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Experimental evidence indicates that for nonforward (and nonbackward) scattering angles 8, differ-
ential scattering cross sections fall oif exponentially with increasing barycentric energy gs; namely,
do/dQ, „e ~t' ""&,where p(s, cose) is a positive quantity increasing as some power of s. From assump-
tions of boundedness and analyticity in cose, we obtain certain constraints on the cos8 dependence of the
exponent function @(s, cos0).

'HE restrictions on high-energy behavior of scat-
tering amplitudes imposed by their presumed

analyticity structure have been widely discussed,
following the initial work of Froissart. ' One supposes
that for fixed barycentric energy gs, the amplitude is
analytic in some domain in the cosa plane and that it
has certain s-dependent boundedness properties in this
domain. The customary assumption is that of uniform
boundedness by a polynomial in s and the analyticity
domain, depending on the application, is taken to be
some portion of the full Mandelstam region —the whole
cos8 plane with the exceptions of the cuts (p, oo) and

(—eo, —p), where p ~ 1+sp/s, s ~ oo.
For forward (backward) scattering, the experimental

evidence suggests an asymptotic power-law dependence
on the energy variable s. But for fixed, nonforward
angles, what is strikingly indicated is a very rapid fall
off with energy, of exponential form. More precisely,
for nonfor ward angles differential scattering cross
sections appear to behave like'

do/dQ e &i' ' s—= cos8&&1

where g(s,s) is a positive quantity increasing as some
power of s. Now it is intuitive that a function which is

sufficiently smooth (analytic) in s, and polynomially
bounded in s, cannot behave polynomially at the end
points z=&1 of the physical region and nevertheless
fall arbitrarily fast over a range of neighboring points.
Indeed, Cerulus and Martin' have shown that poly-
nomial boundedness, taken together with certain
z-plane analyticity assumptions, sets a bound on the
rate of decrease with s, of the form

do/dQ) C exp[—h(8)s" I' lns].

It is therefore remarkable that recent evidence4 on
p-p scattering indicates an apparent violation of this

~ Supported by the U. S. Air Force Once of Research, Air
Research and Development Command under Contract No.
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bound. In the present paper we are concerned with a
di6erent aspect of the high-energy behavior for non-
forward scattering; namely, the z dependence of the
exponent P(s,s) of Eq. (1), in contrast to the s de-
pendence. We will allow some relaxation of the poly-
nomial boundedness condition, but it will be necessary
to introduce certain new assumptions about the zeroes
in the z plane.

Let us consider a function f(s,s), which we may take
to be the full scattering amplitude in the case of spinless
scattering or any one of the kinematic-singularity-free
invariant amplitudes where spin is involved; or most
generally, the spin-averaged differential cross section
itself. The maximum domain of analyticity that we
shall contemplate is the full s plane, with the cuts (p, ~ )
and (—~, —p). It will be convenient to map this
domain onto a unit circle. This is accomplished with the
transformation

[(p+z)i/2(p«)i/2j/[(p+s)ils+(ps)i/2$(2a)
where the square roots are taken positive in the gap, z

real between —
p and +p. In the special case where

f(s,s) is identified as a differential cross section even in
s (identical particle scattering), our results will be
somewhat stronger if we exploit this symmetry by
alternatively introducing

~= [p—(p' —s')'"j/[p+ (p' —s')'"j. (2b)

This maps the cut z' plane onto the unit circle.
We may now state our assumptions on f(s,s) as

follows:
(1) f(s,s) is analytic in a domain Drr of the complex

z plane defined by Itt~I &R&~1 [i.e., the image of Drr

under the mapping of Eq. (2) is the interior of a circle
of radius R&~1 centered at the origin of the rt plane).
For R(1, it is clear that Dir is a fitsife region in the s
plane and its boundaries, moreover, are at a nonzero
distance from the Mandelstam cuts.

(2) I f(&,s) I
«"'I1+(p'—s')'"I

(3) f(s,s) has no zeros in Drr.
For R=1, assumption (1) is the often-invoked full

cut plane analyticity hypothesis. We have introduced
the parameter E. to allow for the possibility of weaken-

ing it. The boundedness condition (2) we make more
specific by assuming that the exponent g(s, s) in. Eq. (1)
grows faster with s than both Q(s) and M(s) do. The
usual assumption of polynomial boundedness cor-

1.437
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G(s,s)=-
27r

Re'"+w
do, (q )+21mG(s, o) .

Ee'~—m

The integral is of the Stieltjes type and da.,(y) is a
positive finite measure. In the remaining discussion we
employ the representation of Eq. (4) for real values of
m, between —R and E, i.e., for real values of s in the
domain D~. More explicitly,

—p &s&p
1+R' 1+R'

(sa)

responds to %=const, Q(s)=Nlns. Assumption (3)
on the zeroes of f(s,z) will be relaxed later on.

We begin our discussion by noting that the function

G(s,s) = —Inf(s, s)+Q(s)+M(s)ln(1+ (p' —s')'I') (3)

is analytic in D& and has a non-negative real part. By
the Herglotz theorem, ' G(s, s) has a Poisson integral
representation, which we conveniently express in terms
of the zv variable:

introduce (for brevity the s dependence is suppressed):

X = 4wR/(w+R)',

0'(~1) = L(R+w)/(R w) 34'(s s) .
In terms of these quantities, Eq. (6') reads

1 da (22)
~(~)=-

22r 1—X COS'(—'q )

(7)

(8)

(9)

(d"/dX"g (X) & 0,
(d./D..)1/P(z) & o,

(d"/dX") (1—X)P(X) &~ 0.

(10)

(11)

(12)

These derivative conditions are subject to direct
experimental test. Suppose that p(X) is known at 22+1
different points, X1, X2, , X +1, then Eq. (10), for
example, implies that

n+1

From the positivity of the measure da. (y) one now
readily obtains the following derivative conditions on
~(~):

2+R
0(-s& p (5b)

g P(X;)g (X;—X,) '&0, (10')

ReG (s,z) = —In
~ f(s,s)

~ +Q (s)+M (s) ln
~
1+ (p' —2') '~",

1
d~. (v).

22r R'—2Rw cosrp+w2

E —zv

(6)

We take f to be the differential cross section of Eq. (1),
so that 1nf=p(s, s). I—f p(s, s) grows with s faster' than

Q(s) and 3f(s), as we assume for —1(s(1, then

depending on whether the mapping of Eq. (2a) or of
Eq. (2b) is used. Taking the real part of Eq. (4) we
obtain

and of course similar relations are obtained from Eqs.
(11) and (12).

The above expressions represent necessary conditions
on the function f(X). The following question now arises
naturally: Given a set of m positive numbers f1, p2,

p, what are the necessary a22d sugcie22t conditions for
the existence of a function P(X) which has a representa-
tion of the form of Eq. (9) and which takes on the values

at the respective points X1, X2, , X„.
We have obtained these necessary and sufhcient condi-
tions for 222= 2, 3, 4 by direct calculation (see Appendix
for general formulas).

For m= 2, taking x2&)1, we 6nd

E. —zv

e(, )=- d~. (v);
22r R' —2WR COS22+W2

A~&41,

(1—X,)P,& (1—X,)P, .

(13)

(14)

—1(s(1 (6')

an equation which provides an integral representation
for the experimentally measurable exponent g(s, s). The
positivity of the measure dg. imposes stringent condi-
tions on the s dependence of the exponent function. The
restrictions imposed on p(s, s) are most conveniently
expressed in terms of auxiliary quantities which we now

'See, for example, G. C. Evans, The Logarithmic I'oteetial
I'American Mathematical Society Colloquium Publications, New
York, 1927), Vol. VI, Chap. II; R. Nevanlinna, Eindegtige
Analytische J"Nektiorsee (Springer-Verlag, Berlin, 1953), Chap.
VII, p. 196.

This would be true, for example, under the assumption of
polynomial boundedness: Q(s) lns, 3f (s) = const, if @(s,s) grows
like a power of s as indicated by experiment.

These conditions are already contained in Eqs. (10)—
(12), which, for 22= 1, are sufhcient as well as necessary.

For 222= 3, the conditions are that Eqs. (13) and (14)
must be satisfied for one pair of points and in addition,
With ) 3))2&X1,

(z,—z,)/p, + (~,—x,)/p, + (z,—x,)/p, & o, (13)

P 3 ~2) (1 I11)f1+(~1 ~3) (1 ~12)4'2

+ P.2—) 1) (1—X3)$3&~0. (16)

Again, these results are already contained in Eqs.
(10)—(12).

For m=4 our conditions, though of course consistent
with Eqs. (10)—(12), are the stronger ones recorded
below, with the convention )4) ) 3&)~)X1.
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and

(~2 ~1) (~4 ~3) (0'142+4344)+ (~3 ~2) (~4 ~1) (4243+0 144)+ (~1 ~3) (1~4 4) Big'3+$2/4) ~& 0 (17)

(4—4) (&4—X8)[(1—4) (1—X2)pi/2+ (1—Xa) (1—X4)/gal 4j

+ (Xg—X2) (X4—Xi)[(1—X,) (1—).g)pppa+ (1—'Ai) (1—X,)$,$4j
+ (Xi—X3) (X4—X2)[(1—Xi) (1—X3)pi/3+ (1—Xp) (1—X4)$,$4j ~&0. (18)

In addition the m=3 conditions must be satisfied for
any one triplet of points.

To surriinarize, our basic assumptions lead to a
variety of practical conditions on the exponent function
@(s,z) of Eq. (1), all of them stemming from Eq. (9).
These conditions are most conveniently expressed in
terms of the related function PP,), which is connected
to g(s, z) by Eqs. (2), (7), and (8). To give a concrete
illustration in terms of the original variables, let us
consider the case of identica, l particle scattering [Eq.
(2b) then provides the relevant mapping'. For our
illustrative purposes, suppose that we can choose E= 1
in Eq. (4); this corresponds to full cut plane analyticity.
Then, with 1)z2) zi)0, Eqs. (13) and (14) are equiv-
alent to

(p' —z ')'"4 (s,z ) & (p' z')'"4 (—s zi). (14')

In the above equations one can in effect set p= 1 as long
as s;(1.These two-point conditions, and the analogous
three-point conditions of Eqs. (15) and (16), taken,
respectively, for all pairs and triplets of experimental
points, should already in themselves provide a severe
enough test of the basic assumptions under discussion
here.

In our discussion so far, we have assumed that the
function f(s,z) has no zeroes in its domain Dz of analy-
ticity in s. This is unreasonable. But if the number of
zeroes is finite, and remains so even as s —+ ~, then we
can factor out the zeroes:

where, in general, the zeroes n; vary with s, as does their
number X. As long as 1V(s) remains bounded in the
limit s ~ ~, all of our previous assumptions now apply
to the zeroless function F(s,z). But in the physical
region of z, where ln f=P is growing —with s, lnF and
lnf will approach each other in the limit s —+ m, with
the exception of possible isolated physical values of s
which are zeroes of f(s,z). Notice that our results would
still hold if the number of zeroes X(s) grows indefinitely
with s, provided X(s)/g(s, z) ~ 0 as s goes to infinity.

It is questionable whether the energies presently
available in particle-collision experiments are high
enough for nonforward differential cross sections to be

in the asymptotic domain. Nevertheless, a test of our
conditions on the basis of existing evidence would be
most interesting. In the case of proton-proton scatter-
ing, the exponent function g(s, z) appears to be well
fitted by an expression of the form &=g(s) sing, where
g(s) grows at least as fast as gs and perhaps as fast as
s. What is of particular interest here, however, is the
sing = (1—z')'t' angular dependence suggested by experi-
Inent. This dependence is rather special, in the following
sense. Consider the case, firstly, of identical particle
scattering, and suppose the analyticity domain is so
large that we can set E= 1. (Little would change in our
kinematics if E. were less than unity by a small, finite
amount, provided we restrict ourselves to physical
values of s not too close to the end point s=1; and for
the same reason, we can set p=1.) It follows from the
three-point Eqs. (15) and (16) that if at any two points

P(s,zi)/(1 —zi )'~'= P(s,z2)/(1 —z22)'~' 0&~ zi&z, & 1

then at all points in the physical region

4(s z) =a(s)(1—z')'"=g(s)»ng

For scattering of nonidentical particles the same resul
holds, as we see from Eqs. (17) and (18), if for any three
points P is interpolated by the function sing.

The unique aspect of the s dependence embodied in
(1—z2)'~' can be brought out in another way (we again
set R=1 and p=1). A function f(s,z) which satisfies our
assumptions, and which does not fall off exponentially
with s along the s' cuts, can have an exponential fall off
for physical z only if it has the form f exp[ —g(s) sing(.
This follows immediately from the Poisson representa-
tion of Eq. (6'), since, under the above conditions, the
dominant contributions for large s come from p= ~-', &.
This corresponds to s= ~ under the mapping of Eq.
(2a). For the case of identical particle scattering the
dominant contribution comes from q =x, again cor-
responding to z= ~, under the mapping of Eq. (2b).
In both cases we then obtain p(s, cosg) = g(s) sing.
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APPENDIX

A set of 222 data, i.e., nz pairs of numbers ($1,1~1),

($2,X2), , ($,11 ), where f~&0 and li;(1, will
be called adnsissible if there exists a function of the form

d~(v)
tt 9)=-

22r 1—X COS'(-' p)

with da(p) a finite positive Stieltjes measure, such that

~(1 )=~., ~(~.)=~.. . ~(1-)=~-
The following are necessary and suQicient conditions.

A set of 222 data (i/1, lil), , (ip, li ) is admissible if and
only if (1) one subset consisting of m —1 data is ad-
missible auld (2) the following 2 inequalities are satis6ed:

For m even (=2Ã)

D2Ng]= (—1)"—

41 1~141

4A

~1Vl' ' '111 Vl 1 1%1 111 ' ' '~1

X2'$2 ~ ~ 112 '$2 1 X2 112'

&0; (A1)

4'2N ~2N42N

for m odd (=2K+1)

D»+1[fj—= (—1)"

4A

4A

D2N[(1 —P,)fj&~0;

111 41 ' '111 pl 1 111 111 ' ' '111

1 112 4' 112N '
&0;

(A2)

(A3)

$2Nyl 4N+14'2N+1 ~2N+1

and
D2N+1[1/(1 —11)iP]&~ 0. (A4)

The above results are obtained from the representa-
tion of Eq. (9) by variational procedures The me. thod,
in outline, is as follows. Consider, for example, the case
where 222 is even and equal to 21V. (The case where 222 is
odd can be tres, ted in a similar manner. ) Our problem is
equivalent to the problem of finding the maximum and
minimum value of f at a particular point X;, given the
values of p at the other 222

—1 points:

where

0&~ny&n2( ~ &n~~~ 1,
c„&0.

where

(1—XP1) (1—XP2) (1—XP~ 1)
PP,) =c

(1—Xn1) (1—l~n2) . (1—1~n2r)

The positivity of the c„ implies that p(11) in Eq. (A5)
can also be written in the form

1 do (q) = extremum,
2m' ~ 1—11 cos (-&p)

and
0~&121(pl(c22(P2( (p2f 1(u~&~1

c&0.
under the constraints

1

22r .1—1~, cos'(-'q )
j=1, 2, , i 1, i+1,— , 222.

P(~}=P c„/(1—Z~,); (A5)

g &~m —1,

Under variations of 0 (y), the Lagrange multiplier
method shows that an extremum is attained by a
dkscrcte measure da. =g„c„5(p—&p„)d&p, or equivalently,

Taking logarithms, for convenience, we have

in'(X) =Inc+ P ln(1 —P.P„)—P ln(1 —Xu„).

Under variations of the n's and P's, we require that
in/(X, ) be extremum under the 222

—1 constraints

1np(11;)= in/;, j~i
Using the Lagrange method we And that

2'—1 ~& m —1=2E—1.
We notice that the only parameters that are allowed to
attain boundary values in their domain of variation are
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n1, which may become equal to zero; and o.~, which may
become equal to 1. %e conclude that M=X and we
have the following two extrema corresponding to
whether o.1

——0 or 0.~= 1:
(1) Setting rrt ——0, we have

(1—)Pt) (1—)Psr r)
4())=c (A6)

(1—Xns) . (1—Xusr)

The extrernum value for f(X;) is determined by elirni-

nating the 2' 1p—arameters c, Pr, Ps, ., P~ r,
0,2, o.~ from the 2X equations

f(X;)=P;, j=1, 2 .2Ar.

This elimination can be done easily if we write the above
expression (A6) for lb(X) in the form

[1+ht&+hs)'+ +4 t) " 'g4())
=c+k,X+ks)'+ +her tH '.

Eliminating the new parameters h„and k„ from the

system of equations

[1+hrX,+bshe+ . +.her r),~ ')P;
=c+ktX, +kshfs+ +her &X;~ ', j=1, 2 2Jll'

leads to
Ds37[f]=0 for f;= extremum.

(2) Setting n~ 1, we ——have

(1—XPr) (1—XAr t)
(1—) )lb() ) =c

(1—) crt) (1—XnN r)

and a similar argument leads to

Dssr[(1 —X)Pj=0 for f,= extremum.

All allowed values of P(X) at X=X; will lie between
the two given by Dssr[fj=0 and Ds~[(1—X)P]=0;
therefore the set (Ibt, Xt), (ps,Xs), ', (ps~, ) s~) is
admissible if and only if Dssr[lbj and D,sr[(],—&)pj
have definite signs. These signs can be easily determined
by induction on m.
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Using a perturbative model, we study the asymptotic behavior of weak amplitudes, looking in particular
for the existence of fixed poles. The weakly interacting particles are considered as either elementary or
composite. Our conclusions can be summarized as follows: The existence of fixed poles is model-dependent.
In particular: (1) If both interacting particles are elementary, we find the usual fixed poles at J=0,+~,—~,e) 1, where 0 & and os are the spins of the particles. (2) If the weakly interacting particles are composite,
the amplitude is superconvergent (even being nonunitary) and there are no fixed poles, at least for J')O.
(3) In the case of photoproduction of a spinless composite particle, i.e., an amplitude with only one ele-
mentary particle with spin one, there is no fixed pole at J=0. If we consider that the elementary particle has
spin a, we argue that the pole at J=0.—1 disappears, while the ones at J=o.—n with n&1 may or may not
exist, depending on the wave function of the produced hadron. We conclude by discussing the implications
of our results, and in particular the limitations on the hypothesis of partially conserved axial-vector current.

I. INTRODUCTION

I
'HE study of 6xed singularities in the angular

momentum plane (J plane) has been shown to be
important for the understanding of the asymptotic
behavior of scattering amplitudes for particles with
spin. ' Interest arose recently after the discovery of their
connection with current algebra sum rules for 6nite
momentum transfer. ' As a consequence some results
have been derived, especially in the domain of non-
unitary amplitudes. ' 4

In a fundamental series of papers Mandelstam has

See, in particular, the general discussion in S. Mandelstam,
Nuovo Cimento 30, 1113 (1963).' J.B.Bronzan, I. S. Gerstein, B.W. Lee, and F. K. Low, Phys.
Rev. Letters 18, 32 (1967); Phys. Rev. 157, 1448 (1967).' See Ref. 1 and H. D. I. Abarbanel, F. K. Low, I.J. Muzinich,
S. Nussinov, and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).

4For a discussion of fixed poles in unitary amplitudes, see
S. Mandelstam and L. Rang, Phys. Rev. 160, 1490 (1967);C. K.
Jones and V. L. Teplits, sbfd 159, 1271 (196.7).

studied the compatibility of Regge behavior of amph-
tudes with presence of elementary spinning particles
in the theory. ' It is not surprising that these concepts
are relevant for our purposes since elementary particles
in general introduce subtractions in the dispersion
relations. Under appropriate conditions, i.e., absence
of bilinear unitarity, these behave as Axed singularities
in the J plane.

The main purpose of this paper is to apply Mandel. —

stam ideas to the study of weak amplitudes.
Our conclusions are extracted from perturb ative

models. However, it is very encouraging that these
models are able to reproduce the main features of the
J-plane singularity structure. ' 6 Even more, there is by

~ R.. J. Eden, P. V. Landshoft, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge University Press,
New York, 1966). W'e follow closely the notation of this book.

6Equivalent models have already been used to study some
features of the fixed poles in Refs. 2 and 3. See also Ref. 12.


