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Are There Equal-Amplitude Points on the Backward Cone' ?
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We search for at least three energies such that the invariant amplitudes A and 8 and their relative phase
on the backward cone are the same for m+p scattering. Certain relations between the energies and dif'ferential
cross sections are obtained which have to be satisfied if such energies exist.

~ 'HE differential cross section for ir+p scattering is
given in terms of the invariant amplitudes A

and 8 as

der 4 235
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where 31 is the proton mass and m = 1 units are used.
This equation takes the following form on the back-
ward cone defined by N=O (using s+t+N=2M2+2):
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Thus the cross section is given in terms of the magni-
tudes of A and 8, and the relative phase angle between
them. Here 2= Idle' and B= IBle'~.

Experimentally, the differential cross section alone is
not suKcient to determine A, B, and cos(n —p). One
needs polarization experiments to measure these
quantities.

In this paper we ask the following question: Are there
points on the backward cone at which the A and 8
amplitudes have the same magnitudes and the same
relative phase? That is, are there different energies

s», s2, ss, ~ ~, at which

cos(n —p) „=cos(n —p) „=cos(n —p).,

The motivation for this question comes from the
following observations.

First, if we look at the complex diagram of the
forward scattering amplitude we notice that there are
points at which the amplitude crosses itself. That is, it
has the same magnitude and phase at two different
energies. Actually there is more than one such loop, the
magnitude turning around and approaching the 6rst
loop again. In the case of the forward scattering
amplitude a single linear combination of A and 8
amplitudes determines the differential cross section. But
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still the phase is relevant since the imaginary part of
this combination determines the total cross section.

On the other hand, if one tries to express the direct
channel amplitudes in terms of the crossed I-channel
amplitudes, applying the %atson-Sommerfeld trans-
formation to these, they become functions of I and
cos8 . But these variables are constants on the back-
ward cone. This makes one suspect that the amplitudes
themselves may be constant there, the energy depen-
dence coming from the kinematical multiplicative factors
alone. It turns out that this is not the case, the trans-
formation being singular between s,g, and N, cosa . But
beyond the direct channel resonances the behavior of
the cross section seems to be in agreement with the ex-
pected one. Thus even though the cross section is
falling, there might be energies at which the amplitudes
are equal.

The number of the unknowns being three, if there
were three such points they would be solutions of
Eq. (1) for these energies.

Let us call
IXI'=x,

ABe+B~ =2IA IBI cos(o.—P) =y,
and

If we try to solve for x, y, and s in terms of the three
energies s~, s2, and s3 we 6nd the interesting result that
the determinant of these three equations vanishes':

(2M' —2+si)/si M (1+siM2—M')/si

(2M —2+s~)/s2 M (1+s2M M')//s2 =0. (2)—
(2M' —2+ss)/sa M (1+seM' M')/sa—

This just means that the third equation is not linearly
independent of the first two and can be written as a
linear combination of them. For brevity we write the
equations as

ore+ 5iy+cis =di,

ciÃ+biy+c2s= dy. ~

a„x+b3y+c~= :.da

Here a,, ti;, and c; are the elements of the matrix (2)
and dl, d2, d3 are the cross sections multiplied by 64m-'.

~ We would like to point out that this determinant does not
vanish for the forward direction t=O nor for any t=const. line.
On the other hand it vanishes not only for the backward cone u=0
but for all lines u= const.
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Then we must have

and

a&)j+a2p=a~,
by)j+ be = b3,

cyX+ em@ =cs ~

dyA+dmp= ds,

there are at least two points ($~—125m '), ($ —250m ')
at which the cross section seems to be coming close to
zero. Let us write the set of homogeneous equations in
the matrix form L8=0, where detL= 0:

Cy 6y Cy g
a2 b2 c2 y =0.
83 b3 C3

where ) and p are proportionality constants which can
be determined as follows.

Since b~=b2=53=3f, the second equation gives

X+p= i.
From the first or third equation together with the

second, we find

X= $~($q—$2)/$3($~ —$2) and. p = $2($q —$q)/$3($~ —$~) .

Hence the cross sections should satisfy the relations

By solving this, we find

x/z= —',(M'+1) and y/z= —(3M'+1)/2M

so that

x Tx(3II2+.I)
8= y =z —(3M'+1)/2M .

S 1

From this it is also seen that' [II
~ / [ 8 (

= L:,'(M'+1)]' ~2

and

or

sy $3 $2 $2 s]. $3
dg +dg =ds

$3($y—$g) $3($y—$2)

3M'+1 2
cos(u —P)=- = —1.06.

4M M'+1
d3$3($y $2)+d1$1($2 $3)+d2$2($8 $1)=0

~

which can be written as follows:

d3Sg d2Sg dyS].

det 1 1 1

sy

=0 (3)

This condition is satisfied if s~= s2= s3 for which case
obviously d&=d&=d3. It is also satisfied if d&=d&=d3
regardless what s~, s2, and s3 are as long as d~=d2=d3 at
these energies. But this does not give us any informa-
tion about s&, s&, and s3. Finally there is also the pos-
sibility that

dyS j.= 42S2= d3$3 = COnSt.

$(do./d(I) = const is a hyperbola in the plane $ versus
d~jdQ. If we look at the experimental differential cross-
section' curve we see that at least in the known energy
region the value of this constant must be smaller than
approximately 200 000 ibm '/sr.

The vanishing of the determinant means that in
general there will not be solutions x, y, and s to our
equations, unless d&, d.-, and d& satisfy the conditions
we just discussed. On the other hand, the vanishing of
the determinant is also the condition for the existence
of nonzero solutions to the homogeneous equations.
This means that there are solutions x, y, and s at three
different energies s~, s2, and s3 such that the differential
cross section is zero. %hether these solutions are
physical is a point we must investigate. The experi-
mental data' indicate that in the known energy region

2 For a list of references on experimental data see I. A. Sakmar,
Phys. Rev. 148, 1408 (1966). More recent data are given in A.
Ashmore, C. J. S. Damerell, W. R. Frisken, R. Rubinstein, J.
Orear, D. P. Owen, F. C. Peterson, A. L. Read, D. G. Ryan, and
D. H. White, Phys. Rev. Letters 19, 460 {1967).

This shows that the solutions of the homogeneous equa-
tions are not physical. There are no three points on the
backward cone where the amplitudes are the same and
the cross sections are zero.

The inhomogeneous equations can have a solution
only if the vector (d&,d2, d;) is orthogonal to every solu-
tion of the homogeneous equation. This gives us the
condition

or

dg(M'+ 1)/2 —d2(3M'+1)/2M+ 4,= ()

d,M(M'+1) —d, (3M'+1)+d,2M =0.

Polarization experiments should make it possible to
verify Eqs. (3) an.d (5) if three such points exist.

It is interesting to note that the Eq. (4) is in agree-
ment with the well known 1/$ behavior of the backward
differential cross section at high energies.

As a final note, we would like to add that one con-
sequence of the relation (2) is that the differential cross
section on the backward cone can not be parametrized
by three parameters in the form (1), even if these
parameters are allowed to be multiplied by some func-
tion of s, provided it is the same function for all three
parameters.

3 The general formulas for an arbitrary but constant u are
as follows:

x 1 3E4—23/I~u —1+u
s 2 3I/' —1+u
y 3M4 —1—2M' —a(2M' —2+u)

33II4—1—2M' —2'�'u+2u —u'
4M(M' —1+m)

X
2(M' —1+v)

M4 —1 —u(2M' —1)


