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High-Energy Bounds for Production Reactions*

GzoRGz TIKTopoULos AND S. B. TRXIMAN

Palmer Physical Laboratory, Princeton University, Princeton, %em Jersey
(Received 31 October 1967)

Bounds on the high-energy behavior of multiparticle production reactions are set on the basis of high-
energy properties thought to hold for elastic scattering reactions. The connection which is exploited for
the purpose is provided by the principle of unitarity. Stronger results, which would follow from certain
analytlcity conjectures concerning the production processes, are also described.

integrated over all other final-state variables (including
the energy of the distinguished particle). Let p(s, e) be
the final-state phase-space density (it is, obviously, in-
dependent of the angles g and y); and let k = (~~s—nz')'i'
be the incident-particle barycentric momentum. Then

'HE Froissart' bounds on high-energy behavior of
elastic scattering amplitudes stem from the

principle of unitarity and certain assumptions of
analyticity. For a multiparticle inelastic process,
a+5 —+ c+d+e+, the high-energy behavior is in
turn delimited through the unitarity connection with

the elastic reaction a+b~ a+b. We treat this con-
nection in the following discussion of high-energy
bounds for such inelastic processes. '

Consider a process with two incoming and @ outgoing
particles (n,)2), all taken to be spinless. The amplitude
depends on 3n —4 kinematic variables. One of these, s,
we take to be the square of the barycentric energy. This
being fixed, a given configuration of the final state is
specified by 3m—7 independent variables describing the
magnitude and relative orientation of the barycentric
momenta of the outgoing particles. I.et us denote the
configuration variables collectively by the symbol z.
Two remaining variables describe the orientation of the
collision axis with respect to a system of axes defined by
the final-state momentum vectors. We choose as pohr
axis the momentum vector of a particular one of the
outgoing particles, the "distinguished" particle, and
introduce the polar and azimuthal angles 0 and y. Thus
0 is the angle formed in the center-of-mass system
between the momentum vector of the distinguished

particle and the collision axis.
In order to exploit the unitarity connection, partial

wave by partial wave, with the corresponding elastic
channel amplitude, we expand the inelastic amplitude

T(s t,

do 1=- Q p(s, v) P (2l+1)(2l'+1)
2xdcos8 k " g, t,

Xd tnd, mT m"T, m (3)

We may at this point generalize and understand the
above sum to run over all channels which contain a
particle of the type selected here as the distinguished
one; so that do/dQ refers to the production of the dis-
tinguished particle at angle 0 independent of the number
and types of other particles accompanying it.

Now for the elastic channel reaction, unitarity
relates the imaginary part of the 3th partial-wave
amplitude Ai(s) to a sum of contributions from all
coupled channels, including the elastic channel, the
inelastic channels summed over in Eq. (3), and the rest.
We are normalizing so that the elastic contribution to
Immi is just IAiI', hence IAiI &~1. The contribution
from the channels of Eq. (3) is easily worked out. Since
Imd~ bounds this contribution from above, one has

g, &) in a spllerlcal llarmolllc expailslon where the sum over the variables symbolized by v

includes the summation over all relevant channels. It
g ) g (2l+1)d m(g) Tp(s e) (1) follows from Schwarz's inequality applied to Eq. (3)

l, m (2ir)'" that
where

d) d) d cos6'=
2l+1

(2)
But

do 1(—{Q (2l+1)I g Idi Ti
I pj ~ }

dQ o, m

We shall focus on the differential cross section do/dQ

for production of the distinguished particle at angle 9,
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Research and Development Command under Contract No.
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' M. Froissart, Phys. Rev. 123, 1053 (1961).
'After the present work was completed we received a report

by A. A. Logunov, M. A. Mestvirishvili, and Nguyen van Hieu
(unpublished) dealing with the same topic. But the scope and
results are somewhat diferent.

g Idi Ti"I'&MP(g)P ITi

4408

da 1(—i+ (2l+1) (ImA i)'~'i)I, )'
dQ

where Mi(g) is the maximum value attained by I
d, (g) I,

for given 8 and l, as m ranges over its allowed values.
Combining results, we then have
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der

&Cis(lns)4, cos8=~1,
dQ

Sf'= 1, cos0= &i.
(15)

For 8/0 or m, one finds the upper bound'

M (g) f i~s(cosg sining)

do
&Css'"(lns)""(cosg sin'8) —'~', cosg~~1 (16)

dQ

For forward (or backward) angles Mi is obviously The ensuing bounds now follow direct]y:
given by

the maximum in ~di
~

occuring, for large/, at m=3 sing.
We shall however also wish to consider bounds on
do/dQ averaged over some fixed, finite range of angles
8. Performing the average directly on Eq. (3), then
proceeding as above with Schwarz's inequality, one
finds for do/dQ an expression analogous to that of Eq.
(7), with Mi replaced by the bound on the angular
average of di . We denote this by (Mi) and find

(Mi)

the proportionality factors, here suppressed, depending
on the range of angles involved.

The bounds on do/dQ, and on (do/dQ), now rest on
the properties of the elastic channel partial-wave
amplitudes A~. Following Froissart, suppose that the
elastic amplitude A(s, cosg) is analytic, for fixed physical
s, in an ellipse in the cose plane, with foci at cos9= +1
and semi major axis sp= 1+fp/2k'; and suppose that it
is uniformly bounded in this domain by a polynomial
B(s) in the variable s. These properties, and of course
more, are implied by the Mandelstam representation.
Then as Froissart shows, ' the partial-wave amplitudes
are bounded according to

(
dg

&Css'"(1ns)',
dQ

(17)

where C~ and C~ are constants, and Ca depends on the
range of angles over which do/dQ is averaged.

The bounds obtained here can all be improved
slightly if the elastic scattering amplitude displays a
Regge-like behavior at high energies. Such behavior
implies that

8m-gs
A(s, t) = P (2l+1)Ai(s)Pi(cosg) ~P(f)s "',

8~00

where t= —2k'(1 —cosg) and (we assume) ~(0)=1,
da/dt&0 for f &0. Since

Ai(s) =
16' gs

A (s,t)Pid cosg,

the assumed Regge behavior yields the high-energy
bound

i
A i(s) i &const/1ns.

B(')
s
—n [.o+(*o~ )'~'1

Using this in connection with Eq. (14') in place of
(11) ~Ai~ &~1, we find for the nonforward differential cross

sections the improved bounds

On the other hand, unitarity supplies the bound

iAi(s) i
&1. (12)

d~/dQ &Cs's'~'(lns)""(cosg sin'8) —'I', cosg~~1, (16')

(d~/dQ) &Cs's'Is(lns)'. (17')

The bound of Eq. (11)becomes the more restrictive one
for sufliciently large f, namely (in the limit of large s),
for t&) ss'I' 1ns, where 'As ——lnB(s)/lns, Defining

For forward production, ~cos8~=1, we can exploit
Regge behavior to sti]l better advantage as follows.
Here, from Eqs. (8) and (14') we have

L(s)—=Xs'I'lns,

where the constant ) is chosen large compared to Xo, one
finds that the sum in Eq. (7) can electively be cuto6at
I=L, the remainder giving a contribution which falls
with s like s (~ ~ '. Thus

(20)

Introducing a set of positive parameters bg, otherwise
unspecified for the moment, we write

(13) L

F=Q (21+1)(ImAi)'"&Q (21+1)(ImA )"", p&2.
l=o L=O

do
&—F(s,g)'

dQ k'
(14) L

Q (2l+1)(ImAi)""=Q ((21+1)bi(ImAi)'»)bi —'
0 0

L(8)
P(cg)= P (21+1)[IQ1Ai(s)) Mi(8) (14) &PP (2f+1)&f &I~ gi(&(P f

0
p p

'The results of Eqs. (10) and (11) follow from a WEB analysis
of &e differential equation satisfied by the d& functions. The last. step employs Holder's inequality. Let us now
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z, l(l+1)
F ~& [L(s)]&' '"' P (2l+1) ImAi

2
(22)

But from Eq. (18) it follows that

(dA/d cos8)y 0
——

gags ~ l(1+1)
g (2l+1)
l=0 2

&& ImA i
.- s' lns. (23)

choose the b~ according to

{(2l+1)bi}&= —,
' (2l+1)l (l+1) .

Evaluating the second factor on the right-hand side of
Eq. (21), for p) 2, we 6nd

ticity properties are hard even to formulate in a reason-
able way, let alone to prove. However, for the inelastic
differential cross section, summed over all final-state
variables except coso, it is perhaps not unreasonable to
conjecture analyticity properties analogous to those
presumed to hold for the elastic scattering case. Let us
consider what would follow. We imagine, essentially,
analyticity in the full cose plane, with the exception of
the Mandelstam cuts, and we demond uniform bounded-
ness there by a polynomial in the s variable. 4

Consider the inelastic differential cross section ex-
panded directly in a Legendre series

8o—=P (2l+1)ci(s)Ei(cos8),
dQ

where

da/dQ(Ci's(lns)'+', coso= &1. (15')

We are permitted to truncate the sum in Eq. (23) at
l= L and thus identify the sums appearing in Eq. (23)
and (22). Finally we choose for the parameter p the
value 2/(1 —~), where c is an arbitrarily small positive

quantity, and obtain

and therefore

do
ci ($) = 2

—Bid cos0,
dQ

do 1
[c,(s) /

(-', —d cos8= cr;,(—s).
dQ 4x

(25)

All of our bounds, even the improved versions based
on the Regge picture for elastic scattering, are of course

incredibly weak. The total cross section summed over
all possible channels, grows with s at most like (lns)'
according to Froissart; on the Regge picture it is

bounded by a constant. So da/dD, when integrated over
all angles, cannot in any case grow more rapidly than

(1ns)'; and if Regge behavior obtains it is in fact
bounded by a constant. The bounds obtained here

therefore serve only to set limits on the sharpness of
diffraction peaks for production reactions. For example,
in the case of forward production, and on the basis of
the bounds set by elastic Regge behavior, a diffraction

peak in do/dQ cannot shrink so rapidly with increasing

s that do jdQ grows more rapidly than the integral over

d~jdD by the factor s(lns)'+'. To be sure, such behavior

is in any case not expected on any physical model

known to us; but it is nevertheless of some comfort to
rule out the possibility.

More restrictive bounds, in particular for nonforward

production angles, would follow if one could demon-

strate suitable "smoothness" or analyticity properties

in the variable cos8 for the inelastic processes under

discussion. So far we have only made use of the unitarity

connection to elastic scattering. Now for elastic pro-

cesses one imagines that the amplitude has simple

analytic properties in the cosg variable —let us say

those properties implied by the Mandelstam repre-

sentation, though less was needed for the Froissart

results. Whatever analytic properties hold for the

e1astic amplitude also of course hold for the absolute

square of the amplitude, i.e., for the elastic channel

diQerential cross section. For a multiparticle-production

process, with its many variables, corresponding analy-

do (1ng)'~'
(C4~; (s), cos8& & 1.

dQ sin'0
(26)

Since a; (s) grows at most like (lns)', and is in fact
bounded by a constant on the Regge picture, the bound
of Eq. (26) would constitute a considerable improve-
ment over those of Eqs. (16) and (16'). It would be
interesting to learn if our analyticity conjectures can be
sustained in a study of perturbation-theoretic diagrams.

The improved bounds conjectured above for non-
forward production may still appear to be very weak if
one considers the situation for elastic and other two-
particle reactions. There the experimental evidence
strongly indicates, for Axed nonforward angles, that the
differential cross section falls very rapidly with s, in the
exponential form do/dO exp[—g(s, cos8)), where

p(s, cos8) grows at least as fast as Qs and perhaps faster.

Actually we need only assume the somewhat weak. er analy-
ticity conditions employed in the paper by T. Kinoshita, J. J.
Loef'fel, and A. Martin, Phys. Rev. Letters 10, 460 (1963).

Here 0; (s) is the cross section integrated over all final-
state variables for the inelastic processes under dis-
cussion (a sum over all channels containing the dis-
tinguished particle is implied). The situation that now
confronts us parallels that considered by Kinoshita,
Loeffel, and Martin4 for elastic scattering, once our
analyticity assumptions are granted. The only differ-
ences are that in the elastic case the above authors deal
with the amplitude, whereas here we deal with the
inelastic differential cross section directly; and the
Legendre coeS.cients c~ are bounded according to Kq.
(25). Making the appropriate changes, we then find
from the analysis of Kinoshita et al. the bound
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That is, for nonforward angles the Froissart bounds,
and even the improved bounds of Kinoshita et ul. , prove
to be excessively weak. For our production differential
cross section do/dQ, however, the experimental situation
is less clear. l3ut if Regge behavior is relevant for pro-
duction processes, it may be that do/dQ at nonforward
angles falls only polynomially with s, rather than
exponentially. Consider for example a production
res,ction with three particles in the final state: pi+ ps ~
k+ki+ks. Let k be the four-momentum of the dis-
tinguished particle; and de6ne the subenergies s1
=(k+ki)', ss ——(k+ks)', as well as the momentum

transfers tt (—p—i—ki)', fs (—Ps—ks)'. It has been con-
jectured that the production amplitude displays Regge-
like behavior, in the form Amp s1 ("'s2 ("&, for the
limit s —+ , with I1, t2 held 6nite. Now it is kinemati-
cally possible, even when the production angle 0 of the
distinguished particle is nonforward, for f1, t2 to be
finite as s —+ oo, with st Qs, ss Qs. Since do/dQ
involves an integration over all inal-state variables
other than 8, the difterential cross section receives
contributions from this Regge-like region of phase
space. The corresponding s dependence of do/dQ would
then be polynomial rather than exponentially falling.
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A new method of calculating nonrelativistic scattering amplitudes is presented. The scattering amplitude
is 6rst calculated as a function of the complex energy below the scattering threshold, and the numerical
results are then analytically continued to the physical region. The method is used to calculate two-body
and two-channel scattering amplitudes. The numerical analytic continuation is accomplished by a rational-
fraction representation similar to the Pade method. Several techniques of numerical analytic continuation
by rational fractions are described, and some examples are discussed.

I. INTRODUCTION

HE analytic properties of the solutions of the
Schrodinger equation have been extensively

studied, but they have rarely been used in an actual
calculation. In an earlier communication, we described
the preliminary results of a method which uses the
analytic properties of the nonrelativistic scattering
amplitude T(W) as a function of the complex-energy
variable S' to calculate physical scattering amplitudes.
In this paper, we give a more complete discussion of the
method, and we apply it to the calculation of one- and
two-channel scattering problems.

The method consists of two steps. First, T(W) is
found for a number of unphysical (W(0) values of W
for fixed and physical values of the external momenta.
Then these numerical results are analytically continued,
using a rational-fraction approximation, to the
physical energy region to obtain scattering phase shifts
and amplitudes. Because the amplitude is calculated in

* Supported in part by the National Aeronautics and Space
Adminstration and AFOSR, OKce of Aerospace Research Grant
No. AF-AFOSR-130-66.

t Work based on a thesis submitted by the author to the faculty
of the University of California, Berkeley, in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

f. Present address: Department of Physics, University of
Illinois, Urbana, Ill.

'L. Schlessinger and C. Schwartz, Phys. Rev. Letters 16, 1173
(1966).

the unphysical energy region where momentum-space
integral equations of the Lippmann-Schwinger' type
are nonsingular or coordinate-space variation principles
of the Kohn' type have no complicated scattered-wave
terms, the 6rst step in the calculation is considerably
easier than the direct solution of the Schrodinger
equation. The rational-fraction approximation, which
constitutes the second step of the method, is a simple
and accurate technique for accomplishing the analytic
continuation. This approximation is an important part
of our method, and because it has a number of advan-
tages over the standard methods of numerical analytic
continuation, we discuss the methods we have devised
to represent a function by a rational fraction in some
detail.

The method of calculating scattering amplitudes is
straightforward to use and yields accurate results.
Moreover, it can be applied with only minor modi6ca-
tions to two-body, two-channel, and three-body scatter-
ing. Although the two-body problem has been discussed
and solved many times, ~' and the results obtained
here are not new, the discussion of this method in the

' 3.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (19/0).' See T.-Y. Wu and T. Ohmura, Qeantlm Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962), Sec. D.

4 C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961).' R. Sugar and R. Blankenbecler, Phys. Rev. 136, 8472 (1964).' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).


