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Hartree —Fock (HF) equations are derived for an N-electron system with a spin-free Hamiltonian. All
eigenstates of S are considered for both open- and closed-shell states. States which possess two or more
spin-coupling schemes (structures) are treated by mixed-structure kets. A procedure to optimize the mixture
of structures is incorporated into the HF equations. A certain mixed-structure ket called the immanant
is de6ned and used to derive the HF equations for a spin-projected Slater determinant. The conventional
equations for single determinants and doubly occupied orbitals are derived as special cases. The spin-free
method is used throughout: Permutational symmetry of a spin-free ket establishes the corresponding spin
eigenvalue.

INTRODUCTION
' "N the conventional approach to self-consistent-6eld

(SCF) theory, '' one constructs a wave function
from one or more Slater determinants. One then derives
an expression for the nonrelativistic energy of a system
in terms of the spin-free orbitals. In the process the spin
is completely eliminated by integration. Since the spin

plays no dynamical role (as seen from the energy
expression) it seems desirable for the sake of purity to
eliminate spin from the beginning. In this paper we

carry out this program.
A stronger motivation for eliminating spin in SCF

theory is the ease with which "pure spin" states can be
handled in the spin-free framework. The role of eigen-
kets of S' is taken over in the spin-free method by
spin-free kets with irreducible symmetry under the
symmetric group S&. Such a spin-free ket is equivalent
to a spin eigenket for every spin-free observable.
Matsen' and his collaborators have used the spin-free
method to advantage in such diverse applications as
atomic and molecular calculations, 4 generalized Pauling
numbers, s density-matrix theory' ' and even formulat-

ing an explicit spin property: spin density. In this

paper we apply the spin-free method to the derivation
of SCF equations.

Matsen and Cantu' have given a careful symmetry
analysis of the various types of SCF theory. The present
paper is devoted exclusively to spin-free SCF theory.

Our method parallels the derivations of Roothaan' '
and can be outlined as follows '.

(1) Select a product of orthonormal spin-free orbitals
(singly or doubly occupied). (2) Project from the orbital
product its component(s) with pure permutational
symmetry. Since the permutational symmetry of a spin
free ket determines the spin eigenvalues of the correspond
ing spin ket, the projected spin free ket wil-/ give the same
energy as a pure spin eigenket. (3) Find the energy
expression (H) over the spin-free ket. (4) Conduct a
variation of the orbitals to minimize the energy and
thereby produce a set of spin-free Hartree-Fock equa-
tions for the optimum spin-free orbitals.

Our equations could have been derived from the con-
ventional spin kets as has been done in certain special
cases. We 6nd the spin-free approach considerably
simpler than the corresponding derivation from the
spin route. Despite the equivalence of our approach and
the spin approach we call our equations spin-free SCF
equations.

IMMANANT WAVE FUNCTIONS

Consider the product of X distinct and orthonormal
spin-free orbitals (double occupancy will be discussed in
a later section):

' C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
z C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
'F. A. Matsen, Advances in Quantum Chemistry, edited by

Per O. Lowdin (Academic Press Inc. , New York, 1964), Vol. I;
also F. A. Matsen and R. D. Poshusta, Tech. Rep. of the Molecular
Phys. Group, U. of Texas, Austin, Tex., 1965 (unpublished).' For orbital products, the spin-free method possesses no com-
putational advantages over the linear combination of Slater
determinants. Recently, one of the authors (RDP) has used the
method for many-electron calculations (unpublished) with Singer-
type "polymals. "K. Singer, Proc. Roy. Soc. (London) A258, 412
(1960). See also I. G. Kaplan, Tekhno. Theoret. Exp. Chem. 1,
619 (1965).' F. A. Matsen, A. A. Cantu, and R. D. Poshusta, J. Phys.
Chem. 70, 1558 (1966).

'R. D. Poshusta and F. A. Matsen, J. Math. Phys. 7, 711
(1966).

7 R. D. Poshusta, J. Math, Phys. 8, 955 (1967).
F. A. Matsen and A. A. Cantu, J. Phys. Chem. 72

(1968).

Here
~ yr) represents the state of electron one,

~
&ps)

that of electron two, etc. If the Hamiltonian of the
system commutes with all permutations of the electrons
(the electrons are indistinguishable) then it follows
that the eigenkets of the system have irreducible per-
mutational symmetry. Hence, to approximate such an
eigenket we must project ~C) onto its irreducible com-

21 z F. A. Matsen and A. A. Cantu, J. Phys. Chem. (to be
published).
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e =— g X~.I',
gt p

(2)

ponents. The simplest projector" for this is the "prin-
ciple idempotent" defined by

Since the orbitals are distinct and orthonormal, only
the identity permutation contributes a nonzero term
to the sum. By definition f = X—ii so that (1)= 1.

The spin-free Hamiltonian of an E-electron system
is assumed to have the form

where the sum is 'taken over all permutations, E, of SN.
The projection defined by'

N N
II= Q h, +-,' Q g;, . (7)

QN!
IC;-)—=

is called the immanant" of IC). When n={1~},the
characters Xp become ep (the parity of I') and

I
4; {1~)) is a determinant. When ot {=E}the characters

X~ become 1, and
I 4; {X})is a permanant.

For electrons, the Pauli principle excludes all per-
mutational symmetries except those of the form'

~—{2y Iii—2y}

The energy expression for the immanant now becomes

z.=—2 x LE &4'll'I'lc'&+l 2 &4'lg'I'IC'&j
1

a P

Again the orthonormality of the orbitals simplifies this
expression as in the conventional spin formulation to

z.=g II,+, PI ~„+ -z,, I,
( X2

where p is variously called the permutation quantum
number, the pair quantum number, or the number of
bonds, and E 2p is somet—imes called the valence of
the "permutation state" IC;a). The spin quantum
number of the corresponding spin eigenket is given by

where

and

I'—= &~ ~ lgl~'~),

It —= (~'v»lgl v»v*&

S= ',E p. -—
The immanant IC; u) plays the same role for spin-

free SCF theory as the single-Slater determinant plays
for the conventional SCF theory with this important
difference: IC; n) ahvays represents a pure spin state.
Harris" has shown that the immanant projector, e,
is the spin-free counterpart of Iowdin's" projection
operator, 0,.

Now let B be any linear operator which commutes
with all permutations, BI'=EH. The expectation value
of II over the immanant of IC) is given by

(»=&~;-IIII~;-&
E~

(4 IIIe IC)
(fa)2

=—2 x~ &4 l»IC')

%hen B is the identity operator we find that our im-

manant is normalized:

&1)=&4; IC; )
1

=—gx -(CII IC).
A p

'0 For a description of permutations, permutation algebras and
the transformations of E-electron kets by permutations, see
Ref. 3."D. K. Littlewood, The Theory of Group Characters {Clarendon
Press, Oxford, England, 1940).

'2 F. Harris, Advances in Quantum Chemistry, edited by P. O.
Lowdin {Academic Press Inc., New York, 1967), Vol. 3.

'3 P. O. Lowdin, Phys. Rev. 97, 1509 {1955).

The coefficient X~ /f is the ratio of the character of
transpositions to the character of the identity. This
ratio measures the degree of permutation correlation'
in the immanant. When a= {1~), X2 /f = —1, the
correlation is greatest and if E;;&0the energy is lowest.
For other symmetries, n, the correlation decreases (the
energy increases) until the extreme case n={E} is
reached when X2"/f =1.This ordering of energies due
to correlation is known as Hund's rule. It is often stated
in the spin form: States of highest multiplicity lie
lowest.

SPIN-FREE SCF EQUATIONS FOR
IMMANANTS

Xg
'~.=~ «&;II+&I J,+ )

X2~

+P&&,l~+P ~,+
i jpi ~ )

where for convenience we have defined the operators
JandE by

(v. lI'I ~')= &~~~ I gl v'v~&— (10)

Spin-free self-consistent-field theory for immanants
results when we ask for the orbitals which minimize
the spin-free energy expression, Eq. (8). The minimiza-
tion procedure is very familiar from the conventional
SCF theory. ' Let

I
8y,) be an arbitrary variation of the

orbitals
I q;). The energy expression then undergoes a

variation BE given by
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and

The variation must be conducted subject to the con-
dition that the orbitals remain orthonormal:

&&v'I v;&+&~'l&v;&=o. (11)

We introduce the matrix of Lagrangian multipliers,
~;„and require that

&&.'=&&.—2 e', (&t'v'I v»)+« *l~~ &)

should vanish. Hence, in the usual way we find the
spin-free Hartree-Fock equations

( Xs~

h+ZI ~;+

lowest energy. To 6nd this component we introduce the
spin-free structure kets. '

Within a given permutational symmetry 0, , a structure
projector, denoted by a, is defined in terms of permuta-
tions. This operator has been thoroughly discussed in
other places' 5 and will not be defined here. A pure
structure component of IC) is defined to be

lc;.&—=.Ic». (15)
There are f independent pure structure components
of

I
4'& (or fewer if IC') contains repeated orbitals) each

of which corresponds to a different spin-coupling scheme
in the conventional formulation. To find the closest
approximation to the true Hamiltonian eigenket we
must optimize the linear coeScients v„ in the mixed
structure ket:

lc; ~&=P r„lc;.&.

~ Iv'&=&'*I~&, (13)

The spin-free immanant Pock operator may be
introduced: To 6nd the norm of

I 4; ~) we form

(C; ~IC; ~&=2 2 r.*r„.(C I.t"Ic) (17)

where

(
I-I y;&—=I

I ~;&—
I 1+ l(v'Igl ~'~'&.

Only in special cases is it possible to transform Eq. (13)
into an eigenfunction-eigenvalue equation. For example,
suppose n= (1~) which means our immanant becomes
a determinant (maximum multiplicity). Then
Xs /f = —1 and L,=h so that Eq. (13) becomes

iI+2 (J—It~)11&'&=2 e 'I ~ & (14)

Now recall that the determinant is that immanant which
is left unchanged (except for phase) by all unitary
transformations of orbitals. In particular, we may apply
that transformation which diagonalizes the e, s. At the
same time g; (J; E;) is left inva—riant by a unitary
transformation of orthonormal orbitals. ' Hence in this
case Eq. (13) becomes

~l v')=e'I ~'&

This is the familiar result from the conventional theory
applied to a single-Slater determinant with all spins

parallel.

STRUCTURE KETS

In general IC) has several independent components
with permutational symmetry 0.. These components
correspond to the independent spin-coupling schemes for
eigenkets of S'. The immanant is an arbitrary (but
simple) choice of one such component. The best spin-
free ket is that particular component which gives the

Since each of ~t and ~' are linear combinations of per-
rnutations, their product can be written in the form

da'= g (P).;I', (18&

where (P)„„ is a numerical coef5cient called a Pauling
number. s When Eq. (18) is substituted into Eq. (17)
we find

where"
T~=—Z 2 r.*(~)-r" (2o)

on the coefhcients r..
The expectation value of the Hamiltonian, Eq. (7),

on the mixed structure ket is given by

&.=Z &~+5 2 (~' +7'(' )It").(22)

Equation (22) was derived in the same way as Eq. (8)
was derived for the imrnanant. The degree of correla-

14 The coefBcients T„are intimately related to the "Sanibel
coeKcients, " denoted by (8~0sP(el, and might be called spin-
free Sanibel coeKcients. See F. Sasaki and K. Ohno J. Math.
Phys. 4, 1140 (1963).

Once again, the orthonormality of orbitals annihilates
all terms of Eq. (19) except that contributed by the
identity. Hence the norm becomes

(c; ~
I 4; ~&= Ty.

We adopt the normalizing condition

(21)
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tion in the mixed structure is determined by the coeffi-
cients r„.We will vary these coefficients )subject to the
normalizing condition, Eq. (21)j to optimize the energy.

Let 8~ be an arbitrary variation in z. Then the corre-
sponding variation in E, is

&&.= s 2 L&Ti's)Ã's
iy 7'

The norm of
~
C; ~) will be unchanged if 8Ttt =0 Hen. ce

we introduce the Lagrangian multiplier tIt and require
that

5E' =8E,—88Tg

should vanish. This leads to the equation

~Q 8r„'LQ (P E;,(t'j)„—0(8)„)r;]+c.c.=0. (23)
tt 'b7

Since the variations 87„*are arbitrary we find

P (g Z;, (s7)„..—()(S)...)., =0

or in matrix notation

(K—ga)~=0. (24)

Therefore the Lagrangian multiplier must be a root of
the secular determinant

det(K —gs) =0. (25)

E,; is an exchange energy and 0 is a function of these
exchange energies. It is reasonable to interpret 0 as an
average exchange energy. There are f roots of Eq. (25)
and hence f sets of mixing coefficients r„. For a, given
set. of orbitals the lowest energy is achieved when 0

has its lowest value. We say that the optimum mixed
structure ~C; ~) is that set of mixing coefficients ~ which
minimizes the average exchange energy.

Equations very similar to our SCF equations for
structure kets also hold for matric basis projections"
from ~C). We prefer the structure kets because (1)
~ is a simpler element than a matric basis element,
(2) tr corresponds to the bonding structures of chemistry,
and (3) te generates the familiar Pauling numbers.

&e Vit A. Goddard, III, Ph. ys Rev. 157, 73 .(1967).

SPIN-FREE SCF EQUATIONS FOR
STRUCTURE KETS

Equa, tion (22) expresses the energy of a mixed struc-
ture ket in terms of brackets between spin-free orbitals
and the structure-mixing coefficients which are deter-
mined by Eqs. (24) and (25). The best spin-free orbitals
will now be determined.

When the orbitals are subjected to the variations

~
8&p;), the energy undergoes the variation

2 (Sv;lm+ 2 (J,+I'„,&Z,) I &,)

Here we have introduced the new operator M de6ned by

~
I
~')= h —

I ~ )—2(~'I g I v 'v )
and J,, E; are defined as before. The variations are
arbitrary except for the orthonormality condition,
Eq. (11). Once again we introduce the Lagrangian
multipliers e;, and find that the energy is minimized
when

L~+2 (~t+2't'&&) jl v')=2 e'
I ~t) (26)

Equation (26) is the spin-free mixed structure Hartree-
Fock equation.

SOLUTION OF THE SPIN-FREE
SCF EQUATIONS

The coupling between the spin-free SCF equations in
the immanant case, Eq. (12), and the structure case,
Eq. (26), is a complication which always appears in
open-shell wave functions. "Various methods have been
proposed to solve the coupled equations arising in the
conventional formulation. Roothaan' was able to un-
couple the equations by a suitable redefinition of the
Fock operator. Lefebvre" proposed a perturbation
approach which is applicable to the coupled equations.
Both methods can be applied to the spin-free equations
as we will now show.

For Roothaan's method it is necessary to examine
in detail the transformation properties of the spin-
free kets under transformations of the orbitals. Any
nonsingular transformation, A, on the E orbitals sends
~C) into ~C~). The collection of all such transformations
forms the general linear group in E dimensions, GL(cV).
As is well-known, " the irreducible subspaces of
( ~C»), all ANGL(lV) } are precisely those which have
been adapted to the symmetric group S&. LCertain
subgroups of GL(N), such as the unitary group U(JV)
and the special unitary group SU(1V) are also com-
pletely reduced by adaptation to S&.$ Hence a linear
transformation of orbitals merely moves ~C;n) and
~C; ~) through the space of all spin-free kets with
permutational symmetry n. This is equivalent to
moving through the space of all different spin-coupling
schemes with a given spin quantum number~in the
conventional formulation.

Roothaan's scheme is effective for a single structure.
Without loss of generality we confine our attention to

"In Goddard's method Ref. (15) of G operators this di@enlty
is circumvented by relaxing the orthonormality condition among
the orbitals. By requiring only that the orbitals remain normalized,
the Lagrangian multipliers are automatically "diagonal. " The
resulting simplification is balanced by the complication introduced
in the energy expression by nonorthogonal orbitals. Goddard's
method may also be derived in the spin-free framework by re-
moving the orthogonality of the orbitals from our immanant ket.
His equations may also be generalized to mixed structures by
corresponding changes in our structure kets.' R. Lefebvre and C. M. Moser, J. Chim. Phys. 53, 393 (1956).'e H. Boerner, Representations of Groups (North-Holland
Publishing Co., Amsterdam, 1963).
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FIG. 1. First standard structures of three electrons in a doublet
state, of four electrons in a triplet, and of five electrons in a
doublet.

the "first" structure, ~=I which is defined as follows.
Let Tz be the Young tableau of shape rr= (2i', 1~ 'i'},
in which the integers 1, 2, E appear in the "lowest"
order. That is, 1 and 2 lie in the first row, 3 and 4 in the
second, and 1, 3, 5 lie in the first column. For
example, the first structures of the permutation states
(2,1} for three electrons, {2,1,1} for four electrons,
and (2,2,1} for five electrons are shown in Fig. 1.
The row operator, P, of this tableau is the sym-
metrizer on rows: P= (8+ (12))[d+ (34)j . The
column operator, S, of TI is the antisymmetrizer on
columns'1V=

I d —(13)—(15)—(35)+(135)+(153). j
I 8—(24). ].Then the structure projector is defined
to be"

pertain to the two columns of the tableau Tl.
Roothaan's method will now be used to eliminate those
~'s which mix orbitals between columns.

For the single structure ~=I, the coefficients T(;;)
simplify to (ij)zz since rz 1.——There are simple rules
to compute these coefficients by group-theoretic
methods. 5 The energy expression now becomes

L~+Z (I,+ (&i )zzIf-~)] I ~s&

+ ersl «&+2 e sl 0& ) (27a)

=P «„Iq,)+P e„
I q „). (27b)

Here we have used the indices k, l for orbitals of the
first column and m, e for the second while i, j refer to
orbitals from both sets.

From Eq. (27a) it follows that

&v. l m+P (I,+ (uq)»Z, ) I i.,&=.„,.
Hence

I=PS.

(2g)

2 s-sl ~-&=2 I v &&a-I~+P 2 (I+(77')rid~)
I vs&

Two-columned tableaux such as those required for 7

electrons divide the orbitals ( I q i), I Ãs&,
' '

I &rr&} ~e de6ne the new operator
into two sets. Those which "belong" to the 6rst column

(I qadi&, I ys&, .} and those which "belong" to the &i=1—2 I v-&&e -I
second {I ys&, I p„&, }.Since 1V consists of the product
of the antisymmetrizers on these two sets it follows Equation (27a) can now be written
that

& I+&=«t(
I ~i& I

~s&" }&&det(
I ~s& I

~4&" }.
Consider now a transformation A which transforms
orbitals of the first column among one another and
orbitals of the second column among one another but
does not transform between columns. For such a trans-
formation it follows that

&iI~+2(I+(&j)rr&)7lss)=E «slvi). (29a)

Similarly, the orbitals of the first row can be transferred
to the left side of Eq. (2/b):

Esl M+K (J+(mj)rrK& )jl y &=+'s
I yn), (29b)

where
&Ic~)= (detA)&IC».

The structure ket
I 4,I) then has the property

&.=1—2 I vi&&ail. (30)

IC~,I&=» lc~&

=

(detA)PANIC)

= (detA) IC,I).
In other words, I C,I) is merely scaled by a linear trans-
formation which does not mix orbitals of different
columns. Hence the energy expression Ez is left un-
changed by such a transformation. Transformations of
this kind can be used to diagonalize the ~ matrix of
Eq. (26) within the two blocks on the diagonal which

'9 Matsen et al. , Ref. (5) chose the alternate definition, I=NP,
because that choice leads to the Pauling numbers. The reverse
order is the natural choice for examining the transformation
properties of ~c; sl.

Psl v-&=e-I v-& (31b)

We will not manipulate these equations any further
though it might be convenient to derive a unified Pock.
operator so that orbitals of both columns are eigenkets
of the same equation.

Next we take up the perturbation approach which we

will apply to structure kets. It is easily modified for
immanants, The enersy expression fox a mixed struc-

The diagonalization of columns may be applied to
the two parts of Eq. (29) to convert them to eigenvalue-
eigenket equations of the form

Pil ~.)=esl vs) (31a)
and
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ture ket is
I Eq. (22)].

~.=Z &'+k 2 (I'i+2'(;;)E:;;).

doubly occupied orbitals. Then we write

I
4'& =

I ~i) I ( i) I ~2& I ~2&" .
I(P.)lq„)lk 2~))lk,„+,) Ikk, ). (36)

Now let the orbitals ( I yi), I p2), , I ski) }be augmented
«m»e a complete set (l(('i), , irk() I vN i&, ."}
A variation of

I ((~;) may be written

The transpositions (12), (34), , (2N —1, 2n) and all
their products form a group which leaves I 4 ) invariant.
This group of permutations is called the invariance
subgroup of IC) and is denoted by Sc,. The order of
Sc is clearly nc, =2".

The left cosets of Sc, in Sk( are denoted by (PfSc,,
f= 1, 2, , no}, where n~ is the index of 5@ given by
n~nc, ——S t Two permutations P; and P; have the same
effect on

I 4) if and only if P; and P; belong to the same
left coset:

Ik"'&= I(*&+2 c'. Ik k& (32)

with c;k= —ck; (to preserve orthonormality —to first
order). The new mixed structure ket constructed from
these orbitals is

IC';.)= IC;.)+2 Z.,'IC"'&

+higher-order terms.

Here IC"'k ~)—=&, 7',((lC"k& and IC'*'k& differs
IC) only in having

I p;) replaced by
I

&pk).

The corresponding change in energy is

P;IC)=P, IC) ~ P, 'P, lc)—= IC). (37)

(33) That is P, 'P;QSc, or P;QP,S~. The set of left coset
generators (Py, f= 1, 2, , m~} brings about a unique

from
expression for every permutation in terms of a P~
and an element of Sc,. That is, if P is any permutation
there exists a unique pair Pg and 5+Sc, such that

DE,=g g c,kg, k,

where

n,'=&q;Ihl qk)+l 2

(&k;v;Igloo

kv, )

+2'(*i)(~'v»lal v»k k)).

The SCF orbitals are those for which q, I, ——0. If the
initial orbitals

I q;) are suKciently close to the true
SCF orbitals, they are improved by using the familiar
perturbation coeKcients:

P =PgS.

Hence we can write the immanant as Lsee Eq. (3)j

where xf —= PBXi~s (the sum of characters of ele-
ments in the PfSq coset). The terms in the sum Pf
are distinct whereas those in Pi are repeated. The
normalization of IC; n) is now given by

Cik

'haik/'gkk

gii ~' (35)

Both Roothaan's separation technique and Lefebvre's
perturbation method utilize an iterative method to
find the SCF orbitals. From an initial guess of

I ((;) the
Eqs. (31) or (35) are used to find improved orbitals.
When the orbitals cease to change, the spin-free SCF
orbitals have been achieved. These spin-free SCF
orbitals are, of course, the same as the SCF orbitals
which would arise in the conventional theory from pure
spin components of a single-Slater determinant.

DOUBLE OCCUPANCY

The Pauli principle for spin-free kets requires
permutational symmetries of the restricted kind
n= {2",1~ '"}.It follows from this that if IC') has more
than two identical orbitals then

'l~) =o

.Ic»=o.
Hence neither an immanant nor a structure function
may be constructed with more than two electrons
occupying the same orbital. Suppose there are n ((-,'cV)

~.= &4;-l&IC;-&/&4;-IC;-&
1

LE &i (4'IIfPi lc'&)
Xg~ f

=2 ~ &'+2 (~ iJv+~'il('i) (4o)

where

ye=2 if i+a
=1 if i&n„ i.e., y; is the occupation number of the

spinless orbital I(p;). The numbers X;; and co,;
are derived in the Appendix.

Again we assume orthonormality of different orbitals
so that (4 IP~IC) vanishes unless Pf generates Sc,
i.e., Pf leaves IC) unchanged. Hence

(4;-l~;-)="./f. ,

where X~ is the sum of the characters of permutations
which leave IC) invariant.

The energy expression for an immanant wave func-
tion with doubly occupied orbitals becomes
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In the special cases when p=ts, i.e., the spin states
S=-,(N —2tt) there is only one structure, which is identi-
cal to the immanant. These spin-free kets correspond to
single-Slater determinants in which the singly occupied
orbitals are all given the same spin. For example,
suppose N=2ts, then v;=2, X;;=2 (except for j =i
when 'A, ;=1) and co;;= —1 (except for j =i when
ro;;=0). Hence E becomes

E„=2+H, +P (2J;t—K;;),

which is the familiar result for a single-Slater deter-
minant of doubly occupied orbitals.

The structure kets with double occupancy have
norms:

(42)

where Ty= P, Tr hatt. Again, orthonormality of orbitals
allows only the single term to survive:

The energy expression becomes

=Q o;H~+Q (X;tJ;;+0;;K;;),

where v; is the occupation number of the orbital

I y;&, 0;, is de6ned in the Appendix.
The HF equations for double occupancy now become,

first for immanants:

where L' is defined by

and J; and E; are as before.
And second, for structure functions:

Here M' is dehned by

Our spin-free SCF equations satisfy half of the re-
quirements for the restricted Hartree-Fock method.
Namely, they correspond to eigenkets of S'. Spatial
symmetry must be achieved separately as, for example,
with Lowdin s O~ projection operator.

Symmetry under the full rotation group (i.e.,
angular momentum) is of special interest. It often

happens that adaptation with respect to S~ simul-
taneously brings about pure rotational symmetry.
For example, in the open-shell p' configuration's the
permutation states with rr={1') and rr={2,1') are
already eigenkets of L' and correspond to ~S and '8
states with no further projection. Similarly, an adapta-
tion with respect to Ssr and the subgroup C„(i.e., L,)
may produce an eigenket of L' as happens for the 'D
state in the p' configuration.

Finite space-group symmetries can be treated by
methods similar to that used for permutational sym-
metry. "Matric basis projectors can be used to give the
desired symmetry and the appropriate energy expres-
sions are easily derived. A complicating feature of
such symmetries is the nonorthogonality of orbitals
adapted to a space group. Nevertheless a form of SCF
theory may be derived for such orbitals. '5

DISCUSSION

We have derived SCF equations for pure spin states
of open-shell atoms and molecules. Spin was eliminated
from the beginning in our derivation rather than being
integrated away in the energy expression as in the con-
ventional SCF theory. The spin-free approach removes
the complexity of the double symmetry aspect —spin-
permutational symmetry and space-permutational sym-
metry —which would be required to derive our equa-
tions by the conventional method.

States in which several structures are possible (spin-
coupling schemes in the conventional vocabulary) are
best described by a mixed structure. This mixing of
structures is included in our formulation. For this
purpose we dehned an average exchange energy which
is optimized to achieve the best mixture of structures. It
is not necessary then to use the arbitrary mixture which
results by projection with Lowdin's projection operator
08. The spin-free equivalent of Lowdin s projected spin
eigenket is the immanant for which we have also
derived SCF equations. Immanants are appropriate
for states with only one structure.

Open-shell kets are not only useful for atoms and
molecules with partially filled shells. In another context
they are often applied to what are usually thought of as
closed-shell states. We refer to the diferent orbitals
for different spins (DODS) scheme. ' The merits of this
method for molecular calculations have been discussed
in relation to SCF theory by Goddard. '~ Open-shell

(or DODS) spin-free kets provide smooth correlation
between molecular states and separated atom states—
hence giving improved dissociation limits over the
conventional closed-shell kets.

Our results can be modi6ed for use in nuclear calcula-
tions. Additional terms appear in the energy expression

w F. A. Matsen, J. Phys. Chem. 70, 1568 (1966).
~' P. O. Lowdin, Quantum Theory of Atoms, Molecules and the

Soled Slate (Academic Press Inc. , New York, 1966).
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when Bartlett, Heisenberg and Majorana potentials
are introduced. More general permutational sym-
metries n= (4v4, 3v', 2v', 1v'} and tableaux with four
columns must also be considered. Equations similar to
our electron SCF equations may be derived for nucleons.
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APPENDIX n DERIVATION OF vip Xij y &ijy AND Qij
The energy of an immanant ket with double occupancy
is

I
Eq. (40)7:

E xf.(cl» l~),
Xy f

where Pf is the generator of a left coset of the invariance
subgroup S@, and Xf is the sum of characters of per-
mutations belonging to the fth coset. On substituting
the form of the Hamiltonian, Eq. (7), into LEq. (40)7

we have

1 1
2 xf-(c lh, Pfl~&+2 2 (c lg';Pflc)

i&j Xl fXl f

The one-electron bracket (I lh;PflC) vanishes unless
Pf I

C )= I
C ), i.e., unless Pf d. ——Hence the first term

becomes

2 (C'I I3'I 4') =2 (&Pig'lip2&P2' ' ' ipaipniP2n+1' iPNI ~'I

X ipliPlip2iP2' ' ' ipn22n622n+1' ' ' iPN)

=2 v'(6 'I I
I 2 '&,

where v; is the number of times
I q, ) appears in IC).

That is vi is the occupation number of the orbital
I 62;) and is given by

vi= 2, if i&n

= 1, if 2n(i&%.
Two cosets give nonvanishing results for each g;,. First,
consider the identity coset generated by Pf——d. For
this coset

(@I gijl @)=2 (P1V 1' ' ' pnpnP2n+1' ' '
V N I gijl V 101' ' ' 62n62nW2n+1 ' ' 22N) = (221q ll g»l V lipl)+(V 2622 I g34I 622ip2)

+ ' ' '+ (62a62n I g2n 1)2n I
ip—n'Pn)+('Pl'P2I gl3+g23+g14+g24I iPl'P2)+ (iP1 iP3

I g15+g25+g16+g26 I ale'3)+ ' ' '

+(iPn 162n I g—2a—3, 2a—1+g2n—2, 2n—2+g2n —3, 2n+g2a —2, 2n I gn —1@a)+(P1%2n+1
I g1, 2a+1+g22n+1 I +lip, 2n+1)+ ' ' '

+(ipaipN I g2n, —1N+g2a, n I iPnipN)+(P2n+112n+2I g2a+1, 2n+2I 'P2agl'P2n+2)+ ' ' +(PN 1PN I gN 1,N—
I

ÃN' 1P—N)-
n n n N N

=Z I*'+4K Iv+2K Z I*j+ 2
More brieQy,

Z (c lg', lc&=Z I, +Z.;.,I;;.

i=1 j=2n+1 i=2n+l j&i

Finally, consider the remaining terms. These arise from cosets which permute pairs of distinct orbitals. For
example,

(6 V162 6 V-6- VNlg IV 6 6 V
"

6 6-" 6 )=(V 6 Igloo 3 )=I'm,
(&P1621222622' ' ' —E12 ~

( &Pl 621 ip 2 iP2 ' ' '
I g14I ip2Ãlip2Ã1' ' ' =E12,

(6216 16 26 2. .
I g24I ipl P2ip2ipl' ' ' )+12p

and
(iPl+1222ip2' ' ' PniPniP2n+1' ' ' ipN

I gl 2n+1 I iP2n+lipliP2iP2' ' Pnipnipl' ' ipN) It12 +1yn
(6 16 12 26 2. .

I g2, 2n+1 I &pig 2n+1622ip2' ' ) +1,2~1
and

(plpl '
&pampa ip2e+lip2n+2' ' ' ipN I g2n+1, 2a+2 I

'Plgl' ' ' ipaipnip2n+2622n+1' ' ' pN) It2~1,2n+2 ~

The exchange bracket IC@ appears v, v; times (i&j) with coefficients X,, /Xln where X;,n is the sum of characters of
permutations in the coset which interchanges orbitals

I 22;) and
I 62;), there being v;v; such cosets. Hence we have

E.=P v, (62, lhl qvj)+P (X;jJ;j+a;jE';j&,
i&j
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where
x;;=1, if i= j&e

=0, if i= j&e
=v;v;, if i/ j

~;,= (sum of characters of all permutations which interchange
~
y, ) and j q;) in ~C))/

(sum of characters of all permutations which leave ~4) unchanged)
=0 if i=j.
The energy of a mixed structure ket is

where T~ Pq T—r—zq,
. the sum on S yielding the sum of all T~ with P a member of the PrSq coset. The same terms

survive in this sum as in the case of immanants except with diferent coefEcients. A derivation parallel to that for
immanants gives

E,=Q v;(y, ihi p;)+Q (X;;J;;+0;;E;;),

where

0,,= (sum of T„over all permutations which interchange the orbitals
~ q;) and

~ y;))/
(sum of T„over all permutations which leave ~C) unchanged).


