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Some of the commutation relations employed in the
derivation of the projected equations are

I',g= (~ p„—&,r,g, (89
t
I'—83= Ll"+-83=o (810)

t 8 I'+++I'-+j=o (811)
LI++,'Y"p ]++ = I-sv (-tr P Kp—)++ +'y"p-++
[I"„,~ p„je = ',—I,-~,(2~ K+K It)e

t:l, ~ p.j~, =-lI y( I-K I)~,
LI'-+, V"p.)+—=-:I'sv (2~ I+K.I)+—+v"p.+ —.

We further note the important, but obvious, relations

I' 8%'=8+, I'p 8+=8%+
I'-+8+= I'-+8(+++++-+),
I'++8+= I'++8(+++++-+)

I--A'= 2il --'y"p (+++++-+)
I'+ A= t-I'+ v"p—.(++-+++ +), -
I'-+A = I'-+8(+—+++-),
I"++A = I'++a(+—+++-).

The above operator relations yield the projected
wave equations (4.11-4.13).

(d) In addition to (4.16) we shall also give the action
of the operators pop„, ct, p"p„—i' and 2y"p„+i' on

4+++4 +. Thus we have

7&p„(++++@+) = 2ihD[ i—mcp'(4p' m—'c')
+2(m'c' p'—)C'y "p +p'(2p' —m'c') 8(+
—tXD(m'c' —p')

X (imcp'+ 24'y "p„)4+, (812)

i g(++++@ +) =2ihD$2imcp'(4p' m'c—')

+2 (mscs —ps) @&op —2p48)+ —ihD(m set —ps)

X (~:mcp'+2C pop„)++ . (813)
Hence

(qop„ig) (@+—++4 +)=2i) D(4p' m'c')—
X (P'8—3imcP') 4, (814)

(2v"p.+id)(+++++-+)
=4i) D(msc& —ps)(3C~ p„—ps8)e
3i),D—(m'c' p') (i—mcp'+ 2l y "p )0 . (815)
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In the V—A theory of weak interactions with coupling constant G, whether or not it is mediated by an
intermediate vector meson, it is shown to order nG that the contribution of the vector hadron current
to the Fermi part of the amplitude for p decay involving hadrons in the same isomultiplet is independent
of the details of the strong interactions. This contribution to the radiative corrections to P decay has been
re-evaluated, with results that agree in form with those obtained previously with the use of zero-order
perturbation theory in the strong interactions, The contribution of the axial-vector current is evaluated

approximately for various models of the strong interactions. These results are compared with the pre-
dictions of universality, and generally there is good agreement with the Cabibbo angle determined from E,3

decay. The factors which inQuence the cuto8 dependence of the theory are discussed, and among other

things, it is pointed out that with the neglect of certain "small" quantities, the ratio of the rates for p decay
and P decay is cutoff-independent in the theory with an intermediate vector meson. The eRect of Schwinger

terms is studied, as well as the relationship between the cancellation occurring in the vector contribution
to P decay and the cancellation in a Yang-Mills theory which occurs as a consequence of the Ward identity.

I. INTRODUCTION
""N order to test accurately the conserved-vector-
~- current hypothesis (CVC), ' as well as to choose
between the various versions of universality, " one

*Supported in part by the National Science Foundation.
t Present address: DESY, 2 Hamburg 52, Notskieg 1, Germany.
'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

must compute the electromagnetic corrections to y
decay and to the Fermi part of P decay. The electro-

magnetic corrections to the decay of a muon have been

I,'1958); S. Gershtein and J. Zeklovich, Zh. Eksperim. i Teor. Fiz.
29, 698 (1955) (English transl. : Soviet Phys. —JETP 2, 5'I
(1957)j.

s N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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calculated to order n, ' ~ and in the V—A current-
current theory of weak interactions the results are not
only free of ultraviolet divergences, but they also agree
extremely well with the electron spectrum and polari-
zation data. Hadron decay is considerably more compli-
cated because of the strong interactions. With consider-
able foresight, in 1955, Behrends, Finkelstein, and
Sirlin~ computed the corrections to neutron decay for a
general four-fermion coupling to order o. in electro-
magnetism, but to zeroth order in the strong interac-
tions. Later their results were specialized to the V—A
theory by Kinoshita and Sirlin4 and by Berman and
Sirlin. ' The results of these calculations were logarith-
mically divergent and could be estimated only by
introducing a cuto6 and assigning it some hopefully
reasonable value. Although it has been suggested that
the cutoff in some crude way accounted for the strong
interactions, ' and that the divergence could be elimi-
nated by including them completely, it has been argued
recently that this divergence would persist even if the
strong interactions were handled exactly. '

In a letter, " which we shall refer to as I, it was
shown that as a consequence of the standard commu-
tation relations between the electromagnetic and
isospin currents, the part of the corrections to the
p-decay amplitude coming from the vector hadron
current is independent of the details of the strong
interactions; i.e., if there were no axial current, the
electromagnetic corrections to p decay would simply
universally renormalize the weak coupling constant by
the same divergent term which was calculated in
perturbation theory.

Our purpose in this paper is to complete the discus-
sion presented in I; Grst, by filling in the many details
which were omitted there, accounting for the infrared
divergence properly, and demonstrating the relation
of the cancellation of vector-current eGects to the Ward
identity; second, by including a calculation of the axial
hadron current contribution, discussing, in particular,
the circumstances under which, as in p decay, a Gnite
result could be obtained by a cancellation of the di-
vergences due to the vector and axial-vector currents;
and third, to compare the results of our calculation with
the hypothesis of universality.

In the next section we outline the problem and point
out the salient features of the calculation, writing down
explicitly the several contributions to the matrix ele-

' S. M. Berman, Phys. Rev. 112, 267 (1958).' T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).' S. M. Berman and A. Sirlin, Ann. Phys. (N. Y.) 20, 20 (1962).
6L. Durand, L. F. Landovitz, and R. B. Marr, Phys. Rev.

Letters 4, 620 (1960); Phys. Rev. 130, 1188 (1963).
R. K. Behrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev.

101, 866 (1956).
A. Sirlin (private communication); see also, A. Sirlin, Phys.

Rev. 164, 1767 (1967).' G. Kallen, Nucl. Phy. Bl, 225 (1967).
10 J D Bjorken Phys. Rev. 148, 1467 (1966)."E. S. Abers, R. K. Norton, and D. A. Dicus, Phys. Rev.

Letters 18, 676 (1967).

ment. In Sec. III the general expression for the decay
amplitude discussed in Sec. II is shown to be gauge
invariant. After that, all the calculations are done
in the Feynman gauge. The formulas for the Fermi
part of the decay amplitude" are developed further
in Sec. IV to get them into a form where they can be
more easily evaluated. Section V includes the actual
calculations of the electromagnetic corrections to the
Fermi part of the amplitude, with the contributions
of the vector and axial-vector currents considered sepa-
rately in subsections A and B, respectively. In Sec.
VI these results are combined to obtain the complete re-
sult for the corrected decay rate, with the bremsstrah-
lung rate included to cancel the infrared divergence.
Finally, in Sec. VII we show that the theory with an in-
termediate vector meson" can be included in our general
results, provided that it is minimally coupled to the
electromagnetic Geld, and in Sec. VIII we summarize the
main points of the paper and compare our results with
universality. There are four appendices. In Appendix A,
the tensors used in the calculation are defined, and a
number of relations which they satisfy are derived.
Appendix B contains a list of several integrals which
occur in the text, as well as a sketch of how they are
evaluated. The relationship between the universality
discussed in this paper and that characteristic of a
Yang-Mills gauge theory' is discussed in Appendix C.
Appendix D is devoted to explaining how operator
Schwinger terms" in the equal-time commutation
relations of the currents affect the details of our calcu-
lations in Secs. II and IV.

II. OUTLINE OF PROBLEM

The part of the weak Hamiltonian density K„which
is responsible for hadron p decay can be written as

3C = (G/v2) t,g,,yg(1+ps)P. +H.c. , (2.1)

where the charge-rising component of the total hadron
current is denoted by t, including both vector and
axial-vector parts. That is,

(2.2)

The f's in Eq. (2.1) are the Heisenberg fields of the
indicated particles and G—10 'M~ '.

The P-decay amplitude is the matrix element of X„in
Eq. (2.1) between the initial and final states. The
momentum of the initial hadron will be labeled by p

"The following contain reviews of the theory as well as ex-
tensive further references; J. D. Jackson, in Brandeis Lectures in
Theoretica/ 5'hysics (W. A. Benjamin, Inc. , New York, 1963),
Vol. I; The Development of 8'eak Interaction Theory, edited by
P. K. Kabir (Gordon and Breach Science Publishers, Inc. , New
York, 1963); C. S. Wu, Rev. Mod. Phys. 31, 783 (1959);36, 618
(1964)."T. D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960);
T. D. Lee, ibid 128, 899 (1962); R. . A. ShaiIer, ibid 128, 1452.
(1962)."C.N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).

~~ J. Schwinger, Phys. Rev. Letters 3, 296 (1959);T. Goto and
T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955).
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and the momenta of the final hadron, electron, and
antineutrino will be indicated by p', e, and f, respec-
tively. The spin indices will be suppressed except where
their appearance is explicitly required. to make the
discussion clear. The matrix element for the P decay is
thus &p'evIX„(0)

I p), and as we will show, to order n
it has the form""

&P'ev I3'- I P) = (G/~)~(e) (L(1+s)v~

+s(P+P')sl&P'I U~I P)o+L(1+2)vs
+(P(p+p')zj&p'I&xIp)o}(1+ps)v(v) (23)

where &p'I UzI p)o and &p'IA&, I p)o are the matrix ele-
ments of the vector and axial-vector hadron currents
in (2.2) computed in the absence of electromagnetic
corrections. Clearly, v, s, u, and (P are proportional to
0., and the zero-order decay amplitude is obtained by
setting these symbols equal to zero in (2.3). That is,

(P'ev I&-I P)o= ((=/A»»(1+»)s&P'I fs I P)o (2 4)

The Fermi part of the amplitude in (2.3) comes from
the terms involving v and s, and in principle these can
be separated experimentally from the Gamow-Teller
part (hereafter referred to as G-T) involving u and (P.

In fact, in any spin-zero to spin-zero transition, such
as the P decay of 0"or of a pion, only the Fermi part:
contributes. Although our primary objective is to calcu-
late ~ and s, for the sake of completeness we will retain
the 0-T part during the general formulation. However,
no attempt is made to calculate a and (P.

Figure 1 shows the various kinds of Feynman dia-
grams which give electromagnetic corrections to the
matrix element in Eq. (2.3). Figure 1(a) contains those
electromagnetic corrections in which the virtual photon
is emitted and absorbed through its interaction with
the electric current of the hadrons. Their contribution
to the decay amplitude can be expressed conveniently
in terms of the tensor T „„definedin Eq. (A7) and dis-
cussed in Appendix A. Namely, for all theories in which
the Hamiltonian density of the electromagnetic inter-
action is simply —ej A, we have

(P'ev ISC„Ip).= ups(1+ps)e
8~3v2

dk D„,(k) Ts„,(k, P P', P', P), (2.5)—

'~ In order to manipulate the matrix element into the form of
Kq. (2.3), we can make use of the fact that only one form factor
(the change form factor) contributes to (p'~ Vs~ p) to zero order
in (p —p'). When convenient, we may interchange any two of the
three equivalent (to 6rst order in a) forms a(p' Vz [ p)
=nK(P+P')&b, :=2nKPsg„, where K is an isospin Clebsch-
Gordan coefhcient.

'70ur notation and normalization can be summarized as
follows: m =electron mass; M=mass of decaying hadron; (p'~ p)= (2v) 2E„h„',(e+m)rs=( e+m)v=O, eg—= —So=2mb„; A 8

A„B„=A B—AOI3fj, A4 ——iAO' 'Yg=+1+2+8 V4s j p, Vf s

p„y,+y.y„=—28,„,(e( is the magnitude of the electron three
momentum, and p is its velocity.

FIG. 1. The order u electromagnetic corrections
to the p decay p ~ p'+e+r .

where D„„(k)is the Feynman propagator of the photon,
and the subscript a refers to the corrections of Fig. 1(a).
For theories in which the expression for the electric
current involves gradients, as in pion electrodynamics,
the electromagnetic interaction Hamiltonian and
Lagrangian densities are no longer simply negatives of
each other; there are then additional "sea-gull" terms
which require Eq. (2.5) to be modified slightly. This
possibility causes no essential problem, but to keep the
text as simple as possible, we assume here that such
terms are absent and relegate the discussion of this
complication to Appendix D.

Figures 1(b) and 1(c) refer to the electromagnetic
corrections which involve the electric current of the
emitted electron. In terms of the tensor T„„de6nedin

Eq. (A3), the matrix element of Fig. 1(b) is

&p'evIx. IP)s= ss dk D„„(k)y„
4~s&2

m —e+0
X V~T)„(k,p', p) (1+Vs)v, (2 6)

k'—2e k

where here, and throughout the remainder of the paper,
the denominator of Feynman propagators should be
understood to contain an additional term —ie, e —+ 0+.
Figure 1(c), properly interpreted, means the correction
obtained by multiplying the zeroth-order matrix ele-
ment in Eq. (2.4) by Zs'"—1=—', (Zs—1) to order o.,
where Z~ is the electron wave-function renormalization
constant. "That is, to order 0.,

&p'e- Im„lp),= (G/~2)-;(Z, —1)
Xw~(1+~s)s&P'I f IP). (2.7)

This renormalization factor can be written conveniently

"See, for example, J. D. Bjorken and S. D. Drell, Relativistic
QNantgnz Fields I'McGraw-Hill Book Co., Inc. , New York, 1965},
pp. 303-309; J. M. Jauch and F. Rohrlich, The Theory of Photons
awd Flectrons (Addison-Wesley Publishing Co., Inc. , Reading,
Mass. , 1955), pp. 186-187'.
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—,'(Zg —1)=— a
ei, dk D„„(k) u(e)y„

16m 3ns2 Bkg

X (m+e —k) 'y„u(e). (2.8)

The second term of -this expression may be transformed
using

k'r p rQ Tggg — k Tp p+ (k i,'r p kpp g) Ti ij

+&avpÃvYn'rPxp (2 15)

The complete matrix element is the sum of the ex-
pressions in Eqs. (2.4)—(2.7). In the next section we
show explicitly that this sum is gauge invariant. After
that we proceed with the calculations in the Feynman
gauge defined by

D„„(k)=e„„/k'. (2.9)

G io.—N
v2

dk
(kvi, »pp+vg&v—ik 'T)„)

+k(Z2 —1)~~{p'I~~ I p) (1+~5)'

Vgfr7& Txy k7pVKTxy 2kp7xTkp p (2.11)

and according to Eq. (A4) of Appendix A, the second
term of (2.11) supplies a universal correction, like the
~(Z2 —1) term, which is proportional to the zero-order
matrix element. The part of the corrections which
depends upon the strong interactions is therefore

io.G dk—(2vP'~~, —&k 'v,vx», )(I+vs)i' (2.12)
4~MZ

Before obscuring the argument with calculational
details, most of which have to do with the proper
handling of infrared divergent terms, let us outline the
main features of the problems, seeing in particular how
the details of V„„andV „„,which are the parts of T„,
and T „„whichcontain the vector current, cancel out
completely leaving a universal correction to the ampli-
tude; whereas A„„,the axial-current part of T„„,con-
tributes to the Fermi amplitude in a way which de-
pends upon the model of the strong interactions.

Even this partial success of our eGorts is possible
because we are asking only for the corrections to order
a, and because P decay has the special feature that the
momentum carried off by either lepton is of order n
compared to the hadron mass.

Thus to obtain the corrections to order u, it is almost
correct simply to set p= p' and ignore all terms pro-
portional to nm or nIeqI. This is not quite right, because
the presence of the denominator k' —2e k in (2.6)
results in the contributions to some of the integrals
coming from the integration region IkI&m to be
effectively proportional to Ie&I

' or es '. However, V„„
is known near k=o, and the corrections to this simple-
minded approach can be calculated. If we leave these
details for Sec. IV and proceed with the simple argu-
ment, we note that when the lepton momenta are set
equal to zero in Eqs. (2.5)—(2.7), the order n part of
the decay amplitude, expressed in the Feynman gauge
becomes

Only the V» part of the Tz„in the Grst two terms of
(2.13), and the Ai,„part of the third term, contribute
to the Fermi decay amplitude. Further, the second term
contributes only to higher order in u Lsee (A4) and (A5)]
and can be ignored. Hence, the Fermi part of the ex-
pression in (2.12) is

inG
N

4n'K2

dk—(-',ygVx„„+0k'V„„
P2

—e „„„k„yk
—'Ag„)(1+y,)n. (2.14)

III. GAUGE INVARIANCE

In this section we show that the general form for
the decay amplitude is gauge invariant. More precisely,
we show that if

D„„(k) k„k„f(k'), (5.1)

the sum of the right-hand sides of (2.5)—(2.7) is trans-
formed to zero.

If we make use of the fact that the electromagnetic
mass shifts of the initial and 6nal hadrons are gauge
invariant, we can ignore the contribution of the second
term on the right of (A10) which appears when D„„

J

' S. Fubini and 6, Furlan, Physics 1, 229 (1965'j.,

In I, the Vy„,was computed using a Fubini-Furlan"
type sum rule, minimal electromagnetic coupling, and
PT invariance. A considera, bly simpler, and apparently
more general procedure is to compute (8/Bqi, )(yeVe„„)as
discussed in Appendix A. Equation (A17) can then be
derived, which when substituted into (2.14), and an
integration by parts performed, leads to an exact cancel-
lation between the first two terms of (2.14). (Actually,
the integration by parts has to be done more carefully
because the integral is formally divergent. A correct
treatment is given in Sec. IV.)

The remaining term in (2.14) depends upon the
tensor Aq„,' i.e., it depends upon the contribution of the
axial-vector hadron current to the Fermi part of the
decay amplitude. This correction is discussed in detail
in Sec. V. In passing, however, we note that it is only
this part of the Fermi amplitude which depends upon
the details of strong interactions, and remark that the
divergent part of this contribution depends only upon
the equal-time commutation relations between the
spatial components of tq and A„.To first order in 6 and
o., the divergence from this term will just cancel the
divergence of the universal terms leaving a finite result,
as in p, decay, if the isospin currents are constructed
out of quark-like fermion 6elds which carry an average
charge Q= —~. This point will be discussed in more
detail in Sec. V B.
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undergoes the transformation (3.1). With this under-
standing we can employ (A4), (A10), and the identity

emphasize, however, that this procedure is no more
physical than any other, and that the 6nite part of
our result, as well as its explicit dependence upon the
cutoff A, depends upon this choice.

The foregoing remarks can be summarized by setting

u(e)k(m —e+k)(k' —2e k) '= —u(e), (3.2)

to obtain the results of applying the transformation (3.1)
to the right-hand sides of (2.5) and (2.6). Indicating the
result of this transformation by an arrow, we obtain

A2

D„,(k) =-
k'+X' k'+h. '

(4 1)
&p'"- lac„lp}. (i G/s 3&2)

Xg (1+ ) (p I
t

I p) dk f(km) (3 3) in the decay amplitudes given in Sec. II, and by keeping
only those terms in the integrals which do not vanish

and in the limits X ~ 0, A ~~.
(p'es

I
~-

I p) v ~ (—v~G/4~'v'2)

Xu»(1+F5)v(p'I tel p) dk f(k'). (3.4)

To see what happens to the electron wave-function
renormalization term when the transformation (3.1) is

applied, observe the identity

ei,k„k„(8/Bki,)uy„(m+e fr)—
=uk(m+e Ir) '—e(m—+e Ir) '—ku (3.5)

Using first Eq. (3.2) and its ad joint, and then the Dirac
equation to eliminate e in favor of —m, we easily obtain

(p'er
I
~~ I p},—+ (inG/sv'v'2)

Xu»(1+~)v(p'l&ilp} dk f(k') (36)

A. Corrections of Fig. 1(a)

With D„„givenby (4.1), the expression in Eq. (2.5)
for the ma, trix element of Fig. 1(a) is

2QG
(p'ev

I
X„Ip).=—u»(1+p, ) v

8~3&~

T...(k, p p-', p', p)--
k'+X' k'+A'

The Fermi part of this amplitude comes only from the
contribution of the vector hadron current to Tq»,'

that is, from Vq» as defined in Appendix A. Because of
the explicit factor of n in Eq. (4.2), we only need Vi»
to zeroth order, for which Eq. (A17) is a handy formula.
Hence, using (A17), we can write (4.2) as

2O.G
uvre(1+'vs) v

S~av2

dk A.' 8
X -V„„(k,p', p)+(G —T) . (4.3)

k'+X' k'+h. ' Bki
IV. TOW'ARD EVALUATING THE CORRECTIONS

Comparison of Eqs. (3.3), (3.4), and (3.6) allows the
immediate conclusion that the total decay amplitude (p'epl~„lp),=-
is transformed to zero under the transformation (3.1).
In the remainder of this paper, we will restrict ourselves
to the Feynman gauge defined by Eq. (2.9).

Our purpose in this section is to rewrite the formulas
of Sec. II so that the Fermi part of the decay amplitude
can be evaluated. Having verified that the total decay
amplitude is gauge invariant, we will proceed in the
Feynman gauge given by Eq. (2.9).

As written, the integrals in Sec, II are infrared and
ultraviolet divergent. The infrared divergence can be
handled systematically by introducing a photon mass
X, thatis, byreplacingk'by k'+X' in the denominator of
D„„(k).Because of gauge invariance (see Sec. III), we
can ignore the term k„k„/X'which appears in the numer-
ator of the propagator for a massive vector meson. The
dependence of the total decay rate upon X will of course
be cancelled, in the limit X ~ 0, by corresponding terms
in the rate for soft photon emission.

The ultraviolet in6nity is not cancelled by anything
we know how to calculate (see, however, Secs. VB and
VII), and some kind of cutoff procedure is therefore
necessary. We shall introduce a covariant cutoff by
multiplying the photon propagator by h. '/(k'+A'). We

In order to obtain the cancellation referred to in Sec.
II, we integrate by parts the right side of (4.3) and
obtain

'er K„}.= — u
4v'K2 (k'+X')' k'+A'

k'
XI 1+ — kV»(1+y5)v+((x —T), (4.4}

the resulting term with X in the numerator has been

ignored.
The term proportional to k'/(k'+X') in (4.4) arises

because of the particular way we chose to introduce the
ultraviolet cutoff. It gives a finite contribution to the
total matrix element, independent of A.' in the limit
A' —+~. Although the A.' dependence of the 6rst term
in (4.4) will be cancelled exactly by part of the matrix
element in Fig. 1(b) given by Eq. (2.6), as outlined in

Sec. II, this dependence must be known in order to
calculate the 6nite term.
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Noting that. C. Corrections of Fig. 1(c)
h.~k~ 8 A.2

=42
(k'+A')' BA' k'+A'

Specializing to the Feynman gauge and adding the
cutoffs to the expression (2.8), the electron. wave-
function renormalization of Eq. (2.7) becomes

(4 5)

M,G ea
uzi (1+vs)i &p'I/iI p&

8&3&2 25$2

Eq. (4.4) can be rewritten as

&p'em IBc.I p&.=(1+A a/aA') &p.,„-I~
I p&

X&(&',A', p', p)+(G—T), (4.6)
where

A=-
4irM2

dk A

kV„„(1+y5)i. (4./)
(k'+X')' k'+h. '

dk A' 8
uy„(m+e Ir—) 'y—u. (4.12)

k'+X' k'+A' Bk„

&p"WIBC-I p& =uzi(1+&5)c&p'I I'il p&

X (1+4'8/M. ')B(A.',V,e)+ (G—T), (4.13)B. Corrections of Fig 1(b).

Substituting (4.1) into (2.6) gives
where

As will be discussed in the next section, the derivative In exact analogy to our treatment of the hadron current

with respect to A' in' '(4.6) is fiiute in the limit A'~00 corrections in Eqs. (4.4) through (4.7), Eq. (4.12) can

and gives a result which depends only upon the part
of A vrhich diverges like InA'.

&p'esIBc Ip&i,—— u
dk A.'

k'+X' k'+A'

io.G8=-
2m'm'K2

dk A.' (e k)(m' —e k)
(4.14)

k'+X'k'+A' k' —2e k

m —e+0
Xv. ~ T .(k,p', p)(1+v ) . (48)

k' —2e k

It is convenient to separate this into four terms ob-
tained by using the identity

u"/p(m 8+@)riT—ip= u/ATpp+2eII, 'riTy~

(rp4+ 7 ik/l)

Tidal+

~a All% a7 54T k v j (4'9)

The 6rst three terms on the right-hand side contribute
to the Fermi part of the matrix element only through
the V„„partof T„„andto zero order in a, the third.
term can be simplified by using Eqs. (A4) and (A'/);
namely,

(~„k,+~,k„)V,„=2~,&p'I v, I p&+O(~), (4.1o)

dk A.' —V
k'+X'k'+h. 'k' —2e k

SAG
&p'ei Ise I p&i, u——

Jk dk A2

k'+X' k' —2e k k' k'+A'

X vx&p'II/~Ip&6+e. .i.v.
k' —2e k k'+X' k'+A'

k&..'(1+~a)e+(G—T). (411)
k' —2e k

noting that q O(n). The last term on the right of (4.9)
contributes to the Fermi part of the decay amplitude
only through tbe axial hadron current, that is, through
A». Hence, writing explicitly only those terms which
contribute to the Fermi amplitude, and omitting cutoffs
where they are not required for convergence, we obtain
by substituting (4.9) into (4.8)

In this section we evaluate to order o. the total
electromagnetic correction to the Fermi part of the
decay amplitude obtained by adding the matrix
elements in Eqs. (4.6), (4.11), and (4.13). As we have
emphasized, except for the contribution of the term
involving Ai„in the (4.11), the result of this addition
is independent of the details of the strong interactions.
Consequently, this section is divided into subsections
A and 8, which discuss separately the contributions of
the vector and axial-vector hadron currents.

A. Corrections from the Vector Hadron Current

Consider first the corrections of Fig. 1(a), which are
given in Eq. (4.6). The term proportional to the 1 in

(4.6) we shall keep to combine with the first term on the
right of Eq. (4.11).The term proportional to the deriva-
tive with respect to A' is 6nite in the limit A.' —&~

(assuming, as we do, that A diverges no worse than like
lnA'), and unlike most of the other finite terms, does
not depend upon the region of integration for small k',
but rather on the coefBcient of lnA. ' in the integral for
A in Eq. (4.'/), which in turn is determined from the
large-k'(k'))A') region of integration It is amu. sing that
of all the terms which combine to give the total decay
amplitude only this one depends in any detail on the
structure of V». A large class of models will have the
asymptotic behavior derived by Bjorken" assuming
quark commutation rules'0 namely, for Axed k,

I'..—,
=- = —2ke '&O'I I'olp&

2o M. Gqll-Ma~n Phys. Rqv. 125 yOg2 I,'19g2). Physics I
(1964).
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8=—(uG/2m')PS+2 1n(A/m) —ln(m/g) j, (5.5)

so that

For large A' the dependence of A upon this cutoff result is
will be unchanged if any convenient form for V» with
the behavior (5.1) is used; for example,

"V-"= 24—(p'I V. I p)(k' 2p—k) ' (5.2)

Using this expression for V» in Eq. (4.7), and perform-
ing one of the integrals discussed in Appendix 8,
leads to"

"A"= —(nG/8vr&2)ups(1+ps)r

&& (p'( V, ( p) ln(A'/M'), (5.3)

from which we can obtain

8
h.' A= —(nG/87r&2)gy), (1+/5)$(p'(Vg(p). (5.4)

BA2

The integral for 8 in Eq. (4.14), which occurs in the
correction (4.13) for the electron wave-function re-
normalization, is also evaluated in Appendix B. The

XL9/8+-,' »(&/~) —ln(m/~) j, (5.6)

which is, of course, just the standard expression' for
s(Z2 —1) multiplied by G/K2.

The analogy between the evaulation of these two
corrections is not accidental. If the external hadrons
were spin- —',, minimally coupled fermions, to zeroth
order in the strong interactions, the two contributions
would be identical. The assumption (5.1) says that the
asymptotic form of V» is the same for hadrons as it is
for the corresponding tensor constructed out of elec-
tron and neutrino 6elds.

Now let us add everything up. Using (5.4) and (5.6),
the sum of the matrix elements in Eqs. (4.6), (4.11),
and (4.13) is

&p'~~(~.
( p).+w.= — L11/8+2 ln(~/~) ln(~/~)]NQA(1++ )v(p ( Vg ( p),2s.v2

io.G dk 2e k dk
Q —kv»12e„pg V)~

4~8v2 (k2+g2)2 k2 2g. k k2+g2 k2

dk A.2 1
»(p'I V~ I p&6+~-~,~.k'k'+h. 'k' —2e k

dk A2

k, 4),„(1+ps)v+(G—T), (5.7)k2+ j 2 k2+g2 k2

where we have ignored cutouts where they are not re-
quired. The sum of the three matrix elements is indi-
cated by the subscript.

Consider the two integrals in (5.7) which involve V»
and Vq„. In terms of the Born approximation Vq„~
discussed in Appendix A, we can write

V),= Vx,~+(V)„Vx,s)— (5 8)

with a minimum of assumptions. The difference in the
second term on the right-hand side of (5.8) is not singu-
lar when k —+0, and the infrared cutoG X' can be set
equal to zero in the corresponding integrand. It is then
easy to see that this difference term would contribute
to (5.7) in the order n(e(ln(e(=O(u'inn) and higher
orders. Terms of this order are outside the limits of our
approximation and have already been ignored in ob-
taining Eq. (4.6). We therefore replace Vz„and V» in
(5.7) by their Born approximations given in (A24) and
write these two integrals as

2e'k
-kV..=-2p.(p'i V. I p&.(k'+X')' k' —2e k k'+A'

dk A.' 2e k
(5.9)

(k'+V)'k'+A'k' —Ze k k' —2p k

V~~= —2(~ p)vt«p'( V~( p&ok2+g2 k2

(5.10)k'+X'k' —2e k k' —2p k

These integrals, as well as the remaining explicit inte-
grals in (5.7) are computed in Appendix B.Substituting
(5.9) and (5.10) into (5.7), and performing the integrals,
leads to an explicit expression for the complete Fermi
part of the right-hand side of (5.7), except for the term
involving A~„.If the matrix element is put into the
form of Eq. (2.3), the result of this calculation can be
expressed by giving the results for e and s. The term of
(5.7) involving Aq„contributes only to v, and it will be
evaluated in Sec. VB. If, for the moment, we denote its
contribution to ~ by e&, then in the rest system of the
initial hadron (y=0), our results are

v= (u/2s. )ps in(A/tm)+2(1 —p ' tanh —'p) ln(yg/g)

11/8+P 'L L&P/—(1+P)j—p '(tanh 'p)'+p 'tanh 'p)+a~, (5.11)
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where p is the electron velocity, and

ps) i/s

s= —
I

tanh 'p.
ps )

(5.12)

This may be covariantly generalized to give

nr

1
Ai.= 2Qe-~8-(P'I I'.

I P)o—+o(I/&s) (5 18a)
k2

Here 1.(x) is one of the Spence functions, de6ned by"

(5.13)

(p ei'
I
~~ I P)axisi = eavislva(1+go)o

4 oval
' dk A.'

k„Ag„. (5.14)
k4 k'+A. s

&Ve consider first the divergent contribution to (5.14).
This means that we need to know the asymptotic
behavior of Aq„—A„q~2Aq„for k' —+~. Using the
method of Bjorken" to determine this limit, we find it
depends upon the part of the commutator of Ai, (0)
and j„(x,0), which is antisymmetric in the tensor indices.

This is a model-dependent quantity. I et us assume, as

is true for most models, that the currents are constructed
out of spin-s 6elds f which have canonical anticom-

mutation relations. Then, '0

A), =0"yovn O'P, (5.15a)

js=f yoysQ&~ (5.15b)

where Tt is the isospin raising matrix and Q is the matrix
for the electric charge. Thus,

I Ai, (0),j„(x,0)]—() ~ p)
=—2t ~ .5'(x)4'vox. (2',Q}4. (5.16)

If the 6.elds f(x) contains one isodoublet, but no other
isomultiplets (except isoscalars or isodoublets with the
same hypercharge), then the anticommutator (Tt,Q)
can be written as 2QTt, where Q is the average charge of
the isodoublet of elementary Gelds. One then finds

Ai„-(r'/ko) 2Q«, i,„—(P'I V, I P)o+0(1/&o') (5.17)

~' K. Mitchell, Phil. Mag. 40) 35& (&949).

B. Corrections from the Axial-Vector Hadron Current

The term o~ in Eq. (5.11) comes from the axial-

vector current. This contributes to the Fermi part of
the amplitude in Fig. 1(b), since the isoscalar part of
the electromagnetic current can combine with the axial
current to form an effective vector, G parity +1 con-

tribution, given by the term involving Ai„in (5.7). The
electron momentum and infrared cutoff (or photon
mass) can be neglected in this term since it contains no

infrared divergence. This is because the forward spin-

averaged matrix element of an axial current vanishes,

and this is all that contributes to A),
„

for k —+0. Thus,
the relevant term in (5.'/) is

-+0(1/&')
0s+3lgs

where the second form, which is the same as the erst
for k' —+~, is written so that we can evaluate the di-
vergent term without introducing a spurious infrared
divergence. For the moment, M& is simply some mass—
presumably roughly equal to the nucleon mass —which
crudely marks the value af k' above whi. ch the asymp-
totic expression dominates. If (5.18b) is substituted into
(5.14), the integral performed, and the result expressed
as a value for v~, we obtain

og = (3rr/2s)Q ln(A/Mg)+6nite terms, (5.19)

where the first term includes all of the contribution from
(5.18b), and the remaining 6nite terms have yet to be
estimated. Combining the result; in (5.19) with the
other divergent term in (5.11) coming from the vector
hadron current, we see that the coefficient of ink in the
total Fermi matrix element is proportional to 1+2/.

Now Q is a model-dependent constant. If the funda-
mental fields were simply nucleons, as assumed in the
perturba, tion theory approach of previous calcula, tions,
then Q=-,', which reproduces exactly the result given

by Berman and Sirlin for V—A theory. In the Gell-
Mann and Zweig quark model"" one 6nds Q= —', . It
is also possible to construct models such that Q= —-'„so
that the divergent term vanishes and one obtains a finite
radiative correction for p decay. This is the case for
the conventional description of p decay and explains
in our language the finite correction that has long been
known in that case. Several models for the hadron
fields which have the property have recently been sug-
gested by other authors. "However, since other prob-
lems with the current-current theory of weakinter-
actions (for example its nonunitarity) indicate that one
must eventually modify the theory at least at high
energies, we do not consider the vanishing of this di-

vergent term to be of any great significance. In a correct
theory it probably would not occur, or as in the inter-
mediate boson theory discussed in Sec. VII, it would
occur also in p decay and indicate only an infinite but
universal renormalization of G.

As an interesting aside on the value of Q we can
estimate, rather crudely, an upper bound on the value

I Q I
from dat, a on photoproduction of the A i meson, or

more accurately, from the lack of it. The estimate is
made by assuming that the A& meson dominates the

"M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN
Report No. TH4j.2, 1964 (unpublished).

~' K. Johnson, F. E. Low, and H. Suura, Phys. Rex. Letters 18,
1224 (1967); N. Cabibbo, L. Maiana, and G. Preparata, Phys.
Letters 25$, 29 (1967); 258, 132 (1967).
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axial current so that the diagram of Fig. 2 provides the
divergent contribution of (5.19). From data for photo-
production of three pions we can obtain an approximate
A& photoproduction cross section by assuming that, for
energies su%ciently above threshold, and for small
momentum transfer, the A » cross section is proportional
to the co cross section, and that both tend to constant
for large photon energies E7. This is very possibly a poor
assumption since the major contribution to the co photo-
production at high E~ is from diRraction production.
This process does not contribute to A ~ photoproduction
because of the A& has the wrong parity. This means that
we are possibly overestimating the A~ cross section,
which in turn wiB mean that, although still an upper
bound, our value is not a very restrictive one. From the
invariant mass distributions for three-pion photo-
production given by Maor et al. ,

'4 and by the Erbe
e] ul. ,

25 we And

(5.20)

as a generous estimate of the number of A~ mesons
produced. We also assume that even though the fact
that A~ and the photon are both virtual particles in the
process of Fig. 2, no further form factors are required.

Under these assumptions the amplitude for Fig. 2 is
given by

F= gAereggvr~apk (k +~A ) &exrva4pa

X „(—&& ')y, (1+y ), (5 21)

neglecting the electron mass, where

Pro. 3. A possible mechanism to account
for the diagram of Fig. 2 at high virtual momenta
of the photon and A1. l

l

Pl
I
I

To return to the problem of radiative corrections, we
have still to evaluate the "finite contribution" of (5.19).
Unfortunately, the best we can do is just an estimate.
The problem is that we have no real understanding of
the source of the infinite contribution, so we cannot
rigorously separate it out and then evaluate the remain-
ing contribution by a dispersion approach. However,
this is exactly the procedure which we wish to use. We
do this for P decay of a single nucleon since this is the
number we want, a similar procedure could be applied
for any decay. Delning v= —k ~ (p+p')/2M, we write

Ag„=e„),„0(P'i V„iP)A(ks,v)+ (5.23)

and note that to zero order in g=p
—p' it is only the

part of Ai„coming from the invariant A(ks, v) which
contributes to the integral in (5.14). Then subtracting
out a term to account explicitly for the asymptotic
behavior as given by Eq. (5.18b), we let

A(y+p ~ n+Ai )=ge~~er"te)„„„kvp, (5.2.2)
A(k', v) = +a(ps, v) .

ks+Mgs
(5.24)

From the assumptions discussed above, we estimate
g'&S.j.X10' BeV '.

The constant gg.„hasbeen shown by steinberg' to
be equal to g,.„under the assumption that the A& and
the p dominate the axial and vector currents, respec-
tively. Combining all these things we can obtain a limit
on Q, which turns out to be Q(10. This is obviously an
overestimate, which is not very surprising when one
considers the many approximations made in obtaining
it. However, further data on A~ photoproduction could
lead to a considerably lower limit.

FrG. 2. The A1 pole in the contribution of the
axial current to the Fermi matrix element.

'4 Cambridge Bubble Chamber Group, in Proceedings of the
Second Topical Conference on Resonance Particles (Ohio University,
Athens, Ohio, 196S), p. 476.

Aachen-Berlin-Bonn-Hamburg-Heidelberg-Munchen Bubble
Chamber Collaboration, Nuovo Cimento 46A, 795 (1966)."S.VVeinberg, Phys. Rev. Letters 18, 507 (1967).

(5.25)

"W. N. Cottingham, Ann. Phys. (N Y.) 25, 424 (1963).
ss H. Harari, Phys. Rev. Letters 17, 1303 (1966).
sii Proceedings of the Argonne International Conference on Weak

Interactions, Argonne National Laboratory Report No. ANL-7130
(unpublished); CERN Heavy Liquid Bubble Chamber Group
(unpublished).

This separation occurs, for example, if the asymptotic
term arises from the process shown in the graph of Fig.
3. As suggested by this graph, as well as by the previous
discussion, we will take N~ to be the mass of the A~.

Following Cottingham'~ we write a dispersion relation
for a(k', v) in v for fixed, spacelike k' and follow Harari"
to argue that it should satisfy an unsubtracted disper-
sion relations, since the leading Regge trajectory in the
t channel is that of the p meson, and this means that
for v -+co, Imtt~v "& ' with n(0) =0.5. Since only the
isoscalar photon contributes, intermediate states with
isospin 2 are all that enter the dispersion relation. Thus,
the E33* resonance does not contribute, and we are
led to hope that a reasonable approximation is obtained.
by retaining just the Born term. This we have done, and
using the form factors F~ =Fr, F»= (1+rtk') ', wit——h
q= j..37 BeV ',"we obtain 6X10 as the 6nite con-
tribution to vz in Eq. (5.19).Hence,

»=(3~/2 )Q»(f Pr„)6X10—
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is the value of e~ we use in the discussion of Sec. VIII.
Fortunately, since it is not a reliable estimate of the
6nite part of e~, the 6X10 ' gives a very small contribu-
tion to cos8 (Cabibbo angle), being almost buried in the
uncertainties quoted for the experimental numbers.

di'=(2~) 'l(p'e~l&
I p&l'

d'p'd'ed'r
X84(p'+e+r —p) . (6.1)

2A'2E'2F. ,2E„

We take only the Fermi part of the decay amplitude, as
expressed in terms of v and s in Eq. (2.3), substitute this
into (6.1), integrate over d'p'd'r and dQ„and the sum
over the spins of the electron and nuetrino. Keeping
only contributions up to order u, the result of this is

dI"=dI'e(1+2w+4MmE, 's), —(6.2)

where dI'0 is the rate without electromagnetic correc-
tions. If, for the initial hadron, the isospin and its
third component are I and /„respectively, and if
recoil corrections are ignored, then

dl'e ——(2s') '(I+I,+1)(I—I,)
XG'(M M' E,)'-lelE—.dE,— (6.3).

B. Rate for Bremsstrahlung

As the bremsstrahlung rate is also infrared divergent,
it is necessary to again introduce the same small
photon mass X and keep only terms which do not vanish
in the limit 'A~ 0. The total decay rate is obtained by
adding the bremsstrahlung rate to the rate for the non-
radiative decay in (6.2).

Suppressing the spin dependence, the bremsstrahlung
rate is

VI. CALCULATION OF THE DECAY RATE

A. Rate for Nonradiative Decay

The general form of the decay amplitude is given in

Eq. (2.3), and the value of v and s, which describe the
Fermi part of this amplitude, are given in Eqs. (5.11),
(5.12), and (5.25). We now compute in outline the con-
tribution to the total decay rate coming from the Fermi
part of the decay amplitude.

With our normalizations, "the decay rate is given by

the phase space for the nonradiative decay. As a conse-
quence, we need only keep the hadron pole terms in the
part of, the matrix element which comes from the cou-
pling of the photon to the current of the hadrons, since
these are of order n ' and contribute to total decay rate
in the same order as do the lowest order radiative cor-
rections to the rate without bremsstrahlung.

Keeping only the hadron pole terms, as well as, of
course, the part of the amplitude due to radiation from
the emitted electron, the matrix element in (6.4) is

2E" e+'y ' eA
(p'erk

l
X„l p) =iG(27m) '~'u(e) —X'—2e k

2e'p
+ — l7q(1+Pe)~(r)(p'l rq

l p)e, (6.5)—
~ '+2k. p)

where e„is the polarization vector of the photon. When
(6.5) is substituted into (6.4), we can ignore the X in
the denominator, since its presence introduces an ad-
dition to the rate which vanishes in the limit X —+ 0.
Realizing this, it is then easy to see that (6.5) is gauge
invariant (in the limit of vanishing X).

Since we are concerned here with the rate coming
from the Fermi part of the amplitude, we will restrict
rz in (6.5) by replacing it by its vector part Vz. We then
specialize to the rest frame of the initial hadron,
ignore recoil corrections (since they are of higher order
in n), perform all polarization sums and integrations,
except that over the electron energy, to obtain the
bremsstrahlung rate in terms of the uncorrected non-
radiative decay ratee Lsee Eq. (6.3)j:

/1 ) M —M' —E,
dl'a =d I'e—

21 —tanh-'P —1
l
ln-

Ip

1 q 2)1 yM —M' —I:,
+31 1——tanh-'P l+-l —tanh-&P —1 l-

p j
1 M M' Ei'——

+—ta,nh
—'P - ——

l +g(p), (6.6)
12' I,

C(P)=2 1n2(P ' tanh 'P —1)+1+(2P) '

Xtanh 'PL2+ln4'(1 —P)ej+P 'LI.(P)—I.(—P)j
di'e ——(2m)

—el(P'erklX lP)'
d'p'd'ed'pd'k

X6'(p'+e+r'+k —p) —
~ (6 4)

2828'2L&', 2J „2Eg The Spence function I(x) is defined in Eq. (5.13).

As we have stressed, the momentum emitted to the
leptons and photon is of order 0,. Thus, the extra factor C. Total Decay Rate

of '
/d2kE& in (6.4) compared to (6.1) means that the The total decay rate can be obtained by combining

bremsstrahlung phase space is of order u' compared to Eqs. (5.11), (5.12), and (5.25) with Eqs. (6.2) and (6.6).



RA D IATI VE CORRECTIONS

The result is

A. M M
dl'~„——dl's 1—1.2X10 '+— s(1+2Q) ln—+s ln—+3Q ln —san+2(P

' tanh 'P —1)
7l M m Mg,

(M—M' —E, 2(M —M' —E.)~ (M —M' —E,)' 2
X I

— — ——s+in —— — — I+2(P)
—' tanh —'P 2(1+Ps)+— - ——2 ln-

3E, 6Es 1—P

This result can be compared with Eq. (7) of Ref. 5.
Although complete account has been taken here of the
strong interactions to the extent that they affect the
contribution to (6.8) coming from the vector hadron
current, it is seen that this part of the rate agrees
exactly with that obtained by neglecting the strong
interactions. In our expressions we have ignored terms
of order M'/A'. These have been retained in Ref. 5.

VII. EFFECTS OF AN INTERMEDIATE
UECTOR MESON

A popular modification of the local current-current
V—A theory of weak interactions is based on the intro-
duction of a charged intermediate vector meson coupled
to t),."We show in this section that the principal con-
clusions of our work still hold when the weak interac-
tions are mediated by such a meson, provided it is
minimally coupled to the electromagnetic field. Namely,
we show that:

(1) To order n, the Fermi part of the P-decay ampli-
tude coming from the vector hadron current is inde-
pendent of the details of the strong interactions. As for
the case of a theory with a local interaction, one gets
the correct answer for these electromagnetic corrections
by ignoring the strong interactions in the calculation.

(2) The order n correction to the Fermi part of the
P-decay amplitude coming from the axial hadron current
is the same as in the local theory, except that the cuto6
is replaced by the intermediate vector meson mass M ~.

By referring to the work of Sha6er, "we indicate at
the end of this section how these conclusions imply
that for a theory with an intermediate meson, the
comparison of the experimental 0" and p,-decay rates
with universality is the same as in the local theory with
cutoff in the P-decay amplitude set equal to Ms .

In the theory with an intermediate vector meson, the
Fermi part of the P-decay matrix element to zero order
ln 0. 1S

indicate the corrections to this amplitude to order o, .
Those which can depend upon the strong interactions
are shown in Fig. 4.

In Figs. 4(a) and 4(b) we can ignore the q dependence
in the vector meson propagator connected to the e-v

pair, since these terms are higher order in q, and there-
fore in o,, than those retained. The matrix element in
Fig. 4(a) is then exactly the same as that given in
Eq. (4.6) for the local theory.

Assuming, as we shall, that the lV meson is minimally
coupled to the electromagnetic field, the matrix element
in Fig. 4(b) becomes

dk A2

X -[(2q—k)„bx.—q.b„,—(q —k) xb„]
k2+) 2 k2+A2

b .+(q k) (q k)„/M—ss—
X— —V.„(k,p', p) . (7.2)

(q—k)'+Ms '

Using the gauge conditions (A4) and (A7) for V„„,and
eliminating terms which are clearly of order nlql or

GMg '
&P'e~

I
~

I P&s= ~(e)vx(1+vs)e(~)
W2

&x,+qxqu/Mw'
&P'Iv. IP&, (7»

qs+Ms '
(c)

FIG. 4. The part of the electromagnetic corrections which
can depend on the strong interactions in a theory with an inter-

where q= p —p'. There are eight kinds of diagrams which mediate meson.



ABERS, DICUS, NORTON, AND QUINN

higher, this expression reduces to

(p'e~l3'-*
I p)~= «3' k2+y2 k2+A2 k2+M 2

X(&V„—V.(p'I V. j p))(1+~ ) ( ) - (7 3)

Using the relations (A4) and (A7) for V„„,and elimi-
nating terms of order n

~ q ~

and u
(
e ~, this becomes

In analogy with the graph'in Fig. 1(b), the correction
to the Fermi part of the amplitude shown in Fig. 4(c)
includes a contribution coming from the axial current.
Making the decomposition in Eq. (4.9), the Fermi part
of the amplitude in Fig. 4(c) is

inGMg ' dk 4' I
(p'er~K„)p),=- u(e)

4m'v2 k'+II.2 k'+A. 2 k' —2e k

X L(kb„)+2e„yg—y~kx —yak~) Vyl„+e~px~y~ke~f. l*j
Bg„+(q k) ),(q—k)./M—s '

X— (I+v5)~(~) (7 4)
(q —k)'+Ms '

can be taken over directly to conclude assertion (1)
in the beginning of this section. The second assertion
also follows immediately by comparing the last terms
on the right of Eqs. (4.11) and (7.6), and recognizing
that, for the respective theories, it is only in these terms
that the axial current contributes to the Fermi part
of the decay amplitude.

In the next section we discuss to what extent the
experimental p,-decay and 0"-decay rates agree with
the hypothesis of universality. As one of the possible
theories, we want to include the case discussed here, in
which the weak interactions are mediated by a charged
vector meson minimally coupled to the electromagnetic
Geld.

For the theory with a minimally coupled intermediate
meson, the P-decay and p-decay ra, tes have been calcu-
lated by Sha6er" to order 0. by ignoring the effects of the
strong interactions. Neglecting terms of order M„'/Ms",
uM'/Ms', and nMs'/h. ', the results of Shaffer can be
written as

I'„~={1+(n/s. )[32 ln(A/Ms )+a(A,Ms )])I'„r (7,7a)

dk A.' Mg '
p'e.

I
~,.I p),= zi

4~8vt2 k2+g2 k2+A2lk2+M 2

X —LAV„„+2epgVp„—(2+k'Ms ')p„
k —28'k

X(p'j V„ip)+ep&,„ykeA~„](1+F5)v. (7.5)

If we add the right-hand sides of (7.3) and (7.5),
throwing away terms of order nje~ and eliminating
cutoffs where they are not required, we obtain for the
sum of the matrix elements in I"igs. 3(b) and 3(c)

i' dk A'

4m'v'2 k'+X' k'+A' k' —2e k

dk Mg' 1
+2e„v~

k'+V k'+Ms 2k' —2e k

dk A.' 1
~.(p'I V, I p)k'k'+A'k' —2e k

' dk kg' kp
+&aekpVa Ag„(1+y5)n. (7.6)

k2 k'+Ms' k' 2e k—
Comparing (7.6) with (4.11), we see that, except for
the factors of Ms (k'+Ms') ' in the integrands of the
second and fourth terms on the right-hand side of (7.6)
the sum of the corrections in Figs. 3(b) and 3(c) for the
theory with an intermediate meson is the same as the
correction in Fig. 1(b) for the theory with a, point inter-
action. Remembering that the corrections of Figs. 3(a)
and 1 (a) are exactly the same, the arguments of Sec, V 8

I"e~= {1+(u/~)L——; ln(A/M )
+~(™~)j}1'p'(A), (7 7b)

where the superscripts 8' and L refer, respectively, to
the rates for the theories with and without an inter-
mediate vector meson. The argument of I'ez(A) indi-
cates the A. dependence of this rate explicitly, and
a(A. ,Ms ) is a divergent (quadratically in A) expression
which, as we shall see, cancels out in the ratio of the
p-decay and P-decay rates.

The A dependence of I'e~(A) is only in a logarithm,
and to order e

I"e (h) =L1+(3 / ) 1n(A/M )]1,~(M ) (7 g)

Again to order n, the result of substituting this expres-
sion into (7.7b) can be written as

I'e~= {1+(/ r)uf 237in(A. /M-s. )
+ (A,M )3}r,~(M ). (7.9)

Equation (7.9) is the decay rate as computed by
ignoring the strong interactions. However, we have
seen that in the Fermi part of the amplitude, only the
contribution coming from the axial current is modish. ed
by the strong interactions; and further, that this con-
tribution is the same as in the local theory with A re-
placed by Ms . Hence, Eq. (7.9) can be made to include
the strong interactions by including them in I'e~(Ms ).
Comparing (7.7a) and (7.9), it is then clear that the
ratio of p, decay to P decay is the same in the theory
with an intermediate vector meson as it is in the local
theory, if the cutoff A in the P-decay amplitude is
repl. aced by M~.
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cose~ = 0.975&0.001. (8 1)

The error stated here is purely the experimental error.
Some correction to the calculated rate have been
neglected on the basis of estimates that they are small
and of opposite sign, but their neglect means that the
quoted accuracy is rather optimistic.

For 0" decay we use our calculation to obtain the
radiative corrections for single nucleon P decay. Since
strong interaction effects have been included, it is no
longer realistic to choose a cutoff A=M. Therefore,
despite the fact that our correction from the vector
hadron current has the same form as was obtained using
perturbation theory, even this correction will be dif-
ferent from that which has been quoted previously.
Introducing the Cabibbo angle, we write

Po cos'gs(1+6) = experimental rate= E,
"A. Sirhn, Phys. Re@. Letters 16, 872 (1966).

VDI. RESULTS AND CONCLUSIONS

In the calculations of the preceding sections we have
shown that:

(1) To first order in n, the part of the radiative cor-
rections to pure Fermi P decays which arise from the
vector weak current are given correctly by calculations
using zero-order perturbation theory in the strong
interactions.

(2) The contribution of the axial current to these
radiative corrections is model-dependent. It contains a
logarithmically divergent term, the coefFicient of which
depends on the charge structure of the effective fields
carrying the axial weak current. In addition, there is a
finite correction which has been estimated, using a
dispersion approach, to be small.

(3) To order n, the full radiative corrections to the
Fermi part of the amplitude in the V—A theory con-
tain a divergent term proportional to (1+2Q) lnA,
where Q is the average charge of the isotopic doublet of
fields carrying the weak axial current (see Sec. V B).
Therefore, the radiative corrections are finite in any
theory for which these fields have an average charge

= —1
2 ~

(4) Introducing an intermediate vector meson of mass
Ms and neglecting terms of order M„'/Ms ', nM'/Ms ",
and aM s '/A', one finds a, universal, divergent renormal-
ization to t" in addition to finite corrections. The 6nite
corrections, and thus the comparison with universality,
are exactly those obtained in a theory with an inter-
mediate meson, except that for p decay the cutoff is
replaced by Ms.

%e now proceed to evaluate the results numerically
in order to compare the value of the Cabibbo angle'
obtained from K decay with that from 0" decay and
thus, hopefully, to investigate the universality of the
theory. For K decay we quote the value given by
Sirlin'0 of

where Po represents the zeroth order in O,-decay rate
for 0"prior to Cabibbo, including all nuclear structure
corrections, and I'06 represents the radiative correc-
tions. Then

cos&p= (EPO ')'"(1——,', A).

Writing b, o for the radiative corrections used by Sirlin"
and h~ for our value, we 6nd

cosep= (0.978&0.001)(1—-', (6i—hp)], (8.2)

where 0.978 is the value of cosep quoted by Sirlin, "and
the 0.001 represents the experimental errors. We now
summarize the values of cosep obtained in various
models (i.e., choices of Q) by computing hi —60 as
discussed in Sec. V.

A theory for which Q= —
~~ gives

cos9p(Q = —-', ) =0.981.

If we have correctly estimated the 6nite axial correc-
tions, we would conclude optimistically that the errors
in this value are &0.002, in which case the Q= —

2

models do not give very good agreement with cosa+
given in Eq. (8.1). The Gell-Mann and Zweig quark
model has Q= i6, and the value of coses depends on a
cutoff A, which can be interpreted as the mass of the
W meson as discussed in Sec. VII. Using the unitarity
limit of 300 BeV for this cutoff, we find

cosep(Q= 6, A=300 BeV) =0.968,

where again we optimistically estimate an error of
~0.002. Better agreement with the K-decay result is
obtained by choosing a lower cutoff. For example,

cos|ts(Q=-', , A=30 BeV) =0.973
and

coses(Q= —,', A=10 BeV) =0.976.

Thus, a cutoff or t/t/" mass in the range 10—30 BeV gives
good agreement with universality. "

Of course it should be realized that the dependence
on the cutoff is very weak, and that therefore a small
modification of some of the other corrections could alter
considerably the value of the cutoff, or t/t/' mass, re-
required for universality. Theories for which

~ Q ~
(6

do not lead to very different results from those implied
by Q= 6. Larger values of Q would have an appreciable
effect, tending to decrease the value of cosep.
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sion for the graph of Fig. 1(a) is

Tp„„(k,q,p', p) = dxdy e-'& ~"~

APPENDIX A

The purpose of this appendix is to define the tensor
operators which occur in the calculation, to discuss some
of their properties, and to generally complete the
mathematical details omitted in the discussion of Secs.
II and IV.

The charge-raising, strangeness-conserving part of the
hadron weak current is called t„(x),and this is a sum of
a vector and an axial vector,

&& &p'I T(t (x)j.(»j.(0)) I p) —m,„„,(AS)

where the expression abbreviated by bM),„„cancelsthe
pole in the first term at q= p—p' and is equal to the
part of the 6rst term which, when (AS) is substituted
into (2.5), only contributes to the electromagnetic mass
renormalizations of the initial and anal hadrons.

From the definition (AS) it is fairly easy to check that
the commutation rules (A2) give for q= p —p'

(A9)
t„(x)= V„(x)+A„(x). (A1)

Following the conserved vector-current hypothesis, we
assume that V„is the plus component of the isotopic
spin current. In the absence of Schwinger terms (see
Appendix D), the parts of t„areassumed to have the
following equal-time commutation relations with the
electromagnetic current j„:
I jo(x 0) V.(0)j= I j.(0),Vo(x,0)]=V (0)~'(x) (A2a)

and hence, by (A4) that

k„k„Tg„„——&p'
I tg I p&

—k„k„Mi„„.
In a similar manner we obtain for arbitrary q

qiT),„„——T„„(—k, p', p'I

+ 4' "" ""&p'IT(t.(»j.(0))lp)

(A10)

Ljo(x,0),A„(0))=Ij„(0),A (x,0)j=A„(0)b'(x). (A2b)

Suppressing the spin dependences, if
I p) and lp') are

the initial and final hadron states, respectively, the
second-rank tensor which occurs in the expression for
for graph of Fig. 1(b) is

T„„(k,p', p) =i d* e-"'&p'I T(t.(0)j.(x)) I p&.

k T"=&p'It„lp& (A4)

It follows exactly from (A2) and electric current con-
servation that

where

~"=-' d d~ -"'"'&p IT(D(.)j.(»j,(0»lp&,

(A12)

and, as in (A6) D is the divergence of the total weak
current. Differentiating (A11) with respect to q and
setting q= p —p', we obtain a relation analogous to the
Ward identity)"

T-"(k p p' p' p)= —(p p') T—"I.—= '—
~qa

8
T"(k p' p)+—(I"-qi&~i")I.=-.—,. (A13)

tea gqa
~~ I(k q ) =&p It lp) The tirst term an the right side of this equation is pro-

where q=P —P', and iV„is defined in terms of the di- Portional to P—P' and hence is of arder n. Thus, to
vergence D of the total weak current, D= 8„$„,as

M„(k,p', p)= dx e-'" '&p'IT(D(0)g„(x))I p). (A6)

We have seen in Sec. V A that terms like q„T„„cancon-
tribute to order n Lsee (5.9) and (5.10)j.However, we
need only keep the Born approximation of such terms,
and in the Born approximations, the vector part of
q„T„„is canceled by the part of M, involving the di-
vergence of the vector current. Hence, for the vector
part of T„„I see (A15)$, we have

and
T„„=V„„+A„„ (A15)

Tl "(» p—p' p' p)= —— -T..(»p', p)
Ok),

8
+ (M„. qBM „„)I, „,.—(A]4)

()III),

As in Eq. (A1) the second- and third-rank tensors can
be broken up into their parts coming from the vector
and axial-vector currents. That is

4V~ =
&p I

V
I p&+0(a q') ~ (A7) T) ~.= V~~.+~i...

The third-rank tensor which enters into the expres- " jc". . Takahashi, Nuovo Cimento 6, 371 (1957).
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Since all the relations (A3) through (A14) are linear in
th hadron current similar relations hold separately for
their vector and axial-vector parts. We will show th
for the vector part Vq„„the second term on the rig t-
hand side of (A14) is of order n, and hence, to zero order
in 0.

8
V ..(k, p p', —p', p) = —V.—.(k,p', p)

T '
lif the algebra let us restrict ourselves to spin-

of thezero hadrons while arguing that the contribution o e
vector current to the term involving the derivative with
respect to qq in (A14) is of order n. It should be clear
from the discussion that the argument can be genera—
ized readily to hadrons of arbitrary spin.

For s in-zero hadrons the expression .o qf r 531 „is
q-(p' I &-

I
p'+q»Il-'I"'(k)

( ~)2+ ilII2

~M„,' (k)q. (p —
ql t.

l p)

(p —q) +m'

where the matrix elements should be understood as
continuations off the mass shelLs in the momenta p'+q
and p —q; quantities such as 8M„„2(k)are the coe
cien so ept f th hoton propagator in the integran s whose
integrals give the electromagnetic mass (square ) s s
of the initial and final hadrons. Contracting out the
particle of momentum p'+q, we have

&p" l~-l p'+q&=

x(P'I T(~-(0)y(x)) lo), (A19)

where P is the renormalized Geld of the contracted par-
ticle. Employing translational invariance and integra-
tion by parts, it is easy to obtain

q~(p l~ilp+q&=i dx e'~~'+2~ *( ' M2).—

x&p'I T(—2a,T,(o)y(x)) lo&
—[(p'+q) +x j

X dx e "*b(x2)(P'l [to(x),y(0) jl0&. (A20)

In local held theory

~(.")«.( ),~(0) ~-~ ( ),
and Eq. (A20) can be written as

q.(p'I ~.
l
p'+q) = &p'I '»&.

I
p'+q&—

+ [(p'+ q) 2+3f21E, (A21)

where E is independent of q. Similarly, the second
matrix element in Eq. (A18) can be written as

q~(P —
q I &i I P&

=
&P

—
q I

—2»&~ I P)
+[(p—q) 2+M"jK'. (A22)

andh Q d Q+1 are the charges of the initial an
final hadron. Since k2 is negligible compared to p.
near k'=0 instead of (A23) we can also use the simpler
fol m

V„„a=—(p'l V„lp)2p„(k'—2p k) '. (A24)
4

This is the expression we actually use in the calculations
discussed in the text.

APPENDIX 8
In this Appendix we outline how to compute some of

the integrals encountered in Sec. . gThe eneral
method is based upon the introduction of Feynman
parameters, shifting the integration variable, and rotat-
ing t e 0 conour o oh k t r to obtain a Eulcidean metric as
discussed, for example, in the book by Jauch an
Rohrlich (Ref. 18). These procedures are standard, we
mention here only an occasional step which we foun
unobvious.

In Eq. (5.2) there appears the integral equivalent. "to

2p kdk
ay

(k')'k2+A2k' —2p k

where it should be remembered that here, and else-
where, all factors in the denominator shouM be under-
stood to have a —ie added. The photon mass may be
dropped, as Ii is not: infrared divergent. Write 2p k

=(2 k —k')+k' noting that the first term gives an
o integran, andd

' t . d and thus does not contribute. Therefore,

dk A2 1
I) —— kg ~

k' k2+A.2k' —2p k
(II2)

By standard techniques, this is

Ii= im'2 'p [—/+2 ln(1 —p+ ')
+e-'»(1-~=')+t1++a-], (»)

When E s. (A21) and (A22) are substituted into
(A18), and the result substituted into the second term
on the right of Eq. (A14), the terms proportional to E
and E' contribute nothing; since the derivative wit
respect to qq in (A14) acts on an expression indepen ent
of q. The remaining part of the second term on the rig
of (A14) is "proportional" to the divergence 8&,ti. ince
the vector current is conserve y gthe stron inter-
actions, t e par oh t f this term coming from the vector
current is of order n. Q.E.D.

We need to k.now the forms of the tensors to zero
order in n near k'=0. In this region the tensors are
given correctly by their Born approximations at small
k. Ignoring terms of order p —p', or V„„h'or V this is

1' V 2„—l, (A23)' '( — S ~'+2p Zr
'
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dk

k' k' —2e k k' —2p k

Ii ——Ar'P, [ln(A/M) ——,
'j. (814)

E . (4.14) contains t:woThe expression for .8 in Rq.
intergals. The 6rst is b the method of FeynmanThis can be transforme y e

parameters into
dk A'

-k .
(k'+li')'k'+A'k' —2e k

1

dx[xP+ (1—x)ej[xp+ (1—x)e)-, 815)I5= —i~'

1476

l
'

identical inform toI2 The6rst i~ A2M-'(1 —P~. I th Thesecondintegra isi en ica
'

where p~ are the two zeros of p +
limit A'&&M',

(84) I5=-

I,= i 2m-2e. [ln(~/) )—1j.
&~4.14) is of the formThe second integral in & ..

ral is not ultraviolet divergent; soso the factor

2 0"' then 'bt""' '" threplaced by k' —2e k+V. One en
standard way

86

and the exact result of the integration is

X»
-M —f~ f

—E.M(E,+ f~ f)—~—

M+
f
e

f

—E.M(E. f
t,

f )—ni, '—

(m2 —ME,)+e(M 2—ME, )j
(p —.) 2M f. f

dk A' (e k)'

(k'+X')' k'+A' k' —2e k
(87) +p in(M/m)+e In(m/M), (81|1

eldk A.'
I3=

k'k'+A'k' —2e k
(88)

which is essentially the same as . &.s I . Hence)

'
e 2e k= —(k' —2e k)+k' and note that onlyAgain wl it e '

th second term contributes. e ine
then be omitted, and we obtai .n

c are the electron energy and momomentum
in the hadron rest system, p= . g
order as& ', this is

I =Ar'M '(P[ln(M/m) —P 'tanh 'PjI5= ZK

eMF —'p —' tanh —'p} (817)
where p= fe f/I'. .

There remains only the integral

Ig = i7r'm'[~ —ln(A/m) j. (.89) (818)

. ~5.7, contains the integralThe next to last term in Kq. & .
k'+P. 'k' —2e k k' —2p k

dk A.'
I4-

k' k'+A'k' —2e k
(810)

/I' ma be added to the last two factors in the
chan in the result for small P, '.denominator without changing e

In this limit, one obtains

The exact result for this is

I = —far [ ln(1 —p i)+p lil(1 —p )],

mit A)&m, )

I4——im'[1+in(A'/nz') j.
The integral occurring in Eq.'n E . ,5.9) is

2e k

(k2+»)2k2+A2k~ —2e k k2 —2p k

Writing, for A.
' —+ 0,

2e k

k'(k'+&')(k' —2e k) k' —2e k k'

e rais neither of whic is ultra-e are led to two integr, '
is ultia-

n omit the factorviolet divergent; so we can om'

4

th arne as used in discu
'

gssin l~. In thewhere p~ are t e sa
lj 2 2

(812)

—im-' ' dx Q(x)
ln

2 o Q(x) )' (819)

he'
Q(x)= xe —x(1—x)p]'. (820)

escribed

the approximation es'/M'«1,

Iq= (tanh 'P)2+—2 ln(m/X)
2ME,p

X tanh-'p —I. 821)
1+P

The exact result is given in R'n Ref. 8.

APPENDIX C

n that if it were not for the presence of
the axial current, the p-decay amp itu e w
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versally renormalized because of the cancellation be-
tween the parts of the corrections in Figs. 1(a) and 1(b)
which depend upon the details of the strong interactions.
In this Appendix, we indicate the relationship between
this cancellation and the cancellation known to exist
in a Yang-Mills theory, ' where the Ward identity
applies to all three components of the isotopic charge
density.

Considering the graph of Fig. 1(b), the cancellation
involves the part of the right hand side of Eq. (4.8)
coming from the first term in (4.9), with the electron
momentum set equal to zero in the denominator of the
electron propagator. That is, the'relevant part of (4.8) is

dk
avi(1+ps)v ———ki V„„(k,p', p) .

4~3v2 (ks) s
(Ci)

Let us compare this situation with that which exists
in a theory in which the photon is the neutral member of
an isotopic triplet of massless vector mesons. "If these
mesons are coupled with strength e, it is well known that
at zero momentum transfer the matrix element of U~&+'

(the isospin components are indicated by superscripts)
is given exactly, to all orders in n, by its value to zero
order in e. In particular, the order e corrections to this
matrix element cancel.

The order-e corrections to the matrix element of
Vq&+' in a Yang-Mills theory are shown in Fig. 5. The
corrections of Fig. 5(a) are

in dk
„—Vi"» p p' p' p)—

Sm' k'
(C3)

where Vq„„is the same as Vq„„defj.ned in Appendix A,
except that the product of electric currents j„(y)j„(0),
which occurs in (A8), is replaced by

V.(3) ~.(0)=-'[V.' '(3) V. '+'(0)+ V.' '(3') V ' '(o)j
+V„s(y)V„(O). (C4)

It is not difficult to show that only the isotopic vector
part of the electric current contributes to (C1) and (C2).
Taking this into account, it is easy to check that to zero
order in p —p' the expression in (C3) is equal to

dk—V ..(k, p —p', p', p);
4z' k'

(CS)

that is, to within a factor of 2 coming from the isospin
33 J. C. Ward and A. Salam, Nuovo Cimento ll, 568 (1959).

To zero order in the hadron momentum transfer, this
expression cancels exactly against the correction to the
matrix element of the vector hadron current shown in
Fig. 1(a). Namely, it cancels against

io,G dk
— v.(1+~.) V...(k, p—p'. p', p)-

8~3&2 k'

SM-SM'

Fxo. 5. The order cx corrections to
the isospin current in a theory ~vhere
the photon is a member of an isotopic
triplet.

(bj

Clebsch-Gordan coefficients, it is unchanged by re-
placing 0'z» by Vi». This can be seen, for example, by
going through the steps [Eqs. (A12)—(A14)$ leading to
(A17) for $&,„„insteadof Vi„„.

The corrections of Fig. 5(b) are naturally expressed
in terms of Vq„,which is the part of V~„coming from
the isovector electric current. However, as we have just
mentioned, the isoscalar part does not contribute to the
integrals, so that Vq„can be replaced by Vq„.To zero
order in the momentum transfer, the corrections of
Fig. S(b) are then

2m3

dk—ki V„„(k,p', p) .
k2

The Ward identity applied to the Yang-Mills theory
requires that the expressions in (CS) and (C6) cancel.
Algebraically, this is the same as our cancellation
between the expressions in (C1) and (C2).

APPENDIX D

Ke discuss here to what extent our calculations are
affected by the presence of operator Schwinger terms
in the commutators of the currents given in (A2)."
We need consider only the commutators involving the
vector currents. This is because the axial currents con-
tribute to the Fermi part of the decay amplitude only
through the term containing Ai„in Eq. (4.11); that is,
only through the antisymmetric part of Az„,whereas a
Schwinger term addition to Az„(see below) is sym-
metric in the tensor indices.

Considering the vector currents, suppose that
instead ol (A2a), we have

'4 See, for example, the discussion in S. T.. Adler and V. Dothan,
Phys. Rev. 151, 1267 (1966).

[js(x,O), V„(0)]= V„(0)6'(x)+S'+&(0)&„6'(x), (D1a)

[Vo(xO),j„(0)j=—V„(0)b'(x)+S&+&(0)a„c(x). (Dlb)

A model theory for which these relations hold is one in
which the vector currents have contributions coming
from a triplet of spin-zero fields P, p*, and @s.In such a
model, the contribution to 5&+) arising from these
fields is iV2$*&s

The general expressions which describe the correc-
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tions of Figs. 1(a) and 1(b) are altered by the presence
of Schwinger terms from those given in the text. Thus,
the vector part of the tensor T„„def'ined in (A3)
acquires, "in addition to the time-ordered product, an
additional k-independent term related to the "sea-gull"
graphs which appear in the Compton amplitude. In
particular, instead of (A3), the part of T„„comingfrom
the vector current becomes

v"(k p' p)=s d~ e '"*&p'IT(v.(o)j„(~))lp)
—&p'ID. ."'(o) lP) (D2)

where D„,„(+~is essentially the variational derivative of
V„with respect to the electromagnetic field 0',.(keeping
constant all other coordinate fields and all canonical
conjugate fields),

~v.(~)/~8. (y) =D.,.'+'(~) ~'(~' —y) (D3)

Using a model theory with a triplet of spin-zero 6elds
as a guide, we assume that the D„„,'+& are related to
the Schwinger term 5'+& according to

D„,„i+&(x) =i(8„„—8„48„4)S&+'(x) . (D4)

From (D1), (D2), and (D4) it is easy to check that the
vector part of the relations (A4) —(A7) hold for the
modified tensor V„„.

The third-rank tensor in (A8) also acquires additional
terms when there are operator Schwinger terms in the
theory. For the part coming from the vector current, the
analog of (AS) becomes

V &,„„(k,q, p', p)

d~dy s "'+'" "(p'I T(Vi(~)j.(y)S (O)) I P)

+ i d~ e-"-&P'I T(V,(x)D„,„(O)),IP)

+, gy "e(pl T(D, „~&+(o) j( )y)l )p+ i

x~-'" "'(p'I T(D,,'+'(*)j.(o)) I p)—~~~" (D5)

"I.. Brown, Phys. Rev. 150, 1338 (1966).

Here D„,„
is the same as D„,„(+~,but with the isospin

current replaced by the electric current, and the RV»„
is the same as the explicit pole term subtracted off in
(A8) (with I&,, replaced by Vz).

From (D2), (D4), and (D5), it is easy to derive tha, t
the vector part of (A11) is satisfied for the modfied
tensor V»„.Further, by performing the manipulations
associated with Eqs. (A12)—(A14), the relation (A17)
can be obtained with V„„andVi„„givenby (D2) and
(D5).

These observations allow us to conclude that the
results obtained in the text are unaffected by the pres-
ence of operator Schwinger terms with the exception of
the finite correction arising from the derivative with
respect to As in Eq. (4.6). That is, V» as given by (D2)
clearly does not go according to Eq. (5.1) for large ks.
I:n fact, the leading term in this limit is a constant, and
in the next order it goes as ko ' but with a coefficient
that cannot be expected to be that given by (5.1). For
example, in a theory involving only pions and photons,
to zero order in the strong interactions the V„,appro-
priate to the decay ~ —+ m'ef is

and

(p+ p' —k) „(2p—k) „V„„=—~2
k' —2p k

»'-'+(I'k. )&O'I I"
I P)

(D6)

(D7)

The difference between the second term of (D7) and the
expression in Eq. (5.1) has the effect of replacing the
11/8 appearing in the first term of Eq. (5.7) by 1. This
change would not alter appreciably the conclusions in
Sec. VIII concerning the comparison of our results with
the predictions of universality. However, given that
operator Schwinger terms exist, there is of course no
compelling reason why their numerical contribution
can be estimated by looking at a simple model.

Finally, we mention that the constant term on the
right side of (D7) will contribute additional logarithmic
divergences in the two integrals involving V„„in Eq.
(5.7). However, the coeKcient of the logarithm is of
order nial =0(n'), so that such terms can be consist-
ently ignored within our approximation of keeping
corrections only to order o..


