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a3, which may become equal to zero; and ays, which may
become equal to 1. We conclude that M =N and we
have the following two extrema corresponding to
whether a;=0 or ax=1:

(1) Setting a;=0, we have

(1—=281) " - - (1—NBy-1)
(1=Aa)- - (1—haw)

The extremum value for Y()\;) is determined by elimi-

v(N)=c¢

(A6)

nating the 2N—1 parameters ¢, 1, B2, ‘-, By-1,
ag, -+, ay from the 2NV equations
y\)=v;, j=1,2---2N.

This elimination can be done easily if we write the above
expression (A6) for ¢(A) in the form

B e S SR Vel /7 0Y)
=cthA kN4 - - - Ey NV

Eliminating the new parameters %, and %, from the
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system of equations
R e N e N A ey 1%
=C+k1)\j+k2)\j2+' . '+kN_1>\jN—1, ]=1, 2---2N

leads to
Don[¥]=0 for y;=extremum.

(2) Setting axy=1, we have

(1=N81) - - - (1—NBw-1)

(1—Xay)- - (1—haw_1)

and a similar argument leads to
Don[(1—N¢]=0 for y;=-extremum.

All allowed values of ¢ (\) at A=\; will lie between
the two given by Daoy[¥]=0 and Dan[(1—Ny¢]=0;
therefore the set (Y1,\1), (Pehe), *-*, (Yon,hoy) is
admissible if and only if Dyn[¢] and Don[(1—\)y]
have definite signs. These signs can be easily determined
by induction on .

(I=M¢\N)=¢
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Using a perturbative model, we study the asymptotic behavior of weak amplitudes, looking in particular
for the existence of fixed poles. The weakly interacting particles are considered as either elementary or
composite. Our conclusions can be summarized as follows: The existence of fixed poles is model-dependent.
In particular: (1) If both interacting particles are elementary, we find the usual fixed poles at J =o1 43—,
n>1, where o1 and o3 are the spins of the particles. (2) If the weakly interacting particles are composite,
the amplitude is superconvergent (even being nonunitary) and there are no fixed poles, at least for J>0.
(3) In the case of photoproduction of a spinless composite particle, i.e., an amplitude with only one ele-
mentary particle with spin one, there is no fixed pole at J =0. If we consider that the elementary particle has
spin o, we argue that the pole at /=01 disappears, while the ones at J =¢—n with #>1 may or may not
exist, depending on the wave function of the produced hadron. We conclude by discussing the implications
of our results, and in particular the limitations on the hypothesis of partially conserved axial-vector current.

I. INTRODUCTION

HE study of fixed singularities in the angular
momentum plane (J plane) has been shown to be
important for the understanding of the asymptotic
behavior of scattering amplitudes for particles with
spin.! Interest arose recently after the discovery of their
connection with current algebra sum rules for finite
momentum transfer.? As a consequence some results
have been derived, especially in the domain of non-
unitary amplitudes.?4
In a fundamental series of papers Mandelstam has
1See, in particular, the general discussion in S. Mandelstam,
Nuovo Cimento 30, 1113 (1963).
2J. B. Bronzan, 1. S. Gerstein, B. W. Lee, and F. E. Low, Phys.
Rev. Letters 18, 32 (1967) ; Phys. Rev. 157, 1448 (1967).
3 See Ref. 1 and H. D. L. Abarbanel, F. E. Low, I. J. Muzinich,
S. Nussinov, and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).
4 For a discussion of fixed poles in unitary amplitudes, see

S. Mandelstam and L. Wang, Phys. Rev. 160, 1490 (1967); C. E.
Jones and V. L. Teplitz, bid. 159, 1271 (1967).

studied the compatibility of Regge behavior of ampli-
tudes with presence of elementary spinning particles
in the theory.! It is not surprising that these concepts
are relevant for our purposes since elementary particles
in general introduce subtractions in the dispersion
relations. Under appropriate conditions, i.e., absence
of bilinear unitarity, these behave as fixed singularities
in the J plane.

The main purpose of this paper is to apply Mandel-
stam ideas to the study of weak amplitudes.

Our conclusions are extracted from perturbative
models. However, it is very encouraging that these
models are able to reproduce the main features of the
J-plane singularity structure.>® Even more, there is by

®R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrizx (Cambridge University Press,
New York, 1966). We follow closely the notation of this book.

¢ Equivalent models have already been used to study some
features of the fixed poles in Refs. 2 and 3. See also Ref. 12.
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Ps .
A 3 F16. 1. General diagram contributing

to the scattering og vector particle (wavy

line) on a hadron (full line) leading to a

f F«?\ scalar particle (dashed line) and a hadron.

! 2

now enough experience about these models as to know
which are the diagrams needed in every case to generate
the particular effect one is looking for.

Here, we are interested in fixed poles. First, we are
concerned with the appearance of new terms in the
asymptotic behavior as compared to the case when only
Regge terms are present. Second, we are looking for the
existence of singularities in the Regge residue functions
and their eventual cancellation by means of killing
factors.

These effects are indeed contained in the field-
theoretical models presented here provided we include
diagrams that contain an infinite number of ladders in
the ¢ channel. As nonplanar diagrams are not included
in our calculations, all the complexities due to the third
spectral function are not reproduced.

Moreover, in this model we have exchange degeneracy
for the trajectories. Hadrons will be supposed to interact
through a ¢3-type Lagrangian while the weakly inter-
acting particles will be considered to be either elemen-
tary or composite. In this last case the constituents will
be taken always as spinless particles which need not be
identified with the hadrons. All interactions, unless
explicitly stated, are the most general ones consistent
with Lorentz invariance and are trilinear in the fields
of the particles.

Our conclusions can be summarized as follows: The
existence of fixed poles is model-dependent. In particular :

(1) If both weakly interacting particles are elemen-
tary we find the usual fixed poles at J=o1+02—%,
721,13 where o1 and o, are the spins of the particles.
(2) If the weakly interacting particles are composite the
amplitude is superconvergent (even being nonunitary)
and there are no fixed poles at least for 7>0. (3) In the
case of photoproduction of spinless composite particles,
i.e. an amplitude with only one elementary particle with
spin one, there is no fixed pole at J=0. If we consider
that the elementary particle has spin o, we argue that
the pole at J=o¢—1 disappears while the ones at
J=o0—n with #>1 may or may not exist depending on
the wave function of the produced hadron.

We conclude by discussing the implications of our
results and in particular the limitations on the hy-
pothesis of partially conserved axial-vector current
(PCAC).

II. DESCRIPTION OF THE METHOD AND
RESULTS OF THE CALCULATIONS

In this section we describe the calculation and method
used as well. We leave the detail for the Appendix.

We consider first the case in which the weakly
interacting particles are spin 1 and spin 0. See Fig. 1.
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%

F16. 2. Set of diagrams representing the
exchange in the ¢ channel of an elementary
scalar particle.

The covariant scattering amplitude is:

T\= i/‘e““'”(D om®) (O +me?)
XT{p2| [Va(®)S(0)]| p1)d,

where V(x) and S(x) are, respectively, the fields of the
spin-1 particle and the zero one, 1 and p, characterize
the hadronic states, and m; and m, are the masses of the
particles.”

Two different types of non-Regge singularities
appear: (a) Kronecker-d singularities stemming from
graphs depicted in Fig. 2, and (b) fixed poles, which we
will consider to be generated by the diagrams shown in
Fig. 3.

Both kinds of singularities contribute to the asymp-
totic-behavior terms which are fixed powers in the
energy in contradistinction to Regge poles. We make
here a small digression to illustrate the relation of these
singularities to the Dashen—Gell-Mann-Fubini sum
rules. For this purpose we consider, for simplicity, that
the spin-1 particle interacts with a conserved current.
Current conservation implies

RPT=0.

(2.1)

2.2)

In the high-s limit the contribution from diagrams
depicted in Figs. 2 and 3 cancel between themselves.
Calling F\ the amplitude corresponding to the diagram
of Fig. 2 and defining M= T\—F), we get

PP My=Fy. (2.3)

It has been shown?® that this equation is identical to the
one that appears in current algebra, kF) being inter-

’

Fic. 3. Typical ladder diagram contribu-
ting to the asymtotic behavior.

7 Our model can be definite by use of the following Lagrangian:
Lint =g (BTK+— KK+ f(R+9,K+) Ve 9, (B+K+) Ve
+GEKOS+GSKOK++M (58,8) V=,
f'=0 implies that the current 9£/8Vu is conserved, K may be a
scalar or pseudoscalar field, and ¢ must be scalar. The process we
are considering is: K+-+vector particle (V*) — K4S

Rsfs'lg‘. Adler and Y. Dothan, Phys. Rev. 151, 1267 '(1966); and
ef. 12.
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preted as the equal-time commutator. M, is identified
with the current amplitude and is defined through the
equation

M)‘=i/‘e”‘"‘T<[)2! (Ostm?)
X Va(x) (O ) 4mHS(0) | Pr)dx.  (2.4)

Coming back to Eq. (2.1) we make the usual expansion
of T in invariant amplitudes:

T)\=AP)\+BA)\+CP4)\, (25)

where
A=pi—ps,
P=P1‘|‘P2,
=A%,

v=p4p.

To calculate the asymptotic behavior of 4, B, and C we
will compute the asymptotic behavior of the # ladder
and then sum over all % (see Fig. 3). For this purpose we
use the Mellin transform technique® proceeding through
the following steps: We compute the Mellin transform
of the contribution of each diagram. We extract the
rightmost singularities which give the leading asymp-
totic behavior. Finally we sum formally these terms and
analyze the singularities of the sum. In all steps we take
advantage of the striking formal similarity between
poles in complex angular momentum and those in the
space of the Mellin transform.

As a result of this first part of the calculation we find
a fixed pole at J=0 in 7™ which appears in a multi-
plicative way, such that it produces a singularity in the
Regge residues of the moving poles.

Most of these results are contained in Refs. 2 and 3.
What we want to stress is that in these calculations the
weakly interacting particles are effectively treated as
elementary ones. We want to study now how the
compositeness affects the previous results.

As a first consequence, the Kronecker-§ terms dis-
appear since, according to the Feynman rules, only
lines corresponding to elementary fields must be
included in the diagrams.

On the other hand, the diagrams of Fig. 3 become
more complicated. To replace the external particle by a
bound state we must consider the production amplitude
shown in Fig. 4, and compute the asymptotic behavior
of the term which has the pole at (P,+Pp)*=ms%

For that purpose we consider the class of diagrams
shown in Fig. 4. Summing over # we try to reproduce
the pole of the bound state, while summing over m we
get the asymptotic behavior. In the Mellin transform
method the calculation is strikingly symmetric in » and
n because in both cases we are trying to reproduce a
singularity of the amplitude.

The final result is that the asymptotic behavior of the
residue at the pole corresponding to the 4 amplitude is

9 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963).

(2.6)
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Fi6. 4. Production amplitude in which
the vector particle is seen as a bound
state of two particles.

(see Appendix A35)

A (S,t) = [R(i,m22>/a2/ (m22):|]:‘(1__a1(t))(_s) a1 (t)—1 ,
@7

where as(w) is the Regge trajectory corresponding to
the external spinning particle, a(f) is the leading tra-
jectory exchanged in the ¢ channel, R(¢ms2) /ey (m.2) is
the Regge residue and T is the usual gamma function
whose poles at the negative integers reproduce the poles
of the amplitude corresponding to physical one-particle
states in the ¢ channel. Notice that when a1(f) goes
through zero, ¥ has no pole corresponding to a normal
sense-nonsense transition.

The generalization to any integer spin ¢ is straight-
forward. In the decomposition in invariant amplitudes
there will now be one of them, say A, which is the
coefficient of Py, Py -+ Py, Repeating the argu-
ments of the Appendix, its asymptotic behavior can be
shown to be

A(s) = ROT(e—an()) (=)0, (2.8)
showing the absence of fixed poles and normal Regge
behavior at the sense-nonsense points.

We next consider the case when the spinning particle
is elementary while the spinless one is composite. For
the physically important case of a spin-1 elementary
particle (photoproduction of pions) we find the follow-
ing asymptotic behavior of the A amplitude [see
Appendix, (A47)7]:

A(s) = [TA=ar())/a (m?)](—s)= =1 (2.9)

showing normal Regge behavior. But now the result
depends strongly on the spin of the elementary particle:
if the spin is ¢ then the first pole at ¢—1 disappears
when the spinless particle is composite, but that is not
the case for the other poles at ¢—2, ¢—3,-- -, etc.
Nevertheless, the way these poles appear suggests that
if the spinless particle was composed of three particles,
then also the pole at ¢—2 will disappear. So, if the
particle constituents of the bound state are themselves
considered to be composite (which will be in a certain
way the translation of the bootstrap idea in our model),
all the fixed poles will disappear.

III. CONCLUSIONS

We want to discuss here the possible consequences of
our calculations. It has been thought! that, because

10 See for instance, M. B. Halpern, Phys. Rev. 160, 1441 (1967).
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the photoproduction amplitude is not unitary, there
could be a fixed pole at J=0. Our calculation shows
that the criterion of nonunitarity is not sufficient for
the existence of fixed poles. In fact, our model makes
us believe that when the pion is a composite particle
there is no fixed pole and the amplitude obeys Regge
behavior, 1t

In the case of both weakly interacting particles being
elementary we have found that, if we subtract the
diagram of Fig. 2, then all invariant amplitudes obey
unsubtracted dispersion relations. This result depends
strongly on the model used as first stressed by Amati
et al.’? If we had accepted the existence of elementary
particles among the hadrons, the conclusions would be
completely different. This is the case of models dis-
cussed in Ref. 12 (elementary scalar particle in the ¢
channel) and by Bardacki et al.® (elementary vector
particle in the s channel) where non-Regge behavior in
B and C appears. We can give another example in which
this happens, namely, that of a target of spin-} hadrons
which have a nonminimal coupling to the vector current.
It is interesting to notice that this non-Regge behavior
in B and C demand subtractions in the dispersion rela-
tions while this is not the case for the 4 amplitude.
These subtractions will appear as undetermined con-
stants in the theory; so, it is plausible that only adding
new parameters to the theory we should be able to
generate non-Regge terms in the asymptotic limit of
B and C.

Our conclusions concerning the absence of a fixed
pole in photoproduction of pions imply limitations on
the validity of the PCAC hypothesis because replacing
the pion field by the divergence of the axial current
introduces a fixed pole."

Denoting by F(i,s,p%p4?) the amplitude with the
divergence of the current and by F.(is,p:?,p4) the
amplitudes for pion production, then

8, A=y 3.1)

and

F(tisyfp:fz’p‘l?):C/(P32—m1r2)F1r(tis)P32’p42) . (32)

Developing F, in powers of ps>—m,?, we find

er(t,S,Psz:P42) =F (l) (t,s,pﬁ)

FED (Ls,p?) (ps*—mi?) . (3.3)

11 In our calculation we study the production of a scalar weakly
interacting particle. Nevertheless, (a) in Fig. 5 the external com-
posite particle may be identified with the exchanged hadron (the
class of diagrams considered is gauge invariant) ; (b) minor changes
in the model allows us to extend our conclusions to the process
y+scalar charged particle — charged pseudoscalar particle
-+pseudoscalar neutral particle. Assuming that the nature of the
target is unimportant in the mechanism of the generation of the
fixed pole, as suggested by the model, since the relevant line is the
one parametrized by ao (see Fig. 6 and Appendix), we conclude
that our results apply to pions as well.

12D, Amati and R. Jengo, Phys. Letters 24B, 108 (1967).

18 X, Bardacki, M. B. Halpern, and G. Segré, Phys. Rev. 158,
1544 (1967).

1 The residue of the fixed pole does not vanish since the com-
mutator [ jo°!,3,4,+]5%0 as a consequence of [ f7¢°'d®(x),4,+]0.
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PCAC would tell us that the second term is negligible
with respect to the first one near ps?=0. Our results
imply that this is certainly wrong in the asymptotic
region for the real part of the amplitude or for the
Imaginary part near a value of ¢ for which the leading
trajectory in the ¢ channel passes by J=0. The reason
is simply that, if the pion is composite F,! will go to
zero at this point because of the appearance of a killing
factor. Nevertheless, we should keep in mind the
possibility that the pion is elementary.

Note added in proof. R. Roskies has kindly pointed
out to us that the multiplicative character of the fixed
and Regge poles can be rigourously demonstrated. In
(A8) the residue of the fixed pole at 8=—1 can be
explicitly evaluated. The integral over day is then trivial
and the result simply related to the original graphs with
spinless particles only which of course possesses the
Regge pole.
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APPENDIX

In this Appendix we compute in detail the behavior
of the relevant amplitudes discussed in the text.

(a) Scattering of an elementary particle that inter-
acts weakly and carries spin 1 on a scalar particle
producing a scalar weakly interacting particle and a
strongly interacting one (Fig. 1).

As explained in Sec. I we are interested in adding
the contributions of the diagrams associated with #-1
steps in the ladder (see Fig. 3).

The Feynman amplitude reads

n 1 n
M= @n)! | TI @*%:| II da.dBidyida,

i=1 o =l

X8(XaitBitvitac—1)(Mk, O+ Np,®)/Dén+ | (A1)

where the o’s, 8’s, and v’s are the usual Feynman
parameters. The expression Mk, V+Np,® is the most
general vertex for the spin-1 coupling.

The denominator reads:

n n—1
D=Zl [vik24B:(pa— pst+k) 1+ X ci(bipr—Eki)?
1

Fao(krtpa)2tan(p—ka)2—m?

=kTAk— 2k"Bp+p?I'p—m2. (A2)

We are following the notation of Ref. 5. We perform the
standard displacement k’'=k—A-'Bp so that the nu-
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merator reads, throwing away odd terms in %’: The
k are column and row vectors and the matrices A, B
and I' are of dimensions #X#n, #X3, and 3X3,
respectively.
MC D] ipu®+F (@) pD+G(x)ps®,  (A3)
1

where x is the set (a;,8:,7s), C(x)=det(4), and the two
functions satisfy the condition

G(Oyﬁiﬁ'i);éo )
F(Oaﬁiﬁ'i)¢0’

as can be shown explicitly by direct evaluation.

The scattering amplitude satisfies the invariant
decomposition described in Sec. I. As it turns out, the
only function that gets the contribution of the fixed
pole in this model is 4. This can be easily shown and
from now on we forget about the other invariant
functions.

The n-fold k integration can be performed to yield

(A4)

A(s,b) =n!M/dx 6(% a;i+Bit+vitar— 1)ﬁ a;
1 1
[C(x) ]+

, (AS)
[p7 (rC—BT X B)p—m?C (x) ]**
where X=A"1C.
We now write the new denominator as
D(zs,t)=—gle)o—J (x,5,8)C (), (A6)

n
with o= —s and g(@)=]1o" @
0

The Mellin transform in the variable ¢ of our ex-
pression may be easily computed using the standard
methods for planar graphs and reads

L@B)=T(=p) (-1
X / " M] €)o7 =0T adf. (A7)

By explicit calculation it can be proven that the
function ¢=7@® enjoys the following two properties:
() It is vanishingly small for large values of x; and
(b) it factorizes in 8; and v; when a;=0.

Since only end-point singularities will bring about
the leading behavior of our integral, we are interested
in the region «;=20.

The explicit effect of the singularities can be made
clear by means of partial integration. Formula (A7)
reads

£@)="2P gy f "t (TPt
+1 0 0

9
X—T[C—3bg~7 0],

aao

(A8)
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FiG. 5. Diagram leading
to the fixed pole.

The singularity at 8= —1 is the fixed pole. In terms of
the language of contracting parameters it amounts to
short circuit e to bring the Fig. 3 to the form given in
Fig. 5. This is nothing more than the result of Bronzan
et al. The moving singularity can be made explicit too.
By further partial integrations we obtain

—TI'(— M
L= / iz

A+l (B+2)
ont2
X (T a:)t*? [C—3—ﬁ ~J (2,0)7]
Pagday - -

L =8 —-M /ﬁ
s 1 (gt

0 =n
X a"‘[I;I Bty HaotBi+vD) e Jage-ranmo } . (A9)
@0

We can now sum the set of diagrams
INC)
B+1 p+2—F(2)

where we have used explicitly the fact that the integrals
factorize. The functions G(#) and F (¢) are some integrals
that can be explicitly calculated.

Introducing the trajectory function a(f)=—1+4F(z)
and performing the inverse transform one gets

r-8 G@®
¢ B+1 B+1—a(l)

where C is a parallel to the imaginary axis between
ReB8=0 and ReS=—1.
The contribution from the moving pole comes from

the region f+1—a()=20. So its contribution to the
amplitude is

Aup(s,)=[TA—a(®))/a(t)Is*®1.  (A12)

However, when a(f)=20 we are trapped, and both
poles contribute so that the total amplitude now reads
r()G@E)s T(—a(t
A (s, )= G (1) ©)
—a() a()
The first term is the fixed-pole contribution and the
second the Regge pole. At a(¢p) =0 the two contributions

L(g,t)~

G, (A10)

A(s, t)-————-

s8dB, (A11)

se (l)—l_

(A13)
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Fic. 6. Ladder diagrams as-
sumed to represent the asymp-
totic behavior of process depicted
in Fig. 4.

Qn-y

A B

cancel each other. The multiplicative nature of the
fixed pole is explicitly demonstrated in this model.

(b) Scattering of one spin-1 particle on a scalar
hadron producing a spin-1 particle and a hadron.

The calculation is identical except for a different
numerator function. The result for the corresponding
amplitude AP, P, is

I'(—8) G()
B+1)(B+2) p+2—a())

There are two fixed poles now.

(c) Scattering of a composite spin-1 particle pro-
ducing a scalar particle on a scalar hadron. The family
of diagrams considered is shown in Fig. 6.

We introduce the following set of independent vari-
ables for our production amplitudes (see Fig. 4):

s=(ptpaf,  1=(pr—p2f, 1= (patp1)’s (a15)
h=(ps—ps), w=(patps)?, where pi=potps.

Since we are interested in the region where the external
ladder is dominated by the pole of its composite state
we write our amplitude as

F (tytlasbs;w) w—jmzz (Pa—Pb)u

X[PA+AB+p.4C] (1/w—ms?), (A16)

where 4, B, C are the same we have in Sec. I. Performing
the algebra we pick the function 4 in the following way:

F(t,t1,51,5,0) = (2s1—s— t1— Em2+51+3im2) A
oF
— (31— t1i—mP+3m?) B] —
W—Mo? 951

B can be computed by 29F/ds:+0F/dti=-+B. C
cannot be reached this way. The diagrams can be
calculated as in the previous example:

— g2 my_ g12 n—1
F(t,tl,s,sl,w)=—7r2(m—|-n)l< > < ) GG’
1672 167
1 C x) m+n—15(zx__ 1)
X / 1 e .
0 [D(x,t,s,sl,tl,w):]m+”+1

Here we denote by g the coupling constant (strong)

(A14)

A=1 (A17)

(A18)
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between the hadrons, by g’ the coupling constant
corresponding to the binding force of the composite
external particle, by G the weak coupling constant
between the spin-1 particle and the hadrons, and by
G’ the weak coupling constant between the scalar
particle and the hadron.

We make now double Mellin transform with respect
to —s and —sq;

L(a,b) =/ dsdsiF (1,01,5,51,w) (—s)~01(—s)~* 1 (A19)
(1]

F(tts; 5,51,w)
1

- (27"'[)2 cach

L(a,b)(—s)*(—s1)edadb, (A20)

with

— g\ /— g™\ "
L(a,b)= —WZG’Gz( > ( >
1672 1672

5 (— 1) (— a)T'(— ) / daar- - -an o+

X[ﬁr . ,6n]aA1bc—a—b—26—J(x,z,tl,w)’ (A21)
where
D(tt1,5,51,w)=0a1" - amBi- - *Bus1
+oy- - 'amAl(1877ae761)S_J(x’t’tl"w)c(x) : (AZZ)

The only properties we need of A; are (a) that it does
not vanish when one of the 8’s is 0, and (b) that when
all 8’s vanish:

n—1
Ar=61]] Bite). (A23)
1
It can be shown' that in the limit s;=s= — o0 and #
constant the production amplitude behaves like
(—s)® (A24)

independently of the value of a(w), i.e., independently
of the spin of the bound state. From (A17) we can
deduce

A,\,sa(t)—l’ B,\,sa(t) , (AZS)

so that we see already that there is no fixed-pole
contribution to the asymptotic behavior in this case.
Let us show how the killing factor appears explicitly in
the Regge residue for the sense-nonsense transition.
By means of partial integration our expression reads:

L(a,b)=—1rzG/Gz< g >m< g'2)"_1 T(=ar(=#)
1672/ \1622/  (a+b+1)m(at1)»

X/ dx (a1° + ~am) O (By- - - B,)¢H
0

d
X APCEF 5077, (A26)
aal. . 'amBl' . .B"

15 The asymptotic behavior of production amplitudes have been
studied in I. G. Halliday and J. C. Polkinghorne, Phys. Rev. 132,
2741 (1963); J. C. Polkinghorne, Nuovo Cimento 36, 857 (1965).
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We extract the leading asymptotic behavior in Eq.
(A26) by looking at the pole associated with a+5. On
the other hand, to find the pole associated with the
external particle we put e+ 1220.

Near the poles the integral factorizes as before, so
that

L(a,)2T (— a)T'(—b) iK™ R(tw). (A27)
(a+b+ 1) (1)

Summing over # and 7 from 1 on, we obtain

R(t,0)T'(—a)T'(—0)
[a+b+1—K:1() [ (a+1—Ks(w)]

where in terms of the trajectory functions, K,(f)
=a;($)+1 and Ks(w)=as(w)+1. R(t,w) is the residue
function. Finally,

L(ab)= (A28)

1
F(t,tl,sl,S,W) =——R (t,‘ZU)
(2m)?

X/ T(—a)T'(—b)(—s1)%(—s)*dadb
wo  Latb—ar(Ia—as(@)]

It is instructive to see how the pole in w appears. As w
increases from — o or the coupling is switched on,
as(w) will start moving from —1, to the right. As the
contour of integration is between —1 and 0 for Re(a),
there will be a pinch when ay(wo)=0, because it meets
the pole of the function I'(—a). The same thing happens
at any positive integer.

To calculate the contribution explicitly, we translate
the contour to the left so as to isolate the moving pole

(A29)

1
F (t,tl,s,sl;w) =—mR (t,TI))
2mi

—b —a(w
« /r( ) Seaor(— sy (A30)

Las(w)—ar(t)+0]

and

lim \ (w—mP)F (t,t1,5,51,w)
w->m2

s1(—s)%db.

[0+1—a ()]

The method does not guarantee that we have picked
the whole contribution from the pole in w but only the
part with the highest power of s;. As is known,!® a single
Regge pole produces more than one pole in the space of
the Mellin transform. In our case there is a multiple
pole near a= —2 in expression (A26) that will generate
a moving pole

2w agl ('}1122)

a(w)=—14as(w).

16 N. N. Khuri, Phys. Rev. 132, 914 (1963).
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Po
P3
F16. 7. Production amplitude in which Pp
the scalar particle is seen as a bound state
of two particles.
2] Pa
So a will be zero near w=m,?, and
lim (w—m2)F (t1,t,5,51,0)
w->me?
1 RI(tm?) [ T(—b)(—s)?
= db. (A33)

[b—a1(D)]

Nevertheless, as we are calculating that 4 amplitude
that gets the contributions from the coefficient of the
highest power in s;, we simply use

1 R(tyms®) [ T(=Db)(—s)?
A(sf)y=—
ch Eb+1—a1(t>]

2mi ay’ (WL22)
This allows us to compute the leading asymptotic
behavior in s, that is,

Z’R'i 0[2’ (1%22)

db. (A34)

T(1—ai())(—s)u®-1. (A35)

We see explicitly that 4 (s,f) has no pole at a1 (f)=0
corresponding to a sense-nonsense transition. In
particular we have

R(t,ms?)
2ma (£)
=0 ! (my?)

XT(A—ar(f))(—s)a -1,

ImA (s,f) =
a1 (t)

(A36)

showing explicitly the killing factor.

(d) Photoproduction of a composite scalar particle
by an elementary photon. The production amplitude
is now linear in the photon polarization

€F . (s,51,8,11,w) . (A37)

F, can be expressed in terms of invariant amplitudes,
and we isolate the coefhcient of P, that we call F. It
corresponds to the helicity-flip amplitude. We refer to
Fig. 7 for the kinematics.

As before, the changes affect the numerator of the
Feynman amplitudes, and going through the same
procedure, we find the following contribution to F:

__g2 m _g’2 n—1 .
o (1671-2> (167rZ> i
e BRe DIC@T
4 Qi . A38
X_/; [ld I:ILI CJ[D(x,t,ll,w,s,sl)]’"ﬂ“ (A38)

As usual the only information needed about B is that
it remains finite unless a whole set of parameters cor-
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responding to a loop in the external ladder is made to

vanish. Then
+ 2\ m + 2\ n—1
g) ( : ) I'(=a)T(=5)
1672 1672

L(a,b)=G’(G1r)2<

00

X / dalay+ am J*P B - Bl
0
XALPBC-* 3 exp(—J). (A39)

We make a change of variables

,31"—'6\{051, 51=a051; dﬁ1d51=aodaod,éldgﬁ(ﬁrf-gr—1).

(A40)
One can prove that
Ar=PB1Ar+81411. (A41)
Hence,
glz m g2 n—1
L(ap)=G'(G z( ) < ) T'(—a)T'(—b)
(a,b)=G'(Gr) o) \ioo
X/ dz 8(B1+61— Do - *am oot
0
X[B1- - -Bu]*Bi?BCo—be=7 . (A42)

As before, we pick the poles at ¢4-b=—2 and a=—1.

g2 m g/2 n—1
I Ay
(@h) () 1672 16m?

9 I'(—a)T'(—0b) /‘“’ i
I(@+1)(a+b+2)" /,
Xa(Bl‘FSl— 1)313(;_16—']
9 n Kl m
=I‘(—-a)I‘(-b)[K @1~ [K(%)] .
(@+1)" (a+b+2)mn

(A43)

(Add)

Summing over 7 and # from #=1 and m=0,

L(a,b)=T(—a)T(=0)K,(w)/

[e+1—Ks(w)][e+b+2—K1()], (A4S)
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so that
F(t,t1,5,51,w)
=—K1(w) T'(—a)'(—b)(—s1)*(—s)*dadd (A1)
(2m)? cach [a+b+ 1—a1(t)]Ea_a2(w)]
Near w=m,?, where as(w)=0,
1 r(—b)(—s)®
Alsmd)= /
o' (meN)2mi J o b+1—a1(2)
=f(_1:‘“_(t)_)(_s)mm—1’ (A47)
oy’ (ma?)

showing the absence of the pole at a;(¢#)=0, that is the
existence of the killing factor.

It is interesting to see what happens when the elemen-
tary particle has spin greater than 1, say ¢. In that case
more terms of the form J]i"(x;) will appear in the
numerator and the exponent will be a+b+o. There
will be a multiple pole of order 7—1 at the point
a+b+4o0=—1. On the other hand, the variable ay will
have an exponent a-b+1 independent of o. This fact
will produce a pole, of first order at ¢+b=—2, and
when the summation is performed, a fixed pole at
b=—2, since we put as before az(w)=0. The asymp-
totic behavior will have now a non-Regge term of the

form
F(t)(—s) (A48)
to be added to the moving-pole contribution
T(o—a1(?)) 1
- (—s)m@r.  (A49)

0!2'(1%22) g 2—a1(t)

In terms of J-plane singularities language we see that
the fixed pole at J=0—1 has disappeared but the ones
at J=o—n are there for n> 2. Howevel, the calculation
shows that their presence is linked to the parameters
B and &, and we conjecture that introduction of
diagrams with more and more particles forming the
external spinless particle is going to push the poles to
the left. It is amusing to think that for the case of a
fully bootstrapped hadron the fixed poles of the type
discussed in this paper all disappear.



