —m' k' —2k q+m '—p2 2

g NN E2+m '~ Fr+(W+m)F2 2Fy —(W+m)
F3= 2qk* +8 +2P8+F2

16~W E&+m 2k q+W. ' m' —k' —2k q k' —2k q+m„' —y2

g NN (E1+m) '" Fr (W m—)F2 — 2Fg 8'—m
2q2I

16m W (E2+ml 2k q+ W' —m'
(5.12)

I {2 (w2 —m')+-,'k' —p2+m(w —2E,+E,)}F2+(w —m —2E2)F~j
2k q+W' —m'

2(W—2E2+Eg) m(Eg —E2)——',m„'—
Fi+P~+F2 -+

-2 k' —2k q+m„' —y2

g NN /E2+m)'" F2—(W—Eg)F2
r2 —— k*I —F2L1&1$

162rW EE +ml W+m

1 ' Fg(x)dx 1

2 & 2k q+W2 —m2 2qk*

1 ' Eg(x)dx 1

2 ~ k2—2k q 2q'k*

Fi(x)dx

1 F)(x)dx 1

„(—1)'Q~(s),
2 & x+(W' —m' —2kpu), )/2qk* 2qk*

1. ' F)(x)dx 1

,Q~(p)
2 & (k2+2k~2)/2qk* —x 2qk*

(3.13)

1 Fg(x)dx

,Q ('),
2 2

k2—2k q+m„2 —p2 2qk* 2 ~ (k2+2k po)q+m '—p2)/2qk* —x 2qk*

"It is easy to convince oneself that this will hold to all orders in perturbation theory.

1
L{2 (W m )+2k p m(W 2E2+E1)}F2—(W+m —2E2)Fgj

2k q+W' —m2

2(W 2E2+Er)—1 m(Eg —E2)+-',m„'
+8 F i+P&yF2-

k' —2k q 2 k' —2k q+m~2 —p2

LNote that the 1/k. q term has dropped out of these expressions, as again it must as is evident from Eqs. (3.9)
and (3.12).$ We need the partial-wave projections of these six amplitudes and therefore we need the following
quantities:
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where

and

using q=
~
rl~.

Using these results, it follows that

2qk*

p—= (k'+ 2k ohio, )/2qk*,
p'=—(k'+ 2koro +m„'—rtr')/2qk*

(5.14)

(5.15)

gxNN
p') I—

2k*q W —m
Frbro —2k*q W1 ~Forrro

32'.W ((Er—m)(E&—m) j'r' W+m W+m

~(—1)'(W—m) (Fr+2mFo)Qr(z)+P&+Fo{ LW(Er —m)+ W(Eo—m)+-,'m ')Qr(p') —k*qbro}

gxNN 2k*q ~W+m
p 2— Frf'rro 2k~ql — +1 IFo@o

32m.W L(Er+m)(Eo+m)] r W m — kW —m

~ ( 1)'(W—+m) (Fr+2mF')Qr(z)+P&+F&{ P'( Er+m)+W(Eo+m)+- mo-'jQr(p') k*q~ro—}

g.n~ Eo+m) '
pro=- 2

~
{W(—1)'[Fr+(W+m)Fo7Qr(z)+rr' 2FrQr(p)+plpFo( —-', )(W+m)Qr(p')},

32rr W Er+m)

g~~N
2~

—
~

{&( 1)r/F—r (W —m)Fo—5Qr(z) f'r 2F—rQr(p)+pb+Fo( ,')(W—'——m)Qr(p')},
32zW iEr —ml

(5.16)

gxNN
p)7—

32'-W L(Eo+m)(Er —m) j r

Fg+ (W Er)F2
2k*q lr'ro —2k*qFo(1+1)proS'

&(—1)'{(-,'(W' —m')+-', k' —rr'+m(W —2Eo+Er) jFo+(W—m —2Eo)Fg}Qr(z)

f'r 2(W 2—E2+El)—FrQr(p)+P&+F o{k*q&ro+$m(R Eo) &m —'jQr(p—') }

gxNN
I3: 8

32~W L(Erym)(Eo —m) j'r'
Fr (W—Er)Fo-—2k*q Bro—2k*qFo(1&1)

intro

W+m

~ (—1)'{L-', (W'—m')+-,'k' —rrr' —m(W —2Eo+Er) )Fo—(W+m —2Eo)Fg}Qr(z)

+f'r 2(W 2Eo+E—r)FrQr(p)+P8+Fo{k*q8ro fm(Er—E)+o,'— 'mjQ (-p'r) }

The multipole projections of our excitation mecha-

nism can now be computed directly from Eqs. (3.25).
contribution of each resonance to photoabsorption using
Eq. (2.2):

6. NUMERICAL RESULTS

In this section we evaluate the inelastic form factors
for the various nucleon resonances using our basic
approximation, Eqs. (4.10) and (4.14), and the multi-

pole projections of our assumed excitation mechanism
as given by Eqs. (5.16) and (3.25). For a particular
resonance, we must know the strong-interaction dy-
namics to get the absolute contribution to electro-
production as we see from Eq. (4.18). In this paper we
shall just calculate the k' dependence of the form factors
for each resonance. %e therefore normalize the over-all

0'7(oo) &Co =
lab; over reson

aw2 2iV —m m

The relative contributions of the Coulomb and two
transverse multipoles for this resonance, and further-
more the electron-scattering cross section, are then
determined at all momentum transfers in this model.
Such a procedure also works in an energy region where
several resonances are important, if the individual con-
tributions are known at one momentum transfer (e.g.
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FIG. 6. Comparison of the predicted results (using the two
values of the parameter P which best 6t the data in Figs. 6-8) to
experiment (Refs. 23 and 24). There, the squares of the inelastic
transverse and Coulomb form factors are divided by the square
of the elastic form factor and plotted. The graph is normalized to
the value at photoproduction. I The bottom two curves give the
Coulomb form factors. g

photoabsorption). We have used the phase-shift
analyses of Walker" and of Moorhouse et a/. " in the
].5&2-MeV region and of Walker' in the 1688-MeV
region in order to normalize the amplitudes for each of
the contributing resonances separately. The numerical
values we used are shown at the bottom of Table I and
on each of the relevant 6gures.

We notice that all of the inelastic form factors are
proportional to the elastic form factors of the nucleon
in this model, and therefore it is more convenient to
plot the ratio to the elastic form factors. This is- also
the quantity which is most directly of experimental
interest. In order to compare with experimental points,
however, we need the actual values of the elastic form
factors, and we use"

4m' Gg

k p~

(6.2)
L1+tt, '/(0. 71 BeV')$'

Our procedure was to take the over-all contribution
of the or' exchange graph as a parameter and to try and

» R. Wal)mr (to be published). Note that our helicity ampli-
tudes are related to those of Walker by

al 7' (14'0)—l&~~~)=—~..~' «r
where p= —) 2 and ) =Ay, —'A1.

2' V. C. Chau, Norman Dombey, and R. G. Moorhouse, Phys.
Rev. 163, 1632 (1967).

2' R. Wilson, in Proceedings of the International SymPosilm on
E/ectron aruE Photon Interactions at IA'gh Energies (Deutsche
Physikalische Gesellschaft e.V., Hamburg, Germany, 1965).

t

2 3 4
k'(I~ BeV')

FIG. 7. Inelastic electron-scattering transition probability rela-
tive to the square of the elastic form factor, in the —,

' N*((520)
region. The background states which are also thought to resonate
in this region have been included as indicated (see text) (Refs. 20,
21, and 24).

fit al/ the existing inelastic data with this single param-
eter. We were able to 6nd reasonable fits for two
different values of P;

P=+4.0,
P = —8.2. (6.3)

Figure 6 shows a comparison with the experimental
values of Lynch" for the -',+, -', (1238) and with the values
of Cone et ul. '4 at larger momentum transfers. Lynch
was actually able to separate the Coulomb and trans-
verse contributions (the cross section is almost all
transverse). Also, Lynch gives the peak height, which
he measured very accurately, while for the comparison
here, we want the cross section integrated over the
resonance, as indicated in Fig. 6. We have used a value
for the integrated cross section obtained by subtracting
off the s-wave background contribution at photo-
production~ and then assuming that the background has
roughly the same momentum-transfer dependence as
the resonance cross section. An estimate of the s-wave
background, using our single-particle-exchange dia-
grams, indicated an error of 10% or less at Lynch's
highest momentum-transfer point, resulting from this
procedure. The fit to the 3-3 data is very reasonable,
and the form factor for the 3-3 resonance is not par-

H. L. Lynch, J. V. Allaby, and D. M. Ritson, phys. Rev,
164, 1635 (1967)."A. A. Cone, K, W. Chen, J. R. Dunning, Jr., G, Hartwig,
Norman F. Ramsey, J. K. Walker, and Richard Wilson, Phys.
Rev. 156, 1490 (1967); 163, 1854(E) (1967).
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Fro. 8. Relative contributions of the E~(1570) $, xs to the
transition probability as plotted in Fig. 7. A value of 6'%%uo is used
for photoproduction (Refs. 20 and 21). Also shown is the ratio of
the result for P=O (no cu exchange) to the P= —8.2 probability
graphed in Fig. 7. Note that the p=0 solution falls to less than
10% of the p= —8.2 solution which agrees with experiment.

Fxo. 9. Same plot as Fig. 7 now made for the
ss+(1688) resonance region (Ref 24). .

contribution soon becomes very important at these
forward angles. The 6ts with positive and negative P
are quite good, but, interestingly enough, they have a

Ip

I02

ticularly sensitive to the value of P, as one would expect.
Ke note the very interesting di6raction minimum in
the Coulomb form factor in the case P= —8. This gives
a clear distinction between the two 6ts, but it will be
diQicult to disentangle experimentally. Notice that the
relative magnitude of the Coulomb cross section is given
very well in this model.

In Fig. 7 we give a comparison with the data of
Cone et al. '4 on the 1512 resonance region. Since these
authors do not separate the Coulomb and transverse
cross section, but measure just the total inelastic cross
section at 31, we plot directly against the measured
quantity
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If.ls+ +
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X(if+is+if is& (6.4)
O Fro. 10. Predicted inelastic transverse and Coulomb form

factors for the N*(1525) $, $ resonance. Note that the over-all

Note that at PhotoProduction, k =0 and one Sees only equal to unity at photoproduction, and that the ratio to the
normalization is Gxed by choosing the transverse form factor

the transverse contribution; however) the Coulomb elastic form factor is given. The two best fit values of p are used.
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completely different structure. For p(0, the s-wave
resonance, which is unimportant at photopro(Iuction,
remains unimportant, while the high-spin state, the
ss, s (1525), supplies most of the cross section (that is
why we do not change our result by taking 100% s, s
for p= —8.2 in Fig. 7). On the other hand, for p) 0, the

I PI

s-wave states become dominant away from k'= 0. That
s-wave production could be important in this region is
a possibility first noted by Vik. ' The curve with P=0
gives a completely unacceptable 6t to the data, giving
a minimum where the experimental maximum occurs
in Fig. 7. An optimist would say, therefore, that we have
a very good determination of P, but a realist would only
concede that the contribution. of intermediate-mass
particle exchange is probably important for this reso-
nance. These points are all illustrated in Fig. 8.

A very similar situation holds in the 1688-MeV
resonance region, and we show the comparison with the
data in Fig. 9. Again, the contribution of the ~ reso-
nances which are supposed to exist in this region are
completely negligible at all momentum transfers when

P = —8.2, while in the ease P=+4.0 they soon take over
and dominate the cross section, particularly the
—,', s (1700) contribution. Since the —,

' contributions to
photoabsorption are not very well known in this region,
we simply assumed a statistical mixture

l00

1&.l'+lr 1'

G

Ll",l(1688)):I l -'(16~0)j:Ll -'(170o)l:I-' l(16M)1
-3.3 1 1

IO-' = N (l 670) 5/2, I/2 (TOP)
N (l688) 5/2+, l/2 {BELOW)

—)rf = —8.2—p =+4.0
f l

k2 (8 ey2)

FIG. 12. Same as Fig. 10 except now the S (1670) II
and N*(1688) y+, ~ are shown.

at photopro(Iuction in the second case. This is not in-
consistent with the phenomenological analyses. Again,
just as before, the fit with p= 0 is completely unaccept-
able. Note that in this case the fit with P= —8.2 does
not fall fast enough at photoproduction.

~e can also calculate ratios of the multipole ampli-
tudes at all values of O'. At the point k'= 0 some experi-
mental values which have been determined by the
various phenomenological analysis of photopro(Iuction
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in the higher resonance regions are available. ""This
comparison is shown in Table I. The value P = —6 gives
only a slightly poorer fit to the 1688-MeV form factor
while it gives a much more reasonable set of photo-
production values. While the magnitudes are approxi-
mately correct, this model does not appear to be a
detailed theory of resonant photoproduction in this
region.

Using the values of P that give a fit to all the known
inelastic data, we have used the model to calculate the
form factors of all the known nucleon resonances, and
we give some representative results in Figs. 10—18.These
curves are all normalized to unity at photoproduction.
We note that the levels which are thought to be the
Regge recurrences of the ss+, ss(1236), namely, the
s7+, s (1920) and the ~s+, ss (2420) have very similar form
factors, all the transverse form factors rising relative to
the elastic form factor as the momentum transfer is
increased. Likewise, the normal parity transition
-'——' (1525) i

-'+ —' (1688); -'——' (2190);and ~s
——' (2650)

show similar form factors. The transverse form factors
remain about equal to the elastic form factors, while the
Coulomb form factors for these levels show a diffraction
minimum in all cases, and then eventually surpass the
transverse form factors. The minimum come from the
fact that the amplitude is the sum over various ex-
change contributions, and these contributions can cancel
each other. Note that for the Coulomb form factors in
these normal-parity transitions, the threshold behaviors
are completely irrelevant, since we are already past the
maximum of these form factors as we go into the
physical region.

IO

I

IO 2 2
If+I+If I „2

2 vs k

GEp
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0 2

I fc I
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GEp
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IO

N (2420) II/2+, 3/2
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Fxo. 16. Same as Fig. 10 except now the E~(2420) xs'-+, —,
' is shown.

FIG. 15. Same as Fig. 10 except now the N~(1920) —,'+, —,
' is shown.

In Fig. 19 we calculate the form factor of the ~+, 2
(1236) resonance, using this model, out to momentum
transfers of interest in the SLAC experiments. Note the
presence of a second diffraction minimum in the
Coulomb form factor for the case P= —8.2. In Figs. 20
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and 21 we give the form factor of the s+, s (1400) level

out to k'=25 BeV' for the two different values of 8.
Notice the enormous growth of the transverse cross
section, particularly in the case p=+4. We must

IO

IO
IO I5

k (Bsv )

20 25

emphasize, however, that our model is necessarily
poorest for the low partial-wave resonances.

FIG. 19. Same as the preceding Ggures except now the form
factors are calculated out to k'=25 BeV'. There the N~(j.236) is
shown with its transverse form factor normalized to the observed
vaiue at photoproduction (as in Fig. 6).

lo I

'7. DISCUSSION AND SUMMARY

We have seen that using the constant P as a
parameter, where

IO'

2 2
gaum y gcnNN gcoXN

fkgw&K~s (0)g' gmNx
(7.1)

IO-'

we can get a reasonable 6t to all the known data on
electron excitation of nucleon resonances with two
values of p:

P=+4.0
=—8.2. (7 2)

IO

Il!
I !!
I 2

I l I

0 4 5
k~ (egy2)

Fro. 18.Same as Fig. 10 except now the Ã*(2650) st, xs is shown.

The sign is, of course, crucial. In the first case, the co'

exchange serves to enhance the contributions of the ~
s-wave resonances and they soon dominate the inelastic
form factors, a possibility 6rst suggested by Vik. ' In the
second case, however, the co' exchange serves to cancel
the contributions of the s-wave resonances and enhance
the contributions of the resonances of higher multi-
polarity, —,', ~+ etc., so that these latter contributions
dominate the cross section. This latter situation would
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Fra. 20. Same as Fig. 19 except now the F*(1400) -', +, $ is shown
for p= —7.0. The transverse form factor is normalized to unity at
photoproduction.

be a little more pleasing, although the over-all 6t is a
little worse, since it is just in the s waves where we
would expect any model such as ours to be the most
inadequate.

It is interesting in these calculations to follow the
role played by the various multipoles and states as the
momentum transfer is increased. The only real way to
sort out all the multipole contributions is to do coinci-
dence experiments on the peak at different momentum
transfers. This is extremely interesting information
which probably cannot be obtained by detecting just
the electrons. One may relatively enhance some of the
contributions of the background resonances at higher
momentum transfers and then sort them out with very
good resolution, but again, coincidence experiments will

be an invaluable tool here.
We can ask the question as to whether the value of P

which we get in our 6t is at all reasonable. If we assume
an unsubtracted dispersion relation for Fts(k') and
assume that this is dominated by the oP pole, then we

have

FIG, 21. Same as Fig. 20 except now p=+4.0 is used. Note the
enormous value at k'= 25 BeV' compared to photoproduction.

tion to attempt to get an order-of-magnitude estimate
of the coupling constants following the lead of Gell-
Mann, Sharp, and Kagner26:

groygruxp/sr+ =s~l (0)= s ~ (7 4)

o 03&
I g-,/m. 'I & 0.1s,

from which we have

(7.7)

(7.s)
Combining this with g ~'/4s. = 14.6, we would conclude
from the Gell-Mann —Sharp —%agner model that

4& IPI &1 (7 9)

We can get the coupling constant g„~ from the decay
co' ~ t++t, which goes through a virtual photon" "
F(co'-+ t++I )= 'swn'-te fg-, /rN 'J'

X(1+2mP/m. ')(1—4mP/nz. ')'". (7.5)

Using the experimental values'8

2X10 4 MeV &~ I'(a&' ~ e++e ) &~ 6X10 ' MeV, (7.6)

we conclude that

P s(k')
m ' k1+ks/m„s

2' M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev. Letters
8, 261 (1962)."G.Patsakos, G. Segre, and J. D. Walecka, Phys. Ietters 28,
141 (1966).

~8 S. Ting, in Proceedings of the 1967 Symposium on Electron
and Photon Interactions of High Energies, Stanford Linear
Accelerator Center, Stanford, Calif. (to be published).

~9 H. D. I. Abarbanel, C. G. Callan, Jr., and D. H. Sharp, Phys.
Rev. 143, 1225 (1966).

This is not so unreasonable theoretically since there is
some evidence that the y', which also contributes, is
only weakly coupled to the nucleon. "Although the k'
dependence is not given correctly, we can use this rela-

"H. Sugawara and F. von Hippel, Phys. Rev. 145, 1331 (1966).

(7 3) Abarbanel, Callan, and Sharp ' give a much more
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TAnr. z II. Values of
~ P ( from Donnachie et al.'

graNN /47I tt Io(g~ÃN/ANN)

42~13 29a9
36+10 25+ 7
36 25
21.5 15
16.7 11.5
2.77 1.9

5.4&0.8
5 +07
5
3.9
34
14

Fit to low-energy ~0 photoproduction with co exchange
Fit to low-energy ~ photoproduction with co and 8' exchange
Regge-pole Qt to high-energy ~0 photoproduction
Fit to nucleon-nucleon scattering
Fit to nucleon-nucleon scattering
Fit to nucleon-nucleon scattering

Ref.

a
a, b
a, c
a, d

e

& Reference 20.
b M. P. Locker and H. Rollnik, Phys. Letters 22, 696 (1966).
o R. A. Bryan and B.L. Scott, Phys. Rev. 135, 8434 (1964).
d A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963).
e A, Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965).

detailed analysis and conclude that

(7.&0)

They give some reasons for preferring the plus sign.
There is a recent analysis of low-energy ((500 Mev)

photoproduction of x mesons based on including coo

and 8' exchange done by Berends, Donnachie, and
Weaver. "These authors give a value for g„sr''/4s. , and
we show their results in Table II together with some
other determinations which these authors quote. The
completely independent determination of P which we
have made from a 6t to the inelastic form factors is in
remarkably good agreement with these results. "

The model which we have made here is a very naive
one, but we believe that it does give one some physical
insight into the behavior of the inelastic form factors.
There are many extensions and applications of the
approach presented here. It is an interesting question
whether one can in principle give an exact formulation
of the problem of calculating the inelastic form factors
from first principles in this fashion. Also, we would like
to put in enough strong-interatcion dynamics so that
E(W) and D(W) are known. In principle, one wants to
be able to predict which levels resonate, and just where

"F.A. Berends, A. Donnachie, and D. L. Weaver, CERN
Report Th. 815, 1967 (to be published).

'~ These values of (gm~~g ~g)' are an order of magnitude larger
than the vector-meson coupling constants used by Vik.

they resonate. "A. more modest problem is to try to
evaluate D(W) directly from Eq. (4.12) and the known
phase shifts (including inelasticities). This would give
one not only relative contributions of the various
resonances, but also their shape in 8".One should, also,
really go back and use the exact solution to the Omnes
equation rather than the approximate form which we
have utilized here. More complicated excitation
mechanisms must be included. E*,S**, ., p, q, 8, ~

exchanges should be added, although always in an
explicitly gauge-invariant way, and perhaps as Regge
poles. There are also box-diagram excitation mecha-
nisms, processes that go through many-particle inter-
mediate states, etc. Several applications suggest them-
selves, for example, when one has models of the inelastic
form factors for all k'; the contributions of these states
to the rt-p mass difference" and to the electron-
scattering sum rules'4 should be estimated.

The region of high k' probes a region of these inelastic
form factors where our ignorance is very great, but only
by attempting to make some estimates of what will go
on there will theoretical progress be made.

3~See, e.g., P. Carruthers, in Lectures in Theoretical Physics
(University of Colorado Press, Boulder, Colo. , 1965), for a dis-
cussion of this problem and for further references in this area."W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).

34 J. D. Bjorken, Lectures at International School of Physics
"Eursco Ferras" Course XLI, Vareuuu, Italy, 1967 (Academic
Press Inc. , New York, to be published).


