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That is, for nonforward angles the Froissart bounds,
and even the improved bounds of Kinoshita et al., prove
to be excessively weak. For our production differential
cross section do/dS, however, the experimental situation
is less clear. But if Regge behavior is relevant for pro-
duction processes, it may be that do/dQ at nonforward
angles falls only polynomially with s, rather than
exponentially. Consider for example a production
reaction with three particles in the final state: p1+p.—
k+Fki+ks Let k be the four-momentum of the dis-
tinguished particle; and define the subenergies s;
= (k+Fk1)?, so= (k+ks)?, as well as the momentum
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transfers t1= (p1—k1)?, fa= (p2—k2)>. It has been con-
jectured that the production amplitude displays Regge-
like behavior, in the form Amp~s;*®s,2(2) for the
limit s — oo, with £, {; held finite. Now it is kinemati-
cally possible, even when the production angle 6 of the
distinguished particle is nonforward, for fi, ¢, to be
finite as s— o, with s;~+/s, sa~+/s. Since do/dQ
involves an integration over all final-state variables
other than 6, the differential cross section receives
contributions from this Regge-like region of phase
space. The corresponding s dependence of do/d2 would
then be polynomial rather than exponentially falling.
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A new method of calculating nonrelativistic scattering amplitudes is presented. The scattering amplitude
is first calculated as a function of the complex energy below the scattering threshold, and the numerical
results are then analytically continued to the physical region. The method is used to calculate two-body
and two-channel scattering amplitudes. The numerical analytic continuation is accomplished by a rational-
fraction representation similar to the Padé method. Several techniques of numerical analytic continuation

by rational fractions are described, and some examples are discussed.

I. INTRODUCTION

HE analytic properties of the solutions of the
Schrodinger equation have been extensively
studied, but they have rarely been used in an actual
calculation. In an earlier communication,! we described
the preliminary results of a method which uses the
analytic properties of the nonrelativistic scattering
amplitude T'(W) as a function of the complex-energy
variable W to calculate physical scattering amplitudes.
In this paper, we give a more complete discussion of the
method, and we apply it to the calculation of one- and
two-channel scattering problems.

The method consists of two steps. First, T(W) is
found for a number of unphysical (W <0) values of W
for fixed and physical values of the external momenta.
Then these numerical results are analytically continued,
using a rational-fraction approximation, to the
physical energy region to obtain scattering phase shifts
and amplitudes. Because the amplitude is calculated in
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Adminstration and AFOSR, Office of Aerospace Research Grant
No. AF-AFOSR-130-66.

t Work based on a thesis submitted by the author to the faculty
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the requirements for the degree of Doctor of Philosophy.

1 Present address: Department of Physics, University of
Illinois, Urbana, Ill.

11, Schlessinger and C. Schwartz, Phys. Rev. Letters 16, 1173
(1966).

the unphysical energy region where momentum-space
integral equations of the Lippmann-Schwinger? type
are nonsingular or coordinate-space variation principles
of the Kohn?® type have no complicated scattered-wave
terms, the first step in the calculation is considerably
easier than the direct solution of the Schrédinger
equation. The rational-fraction approximation, which
constitutes the second step of the method, is a simple
and accurate technique for accomplishing the analytic
continuation. This approximation is an important part
of our method, and because it has a number of advan-
tages over the standard methods of numerical analytic
continuation, we discuss the methods we have devised
to represent a function by a rational fraction in some
detail.

The method of calculating scattering amplitudes is
straightforward to use and yields accurate results.
Moreover, it can be applied with only minor modifica-
tions to two-body, two-channel, and three-body scatter-
ing. Although the two-body problem has been discussed
and solved many times,*% and the results obtained
here are not new, the discussion of this method in the

2B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

8 See T.-Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962), Sec. D.

4 C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961).

5 R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).

6 H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).
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simplest case clearly demonstrates both the advantages
and limitations of this technique. The three-body
calculations we have done—electron hydrogen scatter-
ing and the scattering of three particles interacting
through Yukawa potentials—will be presented in a
subsequent communication.

The paper is divided into several sections. Section II
is a presentation of some methods used to effect the
numerical analytic continuation by rational fractions.
Three methods employed to accomplish this continua-
tion are described and some simple examples are given.
In Sec. III, we present the application of these methods
to the solution of the two-body Schrédinger equation.
Phase shifts for s-wave scattering in a Yukawa potential
are calculated and are compared to those obtained by
other methods. Section IV is a discussion of this method
as applied to a two-channel nonrelativistic scattering
problem with Yukawa potentials. Section V is a brief
summary and conclusion.

II. NUMERICAL ANALYTIC CONTINUATION
USING RATIONAL FRACTIONS

Numerical analytic continuation is an important
step in our approach to the calculation of scattering
amplitudes. This section is a discussion of a number of
methods of numerical analytic continuation using
rational fractions and a presentation of some numerical
examples of this technique.

The problem considered here is the numerical analytic
continuation of a function f(x), given the values of the
function at the K points x; (i=1---K). Although the
standard polynomial methods of continuation’ are
useful in proving that a unique continuation exists,
they are not of great value in practice because small
errors in the initial values of the function produce large
errors in the continued values. Continuation using
rational fractions has several advantages over these
standard techniques. The asymptotic form of a rational
fraction is bounded by some small power of x, and any
knowledge of the large-distance behavior of f(x) may
be directly incorporated into this representation. The
global bound imposed on the approximating function
by the rational-fraction form inhibits the growth of the
continuation error characteristic of polynomial expan-
sions. Furthermore, a rational-fraction approximation
can exactly reproduce polar singularities, thus extending
the “radius of convergence” of the representation to the
first nonpolar singularity of f(x). Even the nonpolar
singularities of the function may be well approximated
by poles and zeros of the rational fraction, affording
a good representation of the function far from these
singularities.

One well-known technique of numerical analytic
continuation by rational fractions, which has been

7R. V. Churchill, Introduction to Complex Variables and
Applications (McGraw-Hill Book Co., Inc., New York, 1948).
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used successfully in the solution of a number of physical
problems, is the Padé approximant method. (For a good
discussion, see Baker.8) The use of this method, how-
ever, requires the coefficients of the Taylor’s-series
expansion of f(x). The three methods we have devised
for the representation of f(x) by rational fractions
are similar in spirit to the Padé method but use only the
values of the function at a set of points and not its
Taylor’s-series representation. We have called these
techniques the norm method, the moment method, and
the point method, and they are described in the follow-
ing paragraphs.

Let Ry u(x)=Px(x)/Ou(x) be the N,M rational
approximation to f(x). Py (x) is the Nth-order poly-
nomial in & which forms the numerator of the fraction,
and Qu(x) is the Mth-order polynomial in x which
forms the denominator of the fraction. The norm
method determines Ry a(x) so that the norm of the
function f(x)Qu (x)-Py(x) is a minimum under varia-
tion of Py and Q. For this method, we let

N
Py(x)= Iéo prur(x),

Qux)=1+ gél (),

where u;(x) are orthogonal polynomials with the weight
function w(x) over the interval (a,b), which includes w;
(3=1---K). That is,

b

/ U ()% (%)W (X)X =01 -

The condition we impose is that

I(g,p)= |l f (*)Qu (%) — Pn ()|
- / (@) | F@) 0 ()= Py(@) |z (2.1)

is 2 minimum under variation of the ¢’s and p’s. Doing
the variation, we obtain

174 b
2. / () f(6)Lf (5)Qar () — P () Ttg () =0,
5qj' a

74 b
el / (@)L f (00t (5) — P (2) Tty () =0
61)] a
Defining

/ (8160 (516 (5) S (1) =

8 W. Baker, in Advances in Theoretical Physics, V, edited by
K. Ifrlsxgckner (Academic Press Inc., New York, 1965), Vol. I,
pp. 1-58.
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and noting go=1, we have

> (Fage— 22 firpr=0, (2.2)
k=0 k=0

M
kz=:0 Sfirqr— pi=0. (2.3)

Substituting (2.3) into (2.2) yields
M N
> (fi— T fafu)ge=0, j=1---M. (2.4)
k=0 1=0

Since go=1, Eq. (2.4) is a set of M linear equations for
the M unknowns ¢;- - -gy. Substituting these ¢’s into
(2.3) determines the p’s. The condition (2.1) is thus
sufficient to determine a rational-fraction approximation
to f(x).

The input to this method is the values of f(x) at the
K points ;- - -xx. These points are chosen to facilitate
accurate numerical evaluation of the integrals for the
matrix elements f,». One method of obtaining these
integrals is numerical quadrature (based on the poly-
nomials #;), which requires the x; to be the K roots
of the polynomial #x(x). The moment method also
uses these numerical integration techniques.

The moment method determines the coefficients of
the rational-fraction approximation to f(x) by requiring
the first N4 M -+1 moments of the expression f(x)Qar (%)
— Py (%) to be zero. Using the same notation as for the
norm method, this may be written as

N M
:L;) prn ()= f (%) 2 quann(x) (2.5)

where o and uo equal 1. Multiplying (2.5) by u;(x)w(x)
and integrating, we obtain

%
pi= 2 firqr, j=0---N (2.6)
*=0

and

M
> firgr=—fs0, j=N+1---N+M. (2.7)
k=1

Equation (2.7) is a set of M linear equations for the M
unknown ¢’s. Using the solutions of (2.7) in (2.6)
determines the p’s. If the polynomials %;(x) are chosen
to be 1, #, 42, - - - over the unit circle, then this method
(with the appropriate modifications for complex poly-
nomials) is the same as the Padé approximant method
for a function which has a convergent power series in
the unit circle.

In the preceding methods, we actually make two
approximations. First, the integrals of f(x) are rep-
resented as finite sums; then f(x) is represented as a
rational fraction, using these approximate integrals.
In practice, the norm method suffers most from this
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double approximation because of the many manipula-
tions of the matrix elements f,.; the moment method
works quite well despite this limitation. It is desirable,
however, to have a method which is more straight-
forward than the preceding ones.

The point method is a direct approach to the rep-
resentation, we simply set

f(x)=Pn(x)/Qu(xs), i=1---N+M+1 (2.8)

where

N
PN(x)= Z pkxk’

k=0
M
Qu(®)=1+ 2 qv*.
k=1

Rearranging (2.8), we obtain a set of N4+M+-1 linear
equations for the N4-M-+41 unknown p’s and ¢’s. In
this case, Ry a(x) is determined so that Ry, ()
= f(x;) at the N4-M--1 points x..

A more efficient means to effect the point type of
representation is obtained using continued fractions. As
before, we have K values of f(x), and we want to
represent f(x) as Ry (%), so that Ry a(x;)= f(x:) at
the K points %1+ « - #x. To do this, consider the continued
fraction

f(w1) a1(x—x1) aa(x—2x2)  an(x—xw)
Cr(x)= .
1+ 14 1+
It is easy to see that Cy(x1)=f(x1) and that the
coefficients a1 - - - ay can be chosen so that Cy (x:) = f(x.).

We show in the Appendix that the coefficients a; in
(2.9) may be determined recursively from the formula

(2.9)

1 @1 (®r1—%i-1) G2 (Xrp1— %i—2)
a= 1+
(%1—%141) 14+ 1+
a3 (X141—%1)
+ 2.10
1—[f(xn)/f (xz+1)]} (2.10)
and

ar={[f(x1)/ f(x2) =1}/ (w2—21).

Equations (2.9) and (2.10) form a simple, fast, and
efficient algorithm for representing f(x) as a rational
fraction.

The rational-fraction representations described above
are generally used to form a sequence of approximations
to the desired function as the order of the polynomials
in the numerator and denominator are increased,
keeping N— M fixed. The norm and moment methods
have the advantage that they use all the input points
%1+ -xx at each stage of the approximation. The
disadvantages of these methods are that the double
approximation involved leads to large numerical round-
off errors, especially for the norm method, and that the
location of the input points is fixed by the numerical
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integration techniques. The point methods are more
straightforward to use; they do not involve a double
approximation, and they are more flexible because the
input points are arbitrary and can be chosen to best
represent the function.

Comparison of Methods and Examples

There is no general theory which describes either the
convergence or the convergence rates of the type of
rational approximations described here. In the following
paragraphs, we discuss some simple examples to
establish a number of rules for the use of these methods.

We expect this type of representation to be able to
approximate a rational fraction exactly, but, because a
rational fraction can have only one sheet in the complex
plane, we could not hope to approximate a many-sheeted
function everywhere. Our approximation can, however,
yield a good representation of a function on a single
sheet. In general, a branch line is approximated by a
succession of poles and zeros of a rational fraction, and
far from the branch line, the approximation is quite
good. For the functions studied, the region of con-
vergence of this representation appears to be everywhere
on one sheet of the complex plane, except for a small
region surrounding the branch line.

The examples given here were computed by taking
values of simple functions at several points along the
positive axis from z=0 to z= o, applying the methods
previously discussed, and evaluating the resulting
rational fraction along the negative z axis as shown in
Fig. 1. To obtain a fair comparison, the same points and
the same numerical accuracy were used for all the
methods. We included the bound on our rational frac-
tions by requiring whenever possible that the rational
fraction and the function go as the same power of z at
large z. The first example, Fig. 2, is a graph of the
fractional error f(z)—Rj5,5(2)/f(2) versus the distance
from z=—1 for the rational approximation to f(z)
=[2/(1+2)]V% In this case, we can match the power
behavior of f(z) because both f(z) and Rjs(z) —
constant. In this, as in all the examples tried, the norm
method suffered from numerical roundoff errors and
gave results consistently worse than the other methods.
For this reason it is not useful for numerical computa-

CONTINUATION
PATH

(ol

7772

goresam;
CONTINUATION
REGION

INPUT POINTS

F16. 1. Location of input points, branch out, continuation path,
and output region for some of the examples described in Sec. II.
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tions, and to avoid confusion, it is left out of most
subsequent graphs and discussions. Figure 3 shows a
graph of several high-order, high-accuracy (12-place
arithmetic) continued-function approximations to
[(z+1)(z—2) 2. By including the correct asymptotic
form of the function into the rational approximation,
the propagation of errors characteristic of the poly-
nomial analytic continuation is eliminated. To demon-
strate the importance of having the correct asymptotic
behavior, we show in Fig. 4 the [5,5] and the [5,4]
continued-fraction approximations to

{{LA+2z+2) (1+22) /15— 1}/z.

In this example, we have plotted the fractional error
versus the distance from z=0. The rational approxima-
tion with the correct asymptotic behavior gives a good
representation of the function everywhere on one sheet

1oL
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DISTANCE FROM CUT

Fic. 2. Fractional error versus distance from z=—1 for norm,
moment, and point method of approximation to [z/(1+2)]Y2
The order of approximation N=35.

of the complex plane except very near the cut at Real
z=—0.5, while the approximation with the wrong
asymptotic form exhibits the polynomial-like behavior
discussed before.

In general, the representation converges rapidly as
a function of the order of approximation N for both
the moment and point methods, and the error, as a
function of N, is approximately independent of the
distance from the branch point. Note that even though
the gross nature of the error as a function of IV is
rapidly decreasing, the convergence is not always
monotonic, and there are isolated values of IV for which
both the N—1 and N-+1 approximants have a smaller
error. This behavior seems to be a general feature of any
rational approximation and is also encountered in the
Padé method. As pointed out in Ref. 8, the [3N+1,
3N+17] Padé approximants to [ (1+x—+a2) (14 2x)]V3
—1/x do not exist. For our methods, the representation
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exists except for special cases, but may be quite poor
for particular values of N. In practice, if a member of a
sequence is noticeably out of line with its neighbors, it
may be interpreted as one of these singular values of N
and may be safely ignored.

In all the examples we tried, the moment and point
methods yielded comparable errors and rates of conver-
gence. However, the continued-fraction method is
faster and easier to use than the moment method.
Furthermore, it has an extra degree of freedom because
one is at liberty to choose the location of the input
points. The use of this degree of freedom can result in
more accurate continuations. For these reasons, the
continued-fraction method is considered the most useful
of all the methods proposed, and it is the method we
used in our calculation of scattering amplitudes.

From the previous examples it is clear that the
accuracy of the continuation is greatest at large

FRACTIONAL
ERROR

T T
0™ I o 10?
—
DISTANCE FROM CUT
Fic. 3. Fractional error versus distance from z=—1 for high-

order, high-accuracy continued-fractions approximation to
[(142) (2—2)]72 The orders of approximation N=3, 8, 10.

distances from the singularities of the function. In the
preceding examples, the input points were distributed
“evenly””® over the positive z axis as required by the
moment method. This last result, however, suggests
that to obtain the most accurate approximation to a
function at a particular point a, one should distribute
the input points evenly over the transformed input
region in the plane where the point z=¢ is infinitely far
from the singularities of the function. As an example, we
use the function In{ (142?)/(442?%)}. To get an accurate
approximation to this function at z=a, we use the
transformation y=2z/(z—a). In the y plane, the singular-
ities are infinitely far from the point in question, and
the input points (z=0 to z= ) are mapped into the
line y=0 to y=1 for a<0. The results using the input
points obtained in this way for the values ¢=—0.5 and

9 The polynomials used for the norm and moment methods
were Laguerre polynomials. The evenly distributed points were
obtained as the zeros of the 15th Laguerre polynomial.
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FRACTIONAL '©

ERROR 168]

CORRECT ASYMPTOTIC
BEHAVIOR

L T .
cuT
Fic. 4. Fractional error versus distance from z=0 for point

method of approximation to {[ (142422 (1+22)]¥3—1}/2. The
cut is located at Rez=—0.5.

a=—10 are shown in Fig. 5, along with the results for
the evenly distributed points. From these graphs we see
that picking the input points in this way gives an
improved approximation in the neighborhood of the
point mapped to infinity, but only at the expense of
the points elsewhere in the complex plane.

Finally, we consider the approximation of an essential
singularity. The first example studied was the function
¢~%. As before, this function was approximated by taking
a number of points along the positive axis as input and
evaluating the resulting rational fraction along the
negative z axis. For this function the method failed.
This failure, we believe, is obtained because the function
has very different large-z behavior along the input
direction and the continuation direction in the z plane.
The Padé method or the moment method using the
polynomials 1, x, 2%, - -+ over the unit circle should be
able to approximate ¢~ well over a limited region, since
they use values of the function taken only in a small

[lop
lo’ﬁ
POINTS FOR X=-5
103
104
FRACTIONAL 10 "EVEN POINTS"
ERROR

108
1074

104
POINTS FOR X=-10

-

10!

Fic. 5. Fractional error versus distance from x=0 for point
method of approximation to In[ (1+#2)/(44-4%)] for input points
picked in several ways. The order of approximation N=3.
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FRACTIONAL
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F1c. 6. Fractional error versus distance from z=0 for point method
of approximation to e#(+2), N =4,

region in the complex plane. According to the above
remarks, our methods should be able to approximate a
function like e2/*+2 quite well. Figure 6, the graph of the
fractional error versus z for this function, supports
this claim. The rational approximation converges
rapidly outside a small region surrounding the essential
singularity.

From these examples we can see that the rational-
fraction technique is a powerful approach to numerical
analytic continuation. The rational-fraction approxima-
tions that we have tried can represent most functions
quite well on one sheet of the complex plane. The
moment and point methods yield comparable results,
while the norm method is less useful because of numer-
ical roundoff errors. The point methods are generally
the easiest to use and the most flexible.

III. TWO-BODY SCATTERING

In this section, we use the methods of numerical
analytic continuation to calculate two-body-nonrelativ-
istic-scattering phase shifts. We first present a discussion
of the method and some of the techniques used in its
application. Finally, we present the results of the
calculations and compare them to the results obtained
by other methods.

A. Continuation Method

The continuation method makes use of the analytic
properties of the 7" matrix as a function of the complex-
energy variable W to determine scattering phase shifts.
To begin, we consider the Schrodinger equation in
the form

(E—H)¥,=0, (3.1)
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with the decomposition

H=HetV (3.2)

and the plane-wave states ¢,, labeled by the physical
momentum of the scattered particle, which satisfy

(E—H)gp=0. (3.3)

Here E=p?/2m is the physical energy of the particle
of mass 7 and momentum p. The 7 matrix or scattering
amplitude is defined as a function of the complex-energy
variable W as

TW)=V4+VW—-Hy)'T(W). (3.4)

The physical-scattering amplitude for the transition
p— 7' is obtained as the limit of the matrix elements of
the 7" operator between the plane-wave states ¢, and
¢ as W approaches the physical energy from above
in the complex plane. That is,

T(@p )= Jim (o T(W)op).  (3.5)
The formal solution to (3.4) may be written as
TW)=V+VW—H)V. (3.6)

Knowing the spectrum of the operator H, we can
conclude that 7'(W) may have simple poles, correspond-
ing to the bound states of H, for real negative values of
W, and it has a line of discontinuities, corresponding to
the scattering states of H, along the positive real W
axis. Everywhere else on the first sheet of the W plane
T (W) is analytic.

The method consists of two steps: (1) Calculate
T (W) at several real negative values of IV; (2) analytic-
ally continue these numerical results to W= p?/2m-}7e
to obtain physical-scattering phase shifts (as shown
in Fig. 7).

The calculations involved in the first step are much
easier to perform than in the ordinary methods. From
Eq. (3.4) we see that for W <0 the integral equation for
T (W) is nonsingular and may be solved by straight-
forward mesh-point integration. In the coordinate
representation, we must solve the inhomogeneous

W PLANE

/‘\ CONTINUATION PATH

—
BOUND STATE
POLES

INPUT POINTS
SCATTERING CUT

F1G. 7. Analytic structure of the two-body scattering amplitude
in the complex-energy plane.
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Schrodinger equation
W—H)¥,(W)=(W—Ho)¢,.
Writing ¥,(W)=X,(W)-+ ¢,, Eq. (3.7) becomes
W—H)X,(W)=V s,
from which we may obtain T'(W) as
T p. W)= (¢, V 02)+ (0, VX, (W) .

For W <0 the asymptotic form of X,(WW) is that of a
decaying exponential,’® and the use of the complicated
asymptotic term, necessary in the Kohn method, is
avoided.

Any method of calculating scattering amplitudes
must deal with the singularity of T°(/W) at threshold
(W=0 in this case). The effect of this singularity
manifests itself in the Kohn method as a constraint on
the asymptotic form of the coordinate-space trial wave
functions. The mesh-point method of Noyes® uses a
modification of the kernel of (3.4) to make it non-
singular near W =0, but involves the solution of an
auxiliary equation. In our method, this singularity is
taken into account in the second step of the calculation.
By examination of the Born series for T'(W), one can
show that 7'(I¥) has a simple square-root branch point
at W=0.* To continue 7' (W) to W >0, we represent it
as the ratio of polynomials in 4/(—W), using the
rational-fraction techniques discussed before. Repre-
senting T'(W) in this way not only accounts for the
singularity at W=0, but also reproduces its polar
singularities quite well. The nonpolar singularities of
T (W) are represented by poles and zeros of the rational
fraction, and can give an accurate approximation for
T far from these singularities.

(3.7)

(3.8)

B. Methods of Calculation

There are several ways to calculate the input to this
method, the values of T'(W) at a number of points
W;<0. In the momentum representation, the partial-
wave projection of (3.4) is

TI(P)P>W)= Vl(P;P)

’2

® ?
Vip,p')—————Ty(p!, p,W)dp.
+ [ Vit

Since for W <0 this is a nonsingular integral equation,
it may be solved by straightforward mesh-point integra-
tion. In coordinate space we use a modification of the
Kohn method to obtain the input. The expression

T, (P)P:W) = (‘P?ljvﬂopl)-}' (‘Ppl,prl)

+ (xpl:V‘Ppl)_‘ (x5 [W_H]Xpl) (3.9)
is stationary under variation of X,}(W) and is equal to
T1(p,p,W) when X,}(W) satisfies (3.8).

10 This calculation is done off the energy shell; thus p?=2mW,
and p is always taken to be real and equal to its physical value.
11 A, J. Dragt and R. Karplus, Nuovo Cimento 26, 168 (1962).
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To show how we solved (3.9), we pick the specific
example of S-wave scattering in the potential V=27 /7,
where (3.8) becomes

e~ sin(pr)
7 pr

We first pick a complete set of trial functions X;(r)
and represent the Vth approximation to X,(r) in that
basis as

[1 ﬁr-i—W— V]Xpl (= (3.10)

r dr?

N
XZ,(N)= z DX;.

=1

(3.11)

A good choice for the X; is X;(r)=r"T¢~er, 1=1---N,
which displays the correct behavior both as » — 0 and
. For very small or very large values of IV, many trial
functions must be used to approximate the e~ ") /r
behavior of X; thus, if a rapidly convergent approxima-
tion is desired at all values of W, the function

Xo= (e~ W) —gar) [y

should be included in the set (3.11). For most purposes
(3.11) is adequate.

We then form a matrix representation of (3.9) in the
basis (3.11). The actual variation of parameters leads
to the set of linear equations

Hi;Di=V;, (3.12)
where
1 42
H;i= X,l(r) <— —r+W— V)le (r)rzdr,
7 dr?
Ae~7 sin(pr
Vi=/xil(7') —@1'2031'.
r pr

The solution of (3.12) provides the Nth-order approx-
imation to X(W) which, when substituted in (3.9),
gives the Vth stationary approximation to T(p,p,W).
These values are then used as input to one of the
analytic-continuation methods previously discussed to
obtain scattering phase shifts.

To do the continuation, we unfold the cut W plane
by the transformation y=+/(—W). In the y plane the
input is along the real y axis, and we are continuing to
y=—ip as shown in Fig. 8, where p is the physical
momentum p?/2m= E. There are an infinite number of
ways to choose the location of the input points; a good
set of points was obtained by mapping the continuation
point to infinity as discussed in the previous section.
The transformation

x=1y/(a+1y) (3.13)

(with ¢<0) maps the scattering region into the entire
real x axis, excluding the diameter of the semicircle
formed by the mapping of the real positive y axis as
shown in Fig. 9. The point y= -4 is mapped to — « in
the x plane. Taking a= —p, this continuation point is
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Fic. 8. Location of input points and continuation
path in the y=4/(—W) plane.

mapped to — o in the x plane. It should be clear that
the points W; used, for example, in the variational
principle, still lie along the negative W axis. These
transformations only choose a good distribution of the
points for a particular momentum. In practice, one
calculates the input for a number of values of the
momentum simultaneously, and thus one set of input
points is desirable. For this reason, we usually pick
a=—1 in the transformation (3.13), although we do
have some examples for a= —p.

An interesting feature of this approach for choosing
the location of the input points occurs at p=0. Our
prescription with a=p=0 forces all the input points to
be at W=0. In fact, this is correct because for p=0, the
T matrix element can be calculated directly as the limit
as W approaches 0 from the negative direction; only
one point, W=0, is necessary, and there is no need for
continuation.

C. Results

The numerical examples chosen to describe this
method for two-body scattering are the calculations of
S-wave phase shifts with a Yukawa potential. The
approximation to (tand)/p was calculated, using the
point or continued-fraction method for the sequence
N=1, 2, 3, ---, where 2N+1 is the number of input
points at each stage. Since T'(W) approaches a constant

X PLANE

SCATTERING
REGION

INPUT

_
POINTS —a a<0

F16. 9. Mapping of the y=+/(—W) plane under the
transformation x=1y/(a+1y), a<O0.
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TaBLE I. Successive approximations to the scattering length
[—I=(tans)/p at p=0] for the Yukawa potential —2¢~7/7. The
scattering length given by the Kohn method is —I! (Kohn)
=—7.91138.

N (order —1 —1 (trans-
of fitting) (even points) formed points)
Born approximation 0 +2 +2

1 e —7.8008537
2 —17.95219 —7.9268039
3 —7.90230 —7.9113300
4 —7.91438 —7.9114034
5 —7.91152 —7.9113759
6 —7.91164 —17.9113797
7 —7.91199 —7.9113816

(the Born term) as W — «,2 we used the rational
fraction Ryy,x(n/—W) in its representation. In this
case, IV is also the order of the polynomials in the
numerator and denominator of the rational fraction.
The input points were obtained using the variational
principle previously described, and their accuracy
depends on the momentum of the particle.

In Table I, we compare the results of this type of
calculation for A, the potential strength, equal to —2
and p equal to 0. The entries in the first column of the
table were calculated for the input points evenly
distributed along the negative W axis; the entries in the
second column were calculated using the input points
given by the transformation (3.13), with a=—1. As
discussed before, for p=0 the scattering length [—I
= (tand)/p as p — 0] may be calculated directly from
the modified Kohn principle. The results of this cal-
culation, a special case of (3.13), with ¢=0, yield
=-7.9113802 to eight decimal places.

For p not equal to zero, the unitarity condition

Im(79)7/p=1

is a very useful check on the calculation. In Tables II
and III, we give the results of the calculation for the
Yukawa potential of strength A=—2 and for the
momenta p=0.5, 2. The first three columns of each
table show the calculated values of (tans)/p, using the
point or continued-fraction method, and the last column
shows the calculated value of

Im(Tl)_l/P7

which should be one. For column 1, the input points
were distributed evenly along the negative W axis; for
column 2, the input points were obtained according to
the transformation (3.13), with a=—1; and for column
3, the input points were obtained from the transforma-
tion (3.13), with ¢=—p. Column 4 is the unitarity
condition calculated using the last set of input points.

12Tt is not clear that the 7 matrix also goes to a constant as
W — « on the second sheet. However, we pick the [V, ] rational
approximation to the 7' matrix to insure its correct asymptotic
behavior on the first sheet in the W plane and to inhibit the growth
of continuation errors. That this procedure gives a good approx-
imation to the correct amplitude is verified using the unitarity
condition discussed above.
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TaBLE II. Successive approximations to (tand)/p and the uni-
tarity condition for the Yukawa potential —2¢7"/7 for momentum
$=0.5 for three distributions of the input points. The unitarity
condition was calculated using only the last set of points. (tans)/p
(Kohn) =16.8938.

(tans)/p (tand)/p (tand)/p Unitarity
N (evenpoints) (e=-—1) (ea=—p) (a=—9p)
1 10.875040 10.135518 0.97273549
2 13.2348 11.124486 11.132695 0.97840186
3 17.0897 16.938998 16.861517 1.0003043
4 16.8946 16.916398 16.894051 1.0000144
5 16.9067 16.893570 16.894088 0.99999968
6 16.8771 16.893569 16.893830 0.99999989
7 16.8571 16.893473 16.893834 1.00000000

The input points were accurate from 8-10 places for
$=0.5 and 5-7 places for p=2. From the tables it is
clear that the results are excellent for low momentum,
but they are less precise as the momentum is increased.
This is an example of the effect of the input accuracy.
Comparison of the arithmetic precision of the input
points and the results leads to the conclusion that an
accuracy of about two decimal places is lost in the
continuation.

These calculations for A= —2 represent a good test
of the method, since, at this value of the potential
strength, there is a bound state of the system very
close to W=0. We obtained the same good results for
values of A from —35 to 45 and p from O to 2.5. As an
estimate of the computer time necessary for this type
of calculation, we remark that the results of the type
used above were calculated for A\=—3, —2, —1,1,2,3
and =0, 0.5, 1.0, 1.5, 2, 2.5 in 15 sec of CDC-6400
computer time.

In our discussion of the rational-fraction method, we
claimed that this representation could fit a polar
singularity quite well. To support this assertion, we
tried to find the position of the first bound-state pole of
the T matrix from the zeros of the denominator of the
rational fraction. For the [WV,N] approximation there
are N zeros in the denominator, but the zeros corre-
sponding to the actual poles of the 7' matrix should
remain stationary as the order of approximation is
increased, while the other poles move in the complex
plane. Since our representation is in the variable
v/ (—W), we are able to find not only the positions of

TaBrLE IIL. Successive approximations to (tand)/p and the
unitarity condition for the Yukawa potential —2¢"/r for p=2
and three distributions of input points. Unitarity was calculated
using only the last set of points. (tand)/p (Kohn)=0.50.

(tand)/p (tans)/p (tans)/p Unitarity
N (even) (e=1) (a=p) (e=p)
1 0.5368 0.4534 0.3176
2 0.4543 0.5254 0.4876 0.7440
3 0.4361 0.5390 0.4982 0.9281
4 0.4868 0.4991 0.4936 0.9949
5 0.4946 0.4984 0.5001 0.9965
6 0.4985 0.5010 0.4957 1.0005
7 0.4986 0.5045 0.5015 1.0013
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Fic. 10. Position of the first bound-state pole in 4/E plane
for various potential strengths A as determined by the pole of the
rational approximation.

the true bound states at W <0 on the first sheet of the
W plane, but also the positions of some of the poles on
the second sheet of the W plane. These poles correspond
to states that will become bound as the potential
strength is increased. For the .S wave, as the attractive
potential strength is increased from A=0 to A=\, a
pole of the T matrix moves along the negative W axis
toward W=0. When A\=X,, the critical value of the
potential strength to produce a bound state at W =0,
this pole comes up through the cut at W=0, and as
A isincreased beyond A, the pole which now represents a
true bound state moves toward W= —c on the first
sheet of the W plane. A\, for the Yukawa potential is
easily found to be A\,=1.6798084. Figure 10 shows the
movement in the /W plane of the stationary zero of
the denominator of our rational approximation as the
potential strength is varied. The position of the pole
for A>\, corresponds to the energy of the bound state.
The numerical value of the bound-state energy obtained
from this approximation agrees with other determina-
tions to about four decimal places.

To summarize the results of this section, we have
seen that this method works very well as a practical
computational tool. With it we are able to calculate
scattering phase shifts for a large range of momenta and
potential strengths very easily and quite accurately.
The method is also useful in finding the positions of
bound states and can describe the behavior of the
amplitude on an unphysical sheet. The accuracy of the
continued amplitude depends to a large extent on the
precision of the input points and also, but not so
critically, on their location; generally, two decimal
places of accuracy are lost in the continuation. The
method is fast, simple, and accurate. Another of its
virtues, still to be demonstrated, is that it can be used
in a straightforward manner to calculate two-channel
and three-body scattering amplitudes.

IV. TWO-CHANNEL SCATTERING

In this section, the methods of numerical analytic
continuation are applied to a two-channel problem.
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It is shown that the approach used for the single-channel
case may be applied to this problem with only minor
modifications. The new feature of the two-channel
calculation is the existence of more than one scattering
threshold. The solution of this problem by our methods
demonstrates that the continuation approach is able to
include the effects of this higher threshold. The first
section is a brief discussion of the formalism. The second
section is devoted to describing the modifications of the
continuation method to include the higher thresholds,
and the third section is a presentation of the results.

A. Two-Channel Formalism

Consider the specific two-channel problem of the
scattering of a projectile of mass 7 and momentum p
from a target that can exist in two states of energy £
and E,. The wave function for such a process is the
product of the projectile and the target wave function,

U=y, Y Py TY.", (4.1)

where ¢,7, ¢,F are the target and projectile wave func-
tions in the channel 7. Similarly, the Hamiltonian is the
sum of the target and the projectile Hamiltonians,

H=H+H"+V,

4.2)
Hy=H 0T+H oP ,
and the target wave functions satisfy
H"W "=Ey.". (4.3)

The Schrédinger equation for the wave function ¥ is
(E—H)¥=0, 4.4)

and to obtain the analogous equation for ¢, we take
the matrix element of (4.4) with the state y,;7, which
yields

(E——-Ei—HoP)kbzP: i Vidi®,

7=1

4.5)

where V,;= .7, V{¢;7).

Since the discussion of the scattering operator for
the single-channel case was really quite general, we may
apply the same arguments here to obtain the equation
for the two-channel T operator

TW)=V+V(W—H)"V. (4.6)

The physical 7' matrix is obtained as the limit as
W — E-1ie of the matrix element of T'(I¥) between the
asymptotic states $ satisfying

(E—Ho)®=0. @7

As in Eq. (4.1), ® is the product of the target and
projectile wave functions,

&= oY1 T+ oFYT,
and ¢F satisfies

(B~EB—HP)eP=0 o (p—H) o=,

SCHLESSINGER

167

where p;*=E—E; is the momentum of the projectile in
the 7th channel. The T matrix element for the transition
i <— j is then

Tii(pipik) = Wliglﬁe( e, T(W) ofY;7) .

The momenta in the two channels are related by
p2= (p*+E1—E)'?,

and for a channel that is closed at a given energy and
momentum, i.e., p=p*+E1—E,<0, the asymptotic
wave function ¢,”(p,) is zero.

In the study of single-channel scattering, we found
the unitarity condition Im[Ti(p,E)]'=p to be a
useful check on the numerical calculations. In the same
way, two-channel unitarity provides a convenient means
for verifying the results of this calculation. Considering
T as a matrix, the statements of two-channel unitarity
are (for potentials such that Viy= V) for the partial-
wave T matrix element

m[(rﬁlm{i : H (@.8)

Equation (4.8), when written out in terms of T';(E),
actually provides three conditions on the physical T
matrix elements:

Im[[(T ) u]=Im[ T/ (T11Tes— T12T21) = 1,

Im[ (T V)9 ]=Tm[T11/ (TuT 22— T12T21) 1= p2,
and

Im[(T 1o ]=Im[ 719/ (T'11T 22— T12T21) ]=0.

Since Vip="Vg, we also have the condition T'1pt= T's;%
These statements of two-channel unitarity provide a
convenient check on the numerical calculations.

B. Continuation Method in the Two-Channel Case
As in the single-channel case, we use the form
TW)=V+V[W—-HIV (4.9)

to obtain the analytic properties of 7" as a function of
W. Knowing the spectrum of the operator H, we can

IM(W)T W PLANE

CONTINUATION \
PATH REAL (W) —s
INPUT POINTS — ~—— ) i
BOUND STATE| THRESHOLD BRANCH LINES
POLES

Fic. 11. Analytic structure of the two-channel scattering
amplitude in the complex-energy plane.
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conclude that T(W) may have simple poles for real
values of W< E; corresponding to bound states of H,
a line of discontinuities starting at W= E; correspond-
ing to the scattering threshold in the first channel, and
a line of discontinuities at W=E, corresponding to
the scattering states in the second channel. (W) is
analytic everywhere else on the first sheet of the W
plane, as shown in Fig. 11.

The method consists of the same two steps outlined
before. First, T;;(W) is calculated for several values of
W < E; (denoted by #’s in Fig. 11). Then these numerical
results are analytically continued to the physical energy,
using the rational-fraction approximation, to obtain
the scattering amplitudes. The inputs may be calculated
using the variational principle previously discussed or
by straightforward mesh-point integration of the

Im(z) t
| INPUT
- |
SCATTERING L TrRE oD
REGION cuT

F16. 12. Location of scattering cut and input points for the two-
channel scattering amplitude in the

Z=[ (=W E)e-4i(Ba— )Y/ (— W+ B2 —i (Ba— E1)¥]
plane.

integral equation for T'(W)
TW)=V+V[W—H ' T(W), (4.10)

since, for W< E;, Eq. (4.10) is a nonsingular equation.
For our calculations, the variational principle worked
quite well and was the only method used.

The new aspect of the two-channel problem is that
there are two scattering thresholds rather than just one,
as in the single-channel case. Since these are just
two-particle scattering thresholds, T'(W) is analytic
in the variable (W—E;)Y2 near the ith threshold.
Representing T' as the ratio of polynomials in the
variable y=(—W+E;)2, we take into account the
first threshold, but the second threshold then occurs at
y=4(E;— E1)2. The transformation

Z=[y+i(liy— E)""]/[y—i(E—E1)'*]

transforms these branch points to Z=0 and Z=
in the Z plane, the situation is shown in Fig. 12, where
we now draw the branch line from Z=0 to Z=. In
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TasLE IV. Successive approximations to (tans)/p; and elastic
unitarity [Im[ (77%)11/p1]=1] for the potentials Vi1=—2¢""/r,
Vaa=e7"/r, Vig= Va1 =—0.5¢7"/7 for the momentum in channel 1;
$1=0.1 and E;=0.04 (channel 2 closed).

Second threshold not included Second threshold included

N (tans)/p1 Unitarity (tand)/p1 Unitarity
1 6.8006 1.0026 6.279679 0.684

2 6.77634 1.0013 6.7924596 0.9767

3 6.780024 0.9997 6.7814632 1.0002

4 6.7801627 0.9995 6.7814660 1.00005

5 6.781097 0.999998 6.7808974 1.00002

6 6.7811055 0.999998 6.7809548 1.000008
7 6.7811085 0.999997 6.7809558 1.000008

the variable Z’=+/Z, the second threshold is taken
into account, and an everywhere analytic function of
(W—Eq)Y? and (W—E,)"? is an everywhere analytic
function of Z’. This process, known as uniformization,!?
may be used in a similar manner to include more
thresholds, although the transformations and the map-
ping of the complex plane become more complicated
with each additional threshold. To include the effects of
the two scattering thresholds, 7'(W) is represented as a
ratio of polynomials in the variable

VA [(—W+E1)1/2+i(E2—E1)”2 vz
- (—W+E2)1/2—-i(E2—E1)1/2:| '

After incorporating this minor change into the method,
the continuation technique, as described in the previous
sections, may be used directly to obtain two-channel
scattering amplitudes.

C. Two-Channel Results

The numerical examples chosen to describe this
method are calculations of S-wave scattering in the
Yukawa potentials

V11= )\16—"/7’ N V22= )\28—"/7‘ , V12= V21= )\12(6"‘7/7’) .

The point or continued-fraction method was used to
calculate successive approximations to the scattering
amplitudes for the sequence N=1, 2, 3, ---, where
2N+1 is the number of input points at each stage,
and N also equals the order of the polynomials in the
numerator and denominator of the rational fraction.
For this numerical example, £;=0 and E, was varied.
The input points were distributed along the negative
W axis in accordance with the transformation (3.13),
with @ arbitrarily chosen as —0.4. As before, the
accuracy of the input decreased with increasing
momentum.

In Table IV, we show the results of this type of
calculation for E,=0.04, M= —2, Ao=-41, Ag=—0.5
for the momentum p=0.1. At this value of the momen-
tum, the second channel is closed, and there is only one
amplitude, T'1(p,E), which may be represented, as in

BR. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., Inc., New York, 1966).
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the single-channel case, as
Tu (P,E) = e"s (Siné)/ﬁ .

The unitarity condition in this case reduces to

Im[T-(p,E) Ju=p.

The first two columns of Table IV show (tand)/p and
Im[T-(p,E)]11/p, where only the first threshold was
included in the continuation. The second two columns
of this table give the same quantities as obtained from
the rational approximation in which both thresholds
were included. The results for the two methods agree
to about three parts in 10% and similar results were
obtained in all cases for momenta such that the second
channel is closed. Thus we can conclude that below the
“inelastic” threshold, this approximation yields good
results even if the second threshold is not included in the
representation. We believe that the reason that the
second representation is not considerably better than
the first is that the approximation not including the
second threshold is in the variable W2, while the
variable is essentially W/* for the approximation which
includes the second threshold. The first representation
has twice as many whole powers of W for a given order
N than the second type, and is better able to approx-
imate the gross behavior of T'(W) for that reason.
Above the inelastic threshold, however, the improve-
ment obtained by including the second threshold is
marked. In Table V, we compare the three unitarity
conditions for the 7' matrix elements evaluated by
these two methods for the parameters A\;=—2, A\y=1,
A2=—0.5, $1=0.3, and p,*=0.05. The first three
columns are the results of the continuation ignoring
the second threshold, and the last three columns are
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the results obtained when the second threshold is
included. The results for the 7" matrix displayed roughly
the same convergence in both cases, but differed in
value by about 19%,.

As a final example of the results of this two-channel
calculation, we show in Table VI the successive approx-
imations to the real parts of Tii(p1), Taa(p2), and
T15(p1,p2), and the unitarity conditions for the param-
eters A\;=—2, A\;=1, A\;p=3. Again the convergence is
very good. The method yielded the same accuracy for
almost all the parameters that were tried. In the special
case |A1|~|Az|~|Aiz| and p above the second thresh-
old, it happens that T'y1~ T'19~ T's5, and the determinant
of the T matrix is nearly zero. For this special case,
although the results of the calculation were nicely
convergent, the calculated unitarity conditions were
very poor.

To summarize, we have shown that the continuation
method, with only minor modifications, is able to handle
the new feature of the two-channel problem. The effects
of the inelastic threshold are included in the representa-
tion by uniformization of the amplitude, and, although
the errors incurred by the neglect of the second threshold
are not large, inclusion of both thresholds increases the
accuracy of the calculation, especially above the second
threshold. It is clear from these examples that the
continuation method is a practical approach to the
numerical solution of two-channel-scattering problems.

V. CONCLUSIONS

The rational-fraction approximation discussed in
Sec. II is a useful technique for numerical analytic
continuation. This type of approach should be useful in
a broader range of problems than those discussed here.

TaBLE V. Successive approximations to the three unitarity conditions for the two-channel T' matrix for the potentials Vii=—2¢™"/r’
Vae=e"7/r, Vig=Vau=—0.5 ¢7/r for the momenta p1=0.3, ps>=0.05, and E.=0.04.

Second threshold not included

Second threshold included

N Im[(TDwp]  Im[(T7Yee/p2] Im[ (T79)12] Im[ (T u/p1] Im[ (T7Y)2/p2] Im[(T79)12]
1 0.998 0.0407 2X103 1.166 0.036 4X103
2 0.993 0.204 8X1073 1.015 0.276 3X102
3 0.9994 0.697 5%X10-3 1.0091 1.039 8X10~
4 0.995 0.961 3X1073 0.9964 1.0084 410
5 1.001 1.128 3X103 1.00007 1.0041 2% 10
6 0.99998 1.01 2X10~ 0.9999916 0.99994 5%X10-6
7 0.999994 1.01 2X107* 0.9999913 1.0000004 5X10-6

TaBLE VI. Successive approximations to Re[711], Re[72:], Re[T3;] and two-channel unitarity for the potentials Vii=—2¢™"/r,
Vae=e""/r, Vie=Vau=3e¢7"/r; p=0.4, E;=0.04. Both thresholds have been included in the continuation.

N Re[T11] Re[T22] Re[T12] Im[ T/ p1] Im[ T2t/ $1] Im[T,1]
1 —0.165 0.932 —0.62 0.944 0.07 2X102
2 1.02 0.851 0.115 0.918 0.34 9102
3 1.06 0.855 0.148 1.01 0.96 4X103
4 1.098276 0.851 0.162 1.003 0.9996 5X10+
5 1.098621 0.84916 0.15996 0.9991 0.9976 6X10~
6 1.098346 0.84927 0.160568 1.00001 1.00003 6X10-¢6
7 1.098346 0.84927 0.160568 1.000009 1.000003 2X10-8
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Although some rules governing the convergence of these
expansions were described in terms of simple examples,
we believe that further investigation in this field must
be based on a rigorous mathematical foundation.

The method of analytic continuation has been applied
here to the calculation of two-body and two-channel
amplitudes, and our results for some three-body
processes will be given in a subsequent communication.
From these examples it is clear that the continuation
method is a useful computational tool for the study of a
wide range of physical problems. One limitation of the
method is the lack of a convergence theorem for the
rational-fraction method of analytic continuation. It is
therefore important that one have an independent
check on the continued value of the function (the
unitarity condition in this case). We see no difficulty, in
principle, of extending these results to multichannel or
even multiparticle scattering. The method is easy to
apply, can yield accurate results, and represents a simple
approach to nonrelativistic-scattering computations.
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APPENDIX
Consider the continued fraction (2.9)
f(®) a1(x—x1) as(w—x2)  an(z—xn)

Cr(x)=
1+ 1+ 1+ 1

For our approximation we demand that Cuy(x;41)
= f(®u1), or

Cx(wrr1) = f(%241)
1) ar(wrpi—21)  ai(wia—a2)
= " o e : .
Equation (A1) may be written as

f)/A4-2y)= f@u),

(A1)

(A2)
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where

dl(xz+1— xl) dz(xz+1—x2) dz(xz+1—xz)
1= ce )

1+ 1+ 1
Solving (A2) for Z; yields
Zy=—{1—=[f(x1)/ f(w11)]} -

al(xl+1—xl)
1=,
1+2Z,

(12(xl+1‘— x2) a; (xl+1'—' xl)

14+ 1

(A3)
But

where

9=

Writing (A3) as

a1(®rp1—x1) [1
142,
and solving for Z, yields

B f(xy) :|
f@rg)

a1(xr1—x1)
1—[f(e0)/f ()]

Continuing in this way, we set

=_1_

(A4)

az (xl+1—— 902)

14+Zs

2=

in (A4) to obtain

aa(xz+1— xa)

1427,
_ {1+dz(xz+1“x2) a1(®rp1—%1) } '
I+ 1=[f(e)/fer)]
Repeating this process yields the result

3=

dz—l(xz+1— %1-1)
1+
ao(%r1— X19)
_;_ ..
1+

which is Eq. (2.10).

Equation (2.10) is an explicit formula for a; in terms
of the x;, f(x:), and @1, @1y, - -, @1. As the order of
the approximation is increased from N to N--1, all
the a’s remain the same, while ay;; as given by (2.10)
is added to the expression (2.9).

ar(xrp1—x) = — { 1

a1(Zrp1—21) }
b

. 1—[f(x1)/ f(@241) ]



