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hyperfragment decay channel aH' ~ sr +He4. We note
that the imaginary portion of H contributes a negligible
contribution. From (4a) and (4b), we calculate the
ratio of the partial rates I'(aH'~ ir +He4), with and
without final-state interactions, to be

I'oi.„„,. (aH' —+ sr +He')
= 1.21+0.04. (5)

I';,,t,„(aH'~ sr +He')

lambda P-decay, since the P decay is a 0 ~ 0 transition.
Of course, it is necessary to have a reliable theoretical
estimate of the partial rate aHe —& sr +He4; thus, the
21'Po lowering due to final-state effects plays a critical
role in the interpretation of the above experiment.

In conclusion, we modify the estimate of the ~H4

lifetime r(aH')=0. 65 r(h) calculated by Dalitz and
Rajasekaran, ' to be

%e note a substantial lowering of the partial decay
rate. The error above rejects the uncertainty in the
experimental value of 8O. The calculation is quite in-
sensitive to the nuclear size parameter. Further, since
in (5), the same hyperfragment wave function is used
in both the numerator and denominator, the result is
also insensitive to the details of the hyperfragment wave
function used.

It has been pointed out7 that a measurement of the
branching ratio (qH'~ e +p+He')/(aH'~ sr +He')
allows one to measure the pure Fermi coupling for

& M. M. Block (to be published).

r(aHe) =0.73r(A) =1.75&&10 "sec, (6)

where the lifetime in (6) reflects the effects of final-state
interactions. Unfortunately, no comparison with experi-
ment is possible, since no accurate experimental mea-
surement of r(eH4) has as yet been performed.
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A QQQ model of beson-baryon scattering and production of both positive- and negative-parity mesons
is developed as a generalization of the "elementary meson" model proposed earlier by the authors. The
model is based on the assumption that mesons are tighter structures than baryons, which allows the former
to "see through" the latter, but not vice versa. The formalism allows the full inclusion of multiple-scattering
effects within the meson-quark system via the QQQ structure, and leaves scope for the inclusion of similar
effects between the meson and the quarks in the baryon, as a second-stage process. The model is more
restricted than the usual quark models (based on additivity), which in general enable correlations of meson-
baryon, baryon-baryon, and baryon-antibaryon amplitudes. The model makes little use of dynamics, except
for the method of "spectator functions" to calculate the amplitudes for the various processes in terms of
residues at the appropriate poles of the relevant spectator functions. However, the possible uses of simple
dynamical considerations are indicated, by which the larger amplitudes could be distinguished from the
smaller ones. The amplitudes are evaluated in a two-stage process, the erst step indicating the "SU{3)
level" of predictions, involving only one spin-parity type at a time, while the second step gives SU(6)-type
predictions which in principle connect mesons of different spin-parity assignments. For the negative-parity
mesons (P gild 1 ), the results are similar to those obtained by previous authors. However, the model
provides, with no extra physical assumptions but considerably more algebraic manipulations, amplitude
relations for the production of positive-parity mesons (0+, 1+, and 2+) which, according to the quark picture,
are structures of the form 'P& and 'P0, I, &, and are expected to simulate mesons of the type 8, AI, and A2
(and perhaps also the scalar mesons). No attempt is made in this paper to confront the predictions with
experiment, which will be the subject of a subsequent communication.

I. INTRODUCTION

S INCE the additive quark (Q) rodel for hadron

scattering was first proposed by Levin and Frank-
furt. ' as well as by Lipkin and Scheck, there have

* Permanent address: Department of Physics, University of
Delhi, Delhi-7, india.

I K. M. Levin and L. L. Frankfurt, Zh. Kksperim. i Teor. Fiz,

been a number of investigations on its more detailed
effects which included inelastic processes. ' ' Thus the

Pis'ma v Redaksiyu 2, 105 (1965) Lznglish transl, :Soviet Phys. —
JETP Letters 2, 65 (1965)g.

~ H. J. I ipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966);
H. J.Lipkin, ibid. 16, 71 (1966}.' J. L. Friar and J, S. Trefil, Nuovo Cimento 49A, 642 {1967).

4 JQ. Jacob and C. Itzykson, Nuovo Cimento 48K, 909 (1967).
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"antisymmetric sum rule" in meson-baryon scattering,
which follows from mere additivity (and no further
symmetry principle) is found to be well satisfied, but
that the "symmetric sum rule" or the Johnson-Treiman
relations' which require the additional assumption of
SU(3) symmetry, are not so good. ' Further, the pre-
dictions of the additivity model concerning relations
between meson(M)-baryon(B) and BB scattering are
good only to about 10'Pq, and this indicates either a
breakdown of additivity or a nontrivial effect of binding
on the effective QQ amplitudes. r Another effect which
cannot possibly be included under the additivity
assumption is the BB annihilation contribution to the
high-energy total cross sections, ' and this has been
shown to improve greatly the agreement of the sym-
metric sum rule over its original form. Finally, the
effects of double scattering in QQ amplitudes have
also been proposed for an understanding of the sharp
bend in high-energy pp scattering. ' 's

Since all these results seem to indicate a general
recognition of the limitations of the simplest additivity
assumption, it should be of interest to have a wider
formulation of the problem which would allow the in-
clusion of nonadditive contributions within its frame-
work. In this regard it is helpful to keep in mind the
dynamical aspects of the problem which would dis-
tinguish between systems for which additivity is bad,
and those for which it is at least tolerable. For example,
it is reasonable to assume a priori that additivity
would be less justi6ed for systems which have tighter
quark structures than for others whose quark structures
are not so tight. Thus if we regard two-body QQ or

QQ forces as responsible for hadron binding, then an
examination of the relative masses of baryons as 3Q
composites, and mesons as QQ composites reveals
that QQ forces are appreciably stronger than QQ forces.
Therefore, in a first approximation one may even regard
mesons as "elementary particles" and only baryons as
quark composites. Such a point of view was recently
advocated in a series of papers on meson-baryon scat-
tering " photoproduction, " and strong decays of
baryons, " as an alternative to the pure additivity
model. While the predictive capacity of this elementary-
meson model is much more limited than that of addi-

tivity, the limitation is confined only to those areas
where the predictions of the additivity model are not

5 See, also, V. Barger and H. M. Rubin, Phys. Rev. 140, B1366
(1965).

' H. J. Lipkin, Phys. Rev. Letters 16, 1015 (1966).
~ J. J. Kokkedee and L. Van Hove, Nuovo Cimento 42, 711

(1966).
s J. J. Kokkedee and L. Van Hove, Nncl. Phys. $1, 169 (1967).
' D. R. Harrington and A. Pagnamenta, Phys. Rev. Letters 18,

1147 (1967).
"V. Franco, Phys. Rev. Letters 18, 1159 (1967).
» G. C. Joshi, V. S. Bhasin, and A. N. Mitra, Phys. Rev. 156,

1572 (1967).
"S. Das Gupta and A. N. Mitra, Phys. Rev. 156, 1581

(1967).
» A. N. Mitra and 1Vl. H. Ross, Phys. Rev. 158, 1630 (1967).

so good (e.g. , relations between MB, BB, and BB
processes).

Now it is possible to carry the elementary-meson
model a step further within a well-de6ned dynamical
discipline so as to make it capable of predicting meson
inelastic processes, e.g., vector meson (V) production by
pseudoscalar (P) mesons. Thus while in Ref. 11 the
assumption of the basic meson-quark amplitude P+Q ~
I'+Q, with a postulated elementarity of the pseudo-
scalar (P) meson, prevented the prediction of V-produc-
tion amplitudes within its framework, a logical ex-
tension of this simple model which would easily remedy
this shortcoming would now be to regard I' as a QQ('Ss)
composite. A QQ structure of P would in turn reduce
the study of the PQ amplitude to that of a (three-body)
QQQ amplitude. Within such a three-body model,
which can readily be made to include spin and SU(3)
effects, it is an easy matter to express the amplitudes
for P+Q —+ J'+Q as well as I'+Q~ V+Q processes
within a common framework which automatically
takes account of all multiple-scattering effects within
the QQQ system. If these basic amplitudes which
clearly include elastic and inelastic components are now
folded into the initial- and final-baryon systems, it
should be possible to correlate meson-production ampli-
tudes with those of meson scattering, in association
with baryons of different types. Of course, the predic-
tive power of this extended model still falls short of
pure additivity in that the former is still incapable of
connecting processes like MB —+MB with those in-
volving 88 or BB.However, even these restricted pre-
dictions should be suKciently wide ranged to facilitate
a meaningful comparison with a wide class of experi-
mental results. More important, these predictions
would clearly be based on a certainly well-defined
dynamical discipline relating to the degree of com-
positeness of hadrons, in contrast to those of the addi-
tivity Inodel whose dynamical basis is much less clear
and which derives almost its entire strength from its
experimental success.

The dynamical basis of the QQQ model consists
essentially in classifying the hadrons according to the
tightness of their structures. Thus the assumption that
mesons as QQ composites are more tight than baryons
as 3Q systems should enable the mesons to see through
the structure of baryons without a reciprocal advantage
of the latter. On the other hand, when one considers a
quark-meson system, the assumed elementarity of the
quarks should enable them to see through the QQ
structures of the mesons. In this sense, the QQQ model
does not conQict with the elementary-meson model
proposed earlier, ""but merely makes use of a certain
hierarchy of compositeness to give a wider class of
predictions. Another advantage of. the QQQ model is
that it takes account of all multiple-scattering correc-
tions at least within the meson-quark subsystem of the
full meson-baryon state. While it does not yet include
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multiple-scattering effects outside the QQQ subsystem,
it at least separates such effects into two distinct types,
one due to the QQQ structure of meson-quark ampli-
tudes, and the other due to the eGect of binding of
quarks within a baryon. Such a division provides a
basis for inclusion of multiple-scattering effects as a
two-step process. We are at present interested only in
the first step of this process which we believe concerns
(dynamically) the tighter part of the meson-baryon sys-
tem, but we hope that the formulation to be presented
here is broad enough to warrant an extension to the
second step in the near future, with the help of available
multiple-scattering techniques. "

The emphasis in this paper is on formulation rather
than on a detailed comparison with experiment. We
shall be interested first in obtaining the relations be-
tween various meson-quark amplitudes which will in-
clude both positive- and negative-parity mesons, and
then folding these relations into the quark structures of
the initial and final baryons. The initial meson will
always be chosen as a pseudoscalar (P), but the final
meson will have any one of the following spin-parity
states:

0,1;0+,1+,2+.

Accprding tp pur usual ideas of QQ structures of mesons,
we should, in the exact symmetry limit, expect geo-
metrical relations between various 0 and 1 amplitudes,
to the extent that these mesons have the same radial
structures ( Sp and Si, respectively). Likewise, we
should expect geometrical relations between ampli-
tudes involving positive-parity meson production to
the extent that the 0+, 1+, and 2+ mesons have the re-
spective QQ structures 'Pe, i, s and 'Pi (all having the
same radial wave function). Dynamically, the former
would be generated by s-wave QQ forces and the latter
by p-wave QQ forces. Any relation between these two
sets of amplitudes is clearly dynamical. While we shall
present a semidynamical formulation of the QQQ
system with a view to calculating the above ampli-
tudes, we shall try as far as possible to keep distinct the
essentially geometrical features of the results from the
characteristic dynamical aspects. Even within the
latter, our aim will be to distinguish the qualitative
dynamical predictions from the more model-dependent
relations between amplitudes.

Our fundamental assumption is a nonrelativistic

QQQ system interacting through QQ and QQ pairs, of
which the former are governed by much stronger forces
than the latter. The QQ forces are taken to operate in
s and p waves only. These and other assumptions on
the symmetry of the QQQ system are spelled out in
detail in Sec. II, which discusses the construction of the
QQQ wave function taking account of the spin and
SU(3) degrees of freedom, in a representatipn tha, t, js

I See, e.g., R. J. Glauber, in Lectures in rheoreticaI Physics,
edited by W. E. Britten and I.. G. Dunham (Interscience Pub-
lishers, Inc., New Vork, I959), Vol. I.

particularly suited to the boundary condition of an
initial octet of pseudoscalar mesons scattering (elastic-
ally or inelastically) against a quark. Section III is
concerned with certain general dynamical considera-
tions for the QP —+ QP and QP ~QV processes which
facilitate a distinction between the small and the large
parts of the spatial amplitudes. In Sec, IV we explain
the construction of the QP ~ QP and QP —& QV ampli-
tudes from the QQQ wave function, and also obtain a
catalog of the actual meson-baryon amplitudes. Section
V is devoted to a method of construction of the ampli-
tudes for the production of positive-parity mesons on
lines similar to the earlier sections for the negative-
parity cases. Section VI includes a short summary of
results obtained together with a comparison with con-
temporary approaches.

IL QQQ WAVE FUNCTION: GENERAL
CONSIDERATIONS

Our QQQ model of meson-quark amplitudes consists
of three nonrelativistic particles (two quarks and an
antiquark) interacting in pairs. Since it has already
been said that QQ interactions are stronger than QQ
forces, we may ignore the latter to simplify the for-
malism. This is really not a limitation for a class of
results in the form of relations between various ampli-
tudes, as long as we are not interested in their actual
numerical values. In any case, it will always be possible
to point out the formal modifications implied by a sub-
sequent imposition of QQ forces. As for QQ forces, we
shall only take them to be in s and p waves which, re-
spectively, generate negative- (0 and 1 ) and positive-
parity (0+,1+,2+) mesons. With little loss of generality
these forces will be subsequently assumed factorable,
ostensibly to simplify the formal analysis, but without
any particular risk of obtaining model-dependent rela-
tions between amplitudes of physical interest. "

Once we have a complete QQQ wave function, it is
essentially a matter of quantum-mechanical discipline
to obtain the various quark-meson amplitudes through
suitable interpretation of the different components of
the QQQ wave function in conjunction with appropriate
boundary conditions. " For example, in the limit of
exact SU(6), the QP —+ QP and QP —+ QV amplitudes
are expressible in terms of the same orbital function
obtained by evaluating the residue of the QQQ wave
function at the appropriate pole corresponding to the
(degenerate) mass of the ineson. Similar considerations
apply to the production of positive-parity mesons.
SU(6) breaking effects due to various mass differences

'5 A fuller discussion of the raison d' etre for the assumption of
such forces within a nonrelativistic framework has been given in a
recent paper by the author fA. ¹ Mitra, Ann. Phys. (N. Y.) 43,
126 (1967)g.

I6 Such boundary value manipulations within a nuclear three-
body framework dealing with scattering and stripping reactions
are discussed more fully in A. N. Mitra, Phys. Rev. 139, B1472
(I965).
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should manifest through the shifts of the pole position
corresponding to the actual masses of the mesons in
relation to the available separation energy between the
initial pseudoscalar meson (E) and the quark. Such
results can be visualized very rapidly with the help of
the so-called spectator functions characteristic of three-
body wave functions in the context of separable poten-
tials. '~ %e wish to emphasize, however, that even with
separable potentials, the algebraic structures of the
quark. -meson amplitudes are general enough to make
them independent of this particular assumption, and
that these could well have been written down without
introducing such potentials. On the other hand, rela-
tions between the amplitudes for negative- and positive-
parity meson production are dynamical in origin, and
the separable model provides a possible means to cal-
culate such relations.

After these physical preliminaries, we proceed to
spell out the further assumptions needed for a concrete
construction of the QQQ wave function. The most
important question to be settled is of course the type of
statistics to be assumed for quarks. In conformity with
our earlier approach in a series of recent papers, " "we
shall assume parastatistics for the like particles (quarks),
so as to make the QQ part of the QQQ state a para-Bose
system. 's This requires the QQ part of the QQQ wave
function to be symmetric with respect to an interchange
of all the coordinates (spin, SU(3), andorbital). SinceQis
a diEerent particle in the nonrelativistic limit, one need
not impose any synnnetry requirement on this particle
~is-a-vis the two quarks. Finally we note that this
para-Bose assumption is a mere formality so long as
resu1ts in the form of sum rules between various ampli-
tudes are desired, as in the present investigation.
Indeed, the same relations would be formally obtained
with the opposite assumption of Fermi statistics for the
two quarks, just like the earlier results on the meson-
baryon processes, " photoproduction, " and strong de-
cays of hadrons. " However, there exists a diferent
(and much more restricted) set of physical quantities
like baryon form factors" and perhaps also the 56
baryon mass formulas" which could discriminate be-
tween the two forms of statistics, within the Gell-
Mann-Zweig model.

Our next task is to express the QQQ wave function in
terms of all the available degrees of freedom. %e denote
the indices by 1 and 2 and the antiquark index by 3.Ke
shall now write down the various functions using such a
basis function as to bring out the boundary condition
of a pseudoscalar octet of mesons, made up of Qr and

Qs, scattering on Qs. The effect of rearrangement as
between Qt and Qs would. of course be incorporated

'~ The concept of spectator functions using separable potentials
was erst used in A. N. Mitra, Nucl. Phys. 32, 529 (1962).

's O. W. Greenberg, Phys. Rev. Letters 18, 598 (1964).
's A. N. Mitra and R. Majnmdar, Phys. Rev. 1%, 1194 (1966).
20 D. L. Katyal, V, S. Bhasin, and A. N. Mitra, Phys. Rev. 161,

1546 {1967).

through the symmetry requirement on these two quarks.
This would ensure that a good part of the internal
polarization of the meson as a QQ composite is auto-
matically incorporated in the QQQ wave function, via
the symmetry requirement.

X...=2-'"(1a(12).)x,
where (12), has the representation

(12).=-,'(1+e"'e"& )

(2.2)

(2 3)

For negative-parity wave functions, on the other
hand, it is most convenient to use the vector basis
function" ""

c&."(2; 13)= se "&X=—K (2.4)

in terms of which the s and a functions are

K„,=2 '"[1a(12).]X. (2.5)

There is a second vector spin function X' defined by

X'= 2—"'(t'e&" ——,'e&'& Xo &'&)X (2.6)

which is totally symmetric in all the particles and
hence corresponds to the spin-quartet state, unlike
the functions K, or X, which give only spin-doublet
states, in the common basis X.

Finally there is the tensor spin function X„„, again
corresponding to a quartet-spin state, given by

X =2 '"(o &"o &'&+o &"o &'& —-'5 e&'& e&'&)X (27)

which should go with a (positive-parity) tensor func-
tion &fr&" of the spatial variables.

"For a general discussion on three-body spin function see
M. Verde, in Hundbuch der I'hysik, edited by S. Flugge (Springer-
Verlag, Berlin, 195/), Vol. 39, p. 170. The symmetries in the
present case are however, less complete than those used on a QQQ
system (Ref. 15).

ss See, e.g. , R. G. Sachs, Nuclear Theory (Addison-Wesley
Publishing Company, Inc., New York, 1953).

"A. N. Mitra, Phys. Rev. 1%, 1168 (1966).

A. Spin Functions

Let &r; and P; represent the spin-up and spin-down
states, respectively, for quark number i. For positive-
parity wave functions it is most convenient to use the
basis function

)&'(2; 13)= 2 '"&rs(nsas —&rsPr) =—X, (2.1)

which is appropriate to the boundary condition of a
pseudoscalar meson (P) made up of Qt and Qs, scattering
on Qs (elastically or inelastically). Now to maintain
the over-all symmetry of the QQQ wave function in the
two quark indices, one must use spin functions which
are either synunetric (s) or antisyrnmetric (a) in Qt
and Qs. The latter are obtained by using the spin-
permutation operator (12), on the basis function X,
so as to yield"
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B. SU(3) Functions

In conformity with our boundary condition of a
pseudoscalar octet (Q&Q3) of mesons, scattering on Q2,
we must now choose the basis function as

(2)(&l (1)g (3) Kgb q~(op~(3)) (2 8)

(12)„=—'+—'g&') X&') (2.10)

and the scalar product on the right-hand side of (2.8)
is over the eight indices of the two Gell-Mann matrices"
X &") (a=1, 2 . 8). A more convenient expression
for g in terms of an octet m. of meson states" is found
from the correspondence

q
( )g~(3) g~o&—I (—&)g, (3) ~ v2l ~ ), (&)] (2 11)

where X (" has the same representation as the Gell-
Mann matrices for "quark number one. " Thus one
now has in matrix notation

y=2 »2~ X &»a-q(2) (2.12)

as a direct product of a 3&(3 matrix X„(')x in the
SU(3) space of Q& and a 3X1 matrix q") for the quark

25

C. Orbital Functions

Finally, the quantities X, ,, and P, „,must be associated
with orbital functions of the appropriate symmetry, so
as to build a totally symmetric function in Q) and Q2 in

all the three degrees of freedom taken together, in ac-
cordance with our assumption of the para-Bose statistics
for these two particles. Thus for even-parity states,
the complete QQQ wave function is

where )P, „&P...' are two indePendent Pairs of symmetric

(g) and antisymmetric (a) scalar (0+) orbital functions,
~~ represent a third pair of tensor (2+) functions.

Similarly, for odd-parity states, the corresponding QQQ
function is expressible in the vector basis as

XzPq+Qs 'Xaga+Qa '~A'a+pa ' ~a4's

+Q' K'P.+Q' X'P„(2.14)

24 M. Gell-Mann, in Eighrfold lVay, edited by M. Gell-Mann and
Y. Nee'man (W. A. Benjamin, Inc. , New York, 1964).

2~ In this notation, though the index 3 for the Q states does not
appear explicitly, it is manifest through the various rows of the
matrix ), ('&.

where the SU(3) states are indicated by the subscripts
a, b, c (=1, 2, 3), and the individual particles are dis-
tinguished by the superscripts (i). The corresponding
functions p. ..are now given by

4, ,~= 2 '"l 1~(12)„j@, (2.9)

where (12), the (12) permutation operator in SU(3)
space, is given by'5

where Q, ,„Q,,
', and g' ~ are three independent pairs

of vector (1 ) orbital functions.
It may be noted that the expressions 0'(+), by virtue

of the symmetry requirement, contain the effect of ex-
change or rearrangement (as between Q) and Qu) on
the quark-meson amplitudes that can be constructed
from them. In order words, a good part of the internal
polarization of the meson as a QQ composite is already
incorporated in the QQQ wave function because of the
requirement of symmetry.

~o&P, ll'; "IP, ')= —l, (p, ,) (p, ,'),
where

P,3
——P,—P,= P,+P,+P„

(3.1)

one obtains spectator functions" appropriate to the
description of I'Q and VQ wave functions. Similarly, a
p-wave QQ interaction of the form

~Q&P, l ~'.&")
l P* ')= —3l P' P' ~(p' )~(p' ') (3 3)

leads to spectator functions for states of the type ~Q,
where 3f is a positive-parity meson. It is convenient to
consider the effect of these two interactions separately
for gaining a quick insight into the structure of the re-
spective wave functions. It is then merely a question of
algebra to put these two forces together if one is in-
terested in the more dynamical problem of connection
between these two types of QQQ wave functions, via
coupled integral equations for the corresponding
spectator functions. Finally, we consider the even-
and odd-parity wave functions separately.

IIL QQQ WAVE FUNCTION: DYNAMICAL
CONSIDERA, TIQ+3

We now try to present a semiquantitative analysis
of the orbital parts of the meson-quark amplitudes
within the framework of factorable two-body forces. We
erst consider the limit of extreme degeneracy char-
acterized by (i) neglecting the QQ force compared with
the QQ, and (ii) ignoring the spin as well as SU(3) de-
pendence of the QQ forces. Subsequently, we shall in-
dicate the nature of the modi6cations on the various
amplitudes as a result of lifting these restrictions. We
shall keep close to the nonrelativistic helicity formalism
for the quark states (though this will not prevent us
from taking account of the relativistic kinematics for
the mesons where necessary). This essentially implies
an analysis of the amplitudes in terms of the orbital
angular momentum l rather than the total angular
momentum j. Such an analysis should facilitate a clear
separation of the geometrical aspects of the problem
relating to the SU(6)-type connections between the
various amplitudes, from the dynamical aspects which
could, e.g., distinguish between the large and small
amplitudes as seen from a partial-wave analysis.

Let the momenta of the two quarks be P& and P~ so
that the Q momentum P3 is —(P&+P2) in the over-all
c.m. frame. Using an s-wave QQ force of the form
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From Kqs. (3.11) and (3.12) the following qualitative
features are seen to emerge:

A. Even-Parity Functions

Using the interaction (3.1) in the Schrodinger
equation (i) For eve)s l, the kernel E&" is positive for U, &'&(P)

and negative for U, "'(P).
(ii) For odd l, the opposite is true T. he only condi-

tion for such behavior is that u(q) should fall off with
large q, which amounts to a short-range force in the
conventional nuclear sense. This qualitative feature
remains valid as long as the QQ force is weaker than
the QQ force and the spin-curn-SU(3)-dependent forces
are small. The same property also holds for the U. ..&'&(P)

functions, as well as the T, ,&"(P), even though the
symmetry-breaking eRects would make U. ..and U. ..
different. T(P) is of course diferent from U, U as seen
from (3.11)versus (3.15), For the purpose of this present
investigation we shall make use of only such qualitative
features that are dynamically deducible.

(3.4)D(g)@(+)— ~ (V' (0)+ V (~))qr(+&

D(E) =-,'(Pts+Pss+Ps') —EM 9,
where

(3.5)

one obtains for the orbital functions )p. ..

where U, ,(P) satisfy the equations

(3 6)

$1—)&,h, (P)jU„,(P) = aXo dq E(P,q) U, , (q), (3.7)

E(P,q)= (P+lq) (q+lP)

&&(P'+q'+P q —EMo) ', (3.8) To calculate the meson-quark amplitudes from the
spectator functions, we must use the boundary
condition'6

ho(P) = dq I'(V)(sP"+C' F~o) '. —(3.9)
U, (P) = (2m)'8(P —k)+D&+) (P) (P' —k' —io)-' (3.17)

A partial-wave analysis of U(P) according to

U, .(P)=P U, .(»(P)P, (P k)(2l+ 1), (3.1O)

where k is the direction of the incident meson, yields

L1—Xoho(P) jU, ,,&'&(P)

corresponding to a meson-quark momentum k in the
c.m. system, from which the scattering amplitude on
the energy shell is deduced as D'+&(p) with p'=O'. For
the function U, (P), the corresponding amplitude is
defined as F(+&(P). The production of a vector meson
(of higher mass) is similarly expressed in terms of the
boundary condition'6

where

= +4mko q'dq E«)(P,g) U, „('&((t), (3.11)

4 P,(p k)E('&(P,q) = dj E(P,q)P (j k). (3.12)

fn the limit of exact degeneracy (defined earlier),
identical equations hold for the other pair U, , (P)
associated with the functions )p. ..'.

The orbital functions )p. ..» have the following

structures:

U. ."(P)= (P„P„—-', 3„„Ps)T, .(P) (3.14)

satisfy the equations

(1—) o&o(P)$U„.""(P)

dq E(P,q) U„.»(q), (3.15)

»=D-'(E)LN(pts) U. ..»(Ps)
aN(pss) U„."(Pt)), (3.13)

where

U, (P) = (2~)'3(P—k)+D&+'(P) (Ps—its;,)-t (3 1g)

where I'ot (&&o) is now the separation momentum be-
tween tile final Q and V particles, so that the amplitude
of QP ~ QV is given by D + (P) or F&+&(p) at p'= p, s

according as we consider the U, or U functions,
respectively. Similarly, we use the notation D'+), F(+)
for the corresponding amplitudes associated with U,
and U„and d'+', f(+) for the amplitudes associated
with the tensor functions U, &". Now in the limit of
SU(6) degeneracy, its= k', the orbital functions for the
QP —& QP and QP —+ QV processes are described by
the same quantities D(+'(P) or F'+'(P) (or their counter-
parts) evaluated at the common point P'=&o'. While,
therefore, the mass-breaking eRects are easily taken
into account by considering the appropriate momentum
limits in the functions D +'(P), F + (P), etc , the.
formalism provides the correct relative normalization
between the scattering and production amplitudes by
keeping the (geometrical) SU(6) effects separate from
the (dynamical) orbital effects.

B. Odd-Parity Functions

and the functions T, , (P) admit of the partial-wave
expansion

T„.(P)=Pi T...")(P)P (P.k)(2~+1) . (3 16)

For the odd-parity case, the orbital wave function
which is now a vector, is expressible in terms of a

"A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963).
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spectator function V(E) according to

A. ..=D '(&)L~(P») P2U. ..(Po)

~N(P»)P. V...(P.)l, (3.19)
where

P—&oho(E))PU. ..(P)

= &ho (Lg X(P,q)(IU, „((1). (3.20)

Similar equations hold for the scalar functions V, ,(P)
associated with Q, ,„Q,,,' as well as V' (P) asscoiated
with g' ~. One can now make a partial-wave analysis
of (3.2) analogous to (3.0), but there would in general
be two coupled equations connecting V('+"(P), except
for the (physically important) case of V(o)(E) which
satisQ. es an uncoupled equation. From this last case it
is clear that since J'd(1 (IX(P,q) has a negative sige for a
short-range force LN(P) ~ 0 as p~~], the kernel of
(3.2) is attractive for V,(P) and repulsive for V, (P).

The orbital parts of the meson-quark amplitudes
contained in these vector functions are now obtained
by calculating the residues D& & and F( &, respectively,
of the spectator functions V...(P) at the appropriate
poles, in exact correspondence to the positive-parity
case.

To summarize the results of this section, we have
shown that the orbital parts of the EQ —+EQ and
EQ —+ VQ amplitudes are expressible in terms of (i)
the residues D'+)(P) and P(+)(P) of the respective
spectator functions U„V„U„and V„(ii) the cor-
responding quantities D(+)(P) and P(+)(P) associated
with U„V„U„and V„and (iii) the quantities d(+',
f(+) going with T„V', T„V'. In general these func-
tions are different for EQ-+EQ and PQ~ VQ since
they must be evaluated at diBerent momenta cor-
responding to the mass differences between vector and
pseudoscalar mesons. Where necessary, these differences
would be indicated by a prime attached to the EQ ~ UQ
amplitudes, but in the limit of exact degeneracy, the
primes would be dropped. Finally, from the general
dynamical considerations of this section, the following
inequalities are indicated:

(D(+) D(+) d(+))))(P(+) P(+) f(+)) ~ (3 21)

(P(—) P(—) f(—))))(D(—) D(—) d(—)) (3 22)

These follow directly from the remarks made in the
paragraph immediately preceding Eq. (3.17), con-
cerning the signs of the various kernels, and also the
fact that in the partial-wave expansion of an amplitude,
the lowest ones play the dominant role.

We close this section with a few additional remarks
on the rather passive role of dynamics in the model
developed so far. So long as the parameters D, Ii, etc.
are used as mere symbols, the dynamics is completely
hidden, and the various amplitude relations to be
developed in the next section are entirely kinematical,
apart from the standard quark structures assumed for

the hadrons. Any limitations on the dynamics behind
the model would therefore not show up, as long as in-
equalities like (3.21) and (3.22) are not explicitly used.
We shall therefore keep the formulation flexible enough
so as not to mak. e use of these inequalities right from
the start. Rather we shall, in a subsequent paper, try
to test these inequalities in relation to experiment via
the density-matrix formalism applied to observable re-
actions. Such a point of view would still maintain the
kinematical framework of the paper, irrespective of
whether relations like (3.21) or (3.22) may or may not
be vitiated by more adequate dynamical considerations.

The dynamical limitation of this model is roughly
twofold. First, as we have considered the nonrelativistic
model of quarks, it might be thought at erst sight that
such an assumption is good only near threshold, while
the impulse approximation is valid at very high energies.
However, to the extent that the kinematical framework
of this paper does allow the mesons to have relativistic
energies, it should be possible to go appreciably above
threshold energies for the purpose of confronting the
model with experiment. These energies ( 2—3 GeV)
could still be well below the limit which (&10GeV) (we
believe) is adequate for the validity of the additivity
model, and yet be high enough for multiple-scattering
effects (between the meson and the baryon quarks) not
to be the dominant phenomenon.

The second limitation concerns the detailed nature
of the QQ force. For the sake of illustration of the
techniques we have here considered only the simplest
attractive rank-one potentials. Such potentials would
in general lead to QQQ bound states appreciably below
the quark mass and might well compete with low-
lying hadronic masses. This is a general feature of
strong QQ or QQ potentials like, e.g., the prediction of
diquarks of about one-half the quark mass, because of
the QQ force." It is not clear at this stage how such
states can be prevented within the present day quark
models characterized by nonrelativistic dynamics and
strong forces. Nor is it clear that the predictions of such
states is necessarily harmful unless observation tech-
niques are able to pronounce de6nite verdicts on their
existence or otherwise. In other words, it is not at all
obvious that the very prediction of low masses, can by
itself bring such states within reach of easy observability
which depends on several factors, especially their pro-
duction mechanism, From the theoretical point of
view, such QQQ bound states would correspond to low-
lying poles in the direct channel for quark-meson scat-
tering, but their specific effects on the quark-meson
amplitudes D&+', E&+&, etc., are probably not of im-
mediate interest before the generaL franseuorLo of this
model which does not depend on these detailed dy-
namical features, is subjected to experimental test.

Within a dynamical framework it is of course pos-
sible to prevent the formation of low-lying QQQ bound
states through a suitable modification of the QQ poten-
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tial. Thus, as had been assumed for the QQ force in
connection with baryon-baryon processes, " if the QQ
potential is assumed to be an attractive well surrounded
by a suitable repulsive barrier, it can prevent the ex-
ternal quark (in quark-meson scattering) from auto-
matically entering the meson's QQ well, and hence
effectively bar the formation of a low-lying QQQ bound
state by meson-quark collision. In the present spectator
model, a Qg force with the above features can be repre-
sented by a rank-two potential to a good approxima-
tion, the repulsive term having the longer range, Such
a modification in the potential would of course lead to
(more complicated) coupled equa, tions for the QQQ
spectator functions whose kernels would not lend
themselves to such easy interpretations (in terms of
signs) as were employed in this section to obtain the in
equalities like (3.21) and (3.22). But again this is a
question of detailed dynamics which is not the subject
of the present investigation.

IV. CALCULATION OF PQ AND VQ
AMPLITUDES

The evaluation of the meson-quark amplitudes can
be regarded as a three-step process:

(i) The orbital part obtained from the residues of the
various spectator functions at the poles corresponding
to the meson-quark separation momenta;
(ii) overlap of spin functions between the initial and
6nal states; and
(iii) overlap of the initial and final SU(3) functions.

For the PQ and VQ cases, we first ignore the mass
di6erence between the P and V mesons, though we have
seen in Sec. III the modification needed to incorporate
this mass di6erence. In the first step, the residues of
the spectator functions for the even- and odd-parity
cases yield the respective expressions

g(+) —D(+)x,(t),+D(+)x (t) +p(+)x, (t) +P(+&x (t)

+k 'k 'x)'"(f(+&y +d(+&y ) (4 1)
R(-) =D(-&k' x,y.+D(-&k' x.y.+P(-&k' X.y.

+F( &k' K,y,+f( &k' 1(."y.+d( 'k' K'y. . (4.2)

Here k' denotes the momentum P2 at the separation
energy of the quark and the final-state meson; the func-
tions D'+', F~+', D~+', E(+', in the notation of the last
section, are defined according to the convention that
D (D) and F (F) represent the symmetric (s) and
antisymmetric (()) functions, respectively, and the
superscripts (&) distinguish between the amplitudes
associated with even- and odd-parity states. The
magnitudes of these D and. F functions may be expected
to satisfy the rough inequalities (3.21) and (3.22).

A. Spin Overlap Functions

The next step which concerns the spin evaluations is
best shown separately for the positive- and negative-

parity cases. For the positive-parity functions (4.1) we
must take the overlap with the basis function X of (2.1)
which corresponds to an initial PQ state. This gives

xtx, =-,'(Q-,')xt(1 —o(" (r '))x, (4.3)
X'X =-'(g-')X'(3+(r('& o(2))X. (4 4)

Now the second terms on the right-hand sides of (4.3)
and (4.4) are indeed zero, as seen from the fact that
g &" g &2)X is orthogonal to X. Such terms can however be
interpreted as spin-inelastic effects, i.e., V production
by P mesons. Indeed, the operator e'" now plays the
role of the polarization vector V of the V meson, the
exact normalization being provided by

s "&=&3V. (4.5)

In this way, the spin overlaps give rise to the quantities

and

xtx. ~ —,
' X (g-,') (1—v3 Vp),

xtx, m —',X (g-,') (3+%3Vp),

y, —~(2).y

(4.6)

(4 7)

(4 g)

(k &)'k' l('= (v'2) V~,

P= k„k„'(h„„+io„„),o.),('&),

V)——V),k„k„'(o„('&5,),+o „("8„), i e„„), —
g „o~(2))

V2 ——V)k„k, '(o„(2)i')„), ',.o„('&b„),+—2i—o„.„), -
+p,.~),(").

(4.12)

(4.13)

(4.14)

(4.15)

The P and V terms are, respectively, associated with
p-wave scattering and V-meson production by P
mesons on quarks. We note that the X' terms are
associated entirely with V-meson production, and do
not affect P meson scattering.

B. SU(3) Overlap Functions

In the third and final step, we must evaluate the
SU(3) overlap of the resulting amplitude with the

x'X..4'&.' ~ 4/2) Vs= (v'k) 4%V~
X(, ( &5 „y ( &5„,—;,„(&S ) (4 9)

where the basis states X and Xt have been suppressed.
It is seen from Eqs. (4.6)—(4.8) that the spin-flip terms
Vo, which are associated with V-meson production,
bear geometrical relations to the non-spin-Rip terms
corresponding to PQ scattering. The term V)), on the
other hand, has no counterpart in P-meson scattering.
Similarly, for the negative-parity functions we must
consider the overlaps of k' g. ..with the initial state
k K, where k and k' are the momenta of the initial and
Gnal mesons, respectively. A simple calculation yields
the following expressions (in the common basis X):

(k K)tk' &,=-'X (g-', )(P—V3V)), (4.10)

(1 X)tk' X,=-,'X(g-,')(3P+V3V,), (4.11)



1390 A. N. M j:TRA

initial FQ state. There is indeed a close parallel between
the spin and SU(3) techniques in this regard, except
that we now have to work in terms of the basis function
ot of (2.10) which corresponds to the boundary condi-
tion of an initial octet of mesons, unlike the spin function
X which would correspond, in SU(3) language, to an
SU(3)-singlet meson. Thus, taking account of the
physical conditions of the problem, the analogy in the
SU(3) case is more to an initial vector-meson scattering
on quarks, than to a pseudoscalar meson-quark scatter-
ing. SU(3)-singlet production would still be obtained
in this formalism as an SU(3)-inelastic process, just
as the spin formalism provides for vector-meson pro-
duction as a spin-inelastic effect. To complete the
analogy with the spin case, the structure of (&& as given
by (2.12), shows the SU(3) scalar product zr ) ")which
looks very similar to the negative-parity spin functions,
with zr now playing the role of the momentum k (or k')
and X that of e('). Thus we should now take the over-
laps with the initial state x A "),"so that the following
quantities would be evaluated as 3&3 matrices in the
(suppressed) basis state q('):

(~p)&p"')t(V'-') I:1+(12).7~ ) -"', (4 16)

where (12)„is given by (2.10).This requires the evalua-
tion of products ]jke yp( &I)&), ( ~ and yg( &y

Now in the notation of Gell-Mann, '4

Xp(z)) ")=s|i p+zfp. v)&v(')+dp v)&v('), (4.17)

where

1 = s(zf +d ))& (s)+s)& (1)) (s)

+) "))s")(Dpo' Dps"+—Fps"), (413)

Dps d~vodp«o Dpo f~vofp«o (4 19)

Fps z(d~vo fp«+d——p«f~vo) . (4.20)

po —(Vt't)q (t)g~(s)q, (s) (4.21)

"The corresponding terms with oro)o, where Xo ——I/%, and is
an SU(3) singlet, would have looked like the positive-parity
terms in the earlier language of spin functions.

These functions have a simple interpretation. Thus
(4.17), containing the pure )&(') terms, represents the
direct SU(3)-elastic effects which correspond to quark-
octet scattering without exchange. In (4.18), the pure

terms represent exchange SU(3)-clast. ic eRects
which also correspond to quark-octet-scattering, but
after a rearrangement of the initial quark with the
quark. constituent of the meson. The term A, ('~X~('~

gives SU(3)-singlet production, while the more com-
plicated )&('))&(') terms (involving the four-index genera-
tors D, D, F) represent the production of 27-piet
mesons. This last we shall not consider in this paper
since it corresponds to quark-meson states of the form
Q(QQ)(QQ), though it is remarkable that even this
simple formalism generates such terms. The SU(3)-
singlet production, on the other hand, can be more
easily recovered from the original form (4.16) by chang-
ing the basis function to an SU(3) singlet, viz. ,

TAar, E I. The SU(3) matrix elements for the baryonic 8~ 8
transitions. The initial meson is a pion or a kaon. The symbol for
the final meson is merely an SU(3) symbol characterized by 7i-, E,
or q for the octet and X' for a singlet, and refers to other spin-
parity states without loss of generality. For other notations, see
text.

Transition Direct Exchange

( 'pl 'p)
(~ pI~ p)
(~ozzI~-p)

(qzoIor p)
(Xo~

I p)

(E+z+I +p)
(Eozoj~-p)
(E'~'I=p)
(E+p

l
E+p)

(E pj E p)--
(Eon

j
E P)-

(bozo
I
E-p)

( o~oIE-p)
(~zo

I
E-p)

(~so [E-p)
(Xozo

j
E-p)

(XolroIE p)

4A II
3

2A '+-'-A"
—2V2A'+ —,'&2A"

(vol)~' —(lv's) ~"
0
-'A"
3

—-'3&2A"

2(v'll~'
0

2A' —-,'-A"

0

0
0
(-'v'-')~"

—-'A'
3

0
0

2BI

~2B -'-.~2B-
(V'o) &' —(o V'o) ~"
(V'o) &'—(o V'o) &"

0
0
0
2BI
3

2BII
3

QBll
3

(V'-')I)'
—(o V'o)&"

3
/BI

—(l V'o)&"
-'v28'

and proceeding exactly as in the spin case. This gives
rise to the requisite singlet-production structure

(4.22)

where
Ip-'+'= (zfp.v+d p-.)).") (4.24)

(4»)~p-' '=( zfp-v+dp-v—)) v""
g= —',A '+&(3+v3Vo)+ —,'A'+'(1 —v3 Vo)+v3(z'+'V

+-,'A &
—)(3F+v3 Vt)+-', A &

—) P' —v3 Vt)

+v3(z &
—

& Us, (4.26)

B= -',B&+&(3+v3 Vo) —-,'B&+& (1—v3 Vo)+v3b &+& Us

+-,'B &
—

& (3P+v3 Uz) ——,'B &
—&(F—v3 V,)

+v3b' ) Vs (4.27)

g (+)= 2D(+)+.F (+) g(k) =D(+)+2@a) (4 23)

B(+)= D(+) F(+) B(k)=D(k) F(+) ~ (4 29)

(z(k) =2d H)+ f(+) b(+) —d(+) —f(+) (4 30)

The first term in (4.23), proportional to A. , corresponds
to direct SU(3) scattering, while the B term relates
to SU(3)-exchange eRects. The SU(3)-singlet-produc-
tion terms are similarly contained in the expression

(vl's) zrotzr. h (')B. (4.31)

which will be used in the subsequent analysis.
Collecting the results of the various steps, the SU(3)-

elastic terms of the meson-quark amplitude are con-
tained in the expression

zrptzr. [2(;bp.+zzp. (+))+-',Bzzp. ( &7, -(4.23)—
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Note that (4.31), which contains only 8, has exactly
the same spin-curn-orbital structure as the exchange
part of (4.23) "

It is now a straight forward calculation to obtain the
various scattering and production amplitudes for meson-
baryon processes by folding expressions like (4.23) and
(4.31) into the initial- and final-baryon states as 3Q
composites. Since the formal SU(3) structures of these
expressions are now exactly the same as those used in
Ref. 11, it should be sufficient to refer to that paper for
the details of calculation. For the transitions within
the 56 of baryons, we must simply use the wave
functions"

—X$$of$ (4.32)

A'= (x'ig
i
x'), A"= (x"ig [x");

8'= (x'[B(x'), 8"=(x"(Six");
(4.34)

(4 35)

e,=p (x'd'g-x"(t")/K2, (4.33)

and consider the matrix elements of the meson-quark
amplitude operators (4.23) and (4.31) between the
states" (4.32) or (4.33).

The amplitudes for transitions into various baryon-
meson SU(3) states are listed in Tables I and II for
8 —+8 and 8o 10 baryonic transitions, respectively.
The notation used is as follows:

TABLE II. SU(3) matrix elements for baryonic 8 ~ 10 transitions.
For explanation and notation see Table I and text.

Transition

(~on++
~
~+P)

(~+n+~~+p)
(~ono~~ p)
(~ n+~~ p)
(~(~++~~+p)
(&no~~-P)
(noXo~vr-p)
(A++Xo

~
~+P)

(E+F+
~
~+p)

(Eoyo
~

o.—P)
(E+A+

~
I +P)

(Eon++
~
E+p)

(E r+ (E p-)-
(Eoso

~

E-p)
(oo F+[E p)
(o.o Yo

~

E P )
(.I o IE-p)
(Xo I o

i
E-p)

Direct

—(2v'o) 4'
——;As

——,'v2A s

44s
——;&2As

(ohio)gs
0
0
44s
—',v2A'
0
0

As

—;As

0
0

—(-'v'-') ~'
0

Exchange

(do)&'
ggs

V2gs
gs3——;v2a

2+s

0
0
2+s

-(24o)&'
0
0
2/3 s
3
Xgs

deed it is clear from Tables I and II, that even before
the evaluation of spin-matrix elements, the entire list
of amplitudes is expressed in terms of the six independ-
ent parameters

(4.36) A' A" B' B" A' B'
) ) ) ) ) (4.37)

Since each of the 3 and B coeKcients contains predic-
tions for bofk pseudoscalar (P) and vector (V) produc-

tion, the meson in the Anal state in each process must
be interpreted as a P or U, octet or singlet as the case
may be, though a coxnmon symbol for both types has
been used in the tables. Further simplification can be
obtained by evaluating the spin-matrix elements
defined by Eqs. (4.26)—(4.36). In the limit of exact
mass degeneracy between the P and V mesons, both
BP~BP and BP—& BV amplitudes are given in

terms of the sanse parameters A and B. If this restric-
tion is dropped, one would merely obtain interrelations
within these subsets, but not among them. %e might
name such relations as those at the SU(3) level, though
it is important to note that these relations are by them-

selves intermediate between the conventional SU(3)
type (characterized by eight parameters) and the

SU(6) type (characterized by four parameters). In-

"The expressions (4.23) and (4.31) have the same relative
normalization to each other (though we have multipled each ex-
pression by a factor of 3 in the last steps of their respective
derivations). This relative normalization has been Axed from the
consideration that the SU(3) 8 and 1 states are represented, re-
spectively, by )1-p) p/K2 and m'pXp=—7I'pI/V3.

'~ These notations for the orbital, spin, and SV(3) wave func-
tions of the baryons must not be confused with the earlier symbols
used for similar quantities in relation to the QQQ system. Similarly
the SU(3) superscripts (1) or (2) appearing in (4.19) and (4.20),
or the spin superscript (2) appearing in the expressions (4.8),
(4.13), and (4.14), both of which now relate to a "typical" quark
in the baryon, must be distinguished from the indices appearing
in (4.32) or (4.33), which refer to the three different quark con-
stituents of a baryon.

eactly as in Ref. 11, so that the types of sum rules
discussed in that paper would all be reproduced. In
addition, one would obtain results for SU(3)-singlet
production without introducing extra parameters.

As for relations between BP —+ BP and BP—+ BU
amplitudes within this model, these would in general
be obtained only if it is assumed that the variations of
the 3 and B amplitudes with the meson-quark separa-
tion momentum k are small over a range which covers
the gap between the P-meson and V-meson masses.
This is the dynamical implication of mass degeneracy
within the present framework. Under this assumption,
both the BP~PB and BP—& UB types of ampli-

tudes would be expressed in terms of the twelve in-

dependent parameters

g (+) g(+) g(+) g(+) g(+) f)(+) (4 38)

so that in general several SU(6)-type relations would

be expected. These questions, together with a detailed
comparison with experiment in the language of the
density-matrix formation" will be discussed in a sub-

sequent paper. "
V. PRODUCTION OF 0+, 1+) and 2+ MESONS

We indicate, within the QQQ model, the essential

steps leading to the evaluation of quark-meson ampli-

"K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964)."S. Das Gupta, V. K. Gupta, and A. N. Mitra (to be published).
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tudes where now the meson is a scalar, axial vector,
or tensor. The procedure is analogous to the previous
sections dealing with negative-parity mesons, except
that one must now consider a p-wave QQ force as the
basic mechanism. In general, one would expect a strong
coupling between the wave functions for negative- and
positive-parity mesons with quarks, because of the
simultaneous operation of s- and p-wave QQ forces. If,
on the other hand, we isolate the question of dynamics
from the (more general) kinematical considerations, it
it adequate to consider only the p-wave forces which
will already indicate all the possible types of amplitudes
generated, together with geometrical relations among
them.

In the same notation as before, the internal variables
in the Q1Q3 pair are the relative momentum yis and
the spin vector e('&. All possible internal polarization
states of the final (positive-parity) meson must there-
fore be formed out of these vectors alone. Thus the
simplest quantity is the unit vector p» which by itself
represents the polarization of a 'Pi state of QQ, cor-
responding to a spin-singlet structure (and hence in-
dependent of o ('&). In the usual quark language, such a
state is appropriate for a 1+ state of even G-parity, "
representing perhaps the 8 meson, when one remembers
the intrinsic parity of a QQ state as (—1). Thus we
define the unit polarization vector 8 for a 'Pi state as

Pis ~ (5.1)

The 'P states of Q1Q8 must now be formed out of both
the vectors P13 and o "&, such that the J=0, 1, and 2

states correspond, respectively, to the scalar, axial-
vector, and tensor products of these two vectors. If we
denote the unit operators corresponding to these in-
dividual states by s, A, and T„„,respectively, we have

s=p o'(i) (5 2)

V22A. =pXa (", (5.3)

T"=(lV's)(p. o."&+P.~.("—8~"P ~(") (5 4)

where P is an abbreviation for P13, and each of the above
operators has been normalized to a unit value for its
squared modulus. Physically, one expects A. and 1„,
to represent the polarizations of the A~ and A2 mesons
and their SU(3) counterparts. The physical status of s
is less sound; though one would like to associate it
with 8, e, or a mesons. "

The construction of the wave functions goes on the
same lines as before, except that one now has more
freedom in this regard, because of the two available
vectors yis and P2 (or y23 and Pi) in the orbital wave
function. The spin functions in the scalar (X„X,), vector
(K„X„K'), and tensor (X„„) representations, that were

82 R. H. Dalitz, le Houches Lecture Notes, 1965 (unpublished).
33 See, e.g., G. Goldhaber, in Proceed&zgs of the Thirteenth

Annual International Conference on the IIigh-Errergy I'hysics,
Berkeley, Calif , 1966 (Univeris. ty of California Press, Berkeley,
Calif. , j.967), p. 103.

defined in Sec. II, must be used again in association
with appropriate spatial functions of even or odd parity.
However, unlike the previous case, where vector spin
representations went only with odd-parity spatial func-
tions, we shall now have bo/h even- and odd-parity
orbitals associated with them. Indeed, the various
orbital functions that can be constructed with p-wave

QQ forces of the type (3.3), are as follows (using the
same general notation &P as before). "

A. Even Parity

D(~)~...= (p-)y 'P:s.,(P.)
+2 (p28)y28. Pts. ..(P1), (5.5)

D(&)g...(+&=.(p»)y„XP,~„.(P,)
~n(p28)y28XPtA „(Pi), (5.6)

D(E)(p...a"= 2 (pts) T„„(13;2)T„.(P2)

au(p23) T„„(23;1)T„a(P1), (5.7)
where

Ta (13j 2) 2(p13aP2v+p13vP2a syls'P2~a ) y (5 g)

with a similar expression for T„„(23;1).

B. Odd Parity

D(+) Qr, a ~(P18)yls &a,a(P2) ~t'(P23)y28 &a,a(P1)

+.(p„)(y„xP,)xP,w„.(P,)
~e(p23)(y28XP1)XPB', ,.(Pt). (5.9)

Each of the functions 5, A, T, U, and 8" can be ex-
pressed in a partial-wave decomposition in the standard
manner. The complete QQQ functions of even and odd
parity are now as follows:

+(+'= g"X.+a'X.)e.+8"'X.+O.X.)~
+«+'+c ')~+(e ' '+e. ' ')~.
+(2t.(+&"4.+2t. ("&"4.) &'

+(0.""4.+P.""4.)X" (5 1o)

where g...(+&" are an independent set of orbital func-
tions like (5.6) associated with the quartet-spin func-
tion K'. Similarly,

@(—)= (q, (—).g,yq, (-)'.g,)(t,,y(g, (—)'.g,+2ti, (—).g,)y,
+(4( &"4.+4( &"4 ) &', (511)

where 2ti, ,
( &" are a second set of orbital functions like

(5.9) associated with the quartet-spin function K'.
We shall not write down the dynamical equations

satisfied by the various orbital functions listed above,
since these are much more involved than those with
s-wave forces, and would in any case be of little im-
mediate physical interest. Instead we shall indicate
the evaluation of the PQ ~ MQ (M=0+, 1+, and 2+

mesons) amplitudes, in. terms of the residues of the
spectator functions 5, A, T, U, and 8'. For purposes of
bookkeeping it is now useful to adopt the same notation
for the residues as the spectator functions themselves,
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TABLE III. The coeiircients c;, d; (of the direct and exchange contributions) which are associated with the
invariants m; (i = 1, ,12) for positive-parity meson production.

m2

m4

1810

PL 12

3S(+)+8( )+$S( )+-,'8(+)
g(+) g(-)+~g(-) ~8(+)

3g (+)+g (-)+3+ (—)+~g(+)

2g (+)—2g (-)+g (-) g (+)

2g(+)+g(—)

2g(+)+ T'(—)

3y(+)+-y(-)+ 3 y(-)+&y(+)
2y(+) 2y(-)+ y(-) f7(+)

2v(+)+e( )

38"(+)+8"( )+-,'lV( )+-,'8'(+)
If("(+)—g'(-&+ ig ( & —vilV(+)

2m(+)+m( )

—;S(+)—&S(-)+-,'8(-)——,'8(+)
—;S(+)—;S(-)—,'8(-)+,'8(+)

,g (+),g (-)+,g(-),g(+)
W(+) —a(-) —A(-) yA(+)
u(+) —a( )

g(+) T'(—)

3y(+) 3y(—)+~ y( ) ~p(+)
y(+) y(-) g (-)+p(+)
v(+) —v( )

—;W(+)——;W(-)+-,'8'(-) ——;W(+)

g (+),g (-),g(-)+,g(+)
~(+) ~(—)

because of the large number of items involved. The
symmetric and antisymmetric functions, on the other
hand, are now distinguished by the superscripts (&).
The residues associated with the prime functions
(tP, ', )P,', etc.) are indicated by bars on the corresponding
symbols, while those associated with the functions
g(")" are shown by the corresponding small letters.
This gives the following glossary of symbols in the
residue functions E.(+) of 0 (+):

g(+) =y. k't (S(+)y,+S(—)x,)y +(g(+)g +S(—)g,)y j
+(y&&k') x, r

A(+)(t,+a(-)(t.j
+(p&«') ~.L~(-)e.+~(+)e.j
+(p&&k') ~( ( ("~.+"-)e.)
+T„.(13;2))(:„,t T(+)Q,+T( )(t j; (5.12)

Z(-) =p k'Lk' q, (W(+)y.+W (-)y.)
yk' K.(W(-)(t,+VV(+)@.)j+(y k') (k' K')

)((te(+)y +to(—)y )+(y.g )(t&(+)y +t&(—)y )
+p X,(V(+)4,+V&—)4.)

+y X.(V(-)y,+V(+)(f.). (5.13)

Here k' (=Ps) represents the separation momentum of
6nal meson-quark system and y is an abbreviation for
P13

For further reduction we note that the SU(3) struc-
tures of the amplitudes are formally identical with
(4.23) and (4.31) for 8 meson scattering and I meson
production, respectively, except that the quantities'
and 8 have now to be replaced by alternative quantities
C and D which depend on the symbols of (5.12) and
(5.13) according to the following scheme:

spin vectors (s, 8, A, 1 „„)of the emitted rnesons. The
invariants ns;, together with their construction, are
listed in the Appendix. The coefficients (c;,d;), expressed
in terms of the various residue functions, are listed in
Table III.

So far the method makes little use of explicit dynamics
which is considerably more involved in this case than
for the I'- and V-meson production. The following
features may however be noted. At the SU(3) level, the
predictions are formally identical to those in Ref. 11
or Sec. IV of this article. Thus for each type of meson
emitted, all matrix elements are expressible in terms of
six quantities like Eqs. (4.34)—(4.36), so that Tables I
and II apply with the replacements of (5.14) and (5.15).
Evaluation of the spin-matrix elements would lead to
connections between amplitudes for different kinds of
meson production. One must be careful in this regard,
however. Thus though the 24 parameters (c;,d;) de-
scribe in principle, all the processes involved, this
simpli6cation is based on the assumption that all the
mesons are equally massive. Since such an assumption
would even prima facie, be absurd, the mass dependence
of the coefficients should at least approximately be
taken into account. While this would, in general, in-
crease the number of parameters almost to the SU(3)
level, the situation can be partly redeemed by noting
that the masses of at least some of the mesons with
digerer&f spins are not very different. In this formalism,
it is only for such particles, carefully chosen, that one
could talk about meaningful relations among their
production amplitudes. These and related questions
will be discussed in a forthcoming paper. "

122~ C=P m;c;, (5.14) VI. SUMMARY AND CONCLUSIONS

12

8 +D=P m;d;, —

where m; are a set of twelve invariants formed out of
the initial and final momenta k and k', as well as the

We have tried to develop a QQQ model of production
of various types of mesons by pseudoscalar mesonson
baryons. This method is somewhat different from the
other contemporary quark models, in that it recognizes
a hierarchy of tightness in the quark structures of
hadrons, the mesons as QQ composites being considered
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much tighter than baryons as QQQ composites. Under
such an assumption it is meaningful to speak of an im-
pulse approximation for individual scattering of the
quarks in a baryon by the meson. The QQQ model of
the quark-meson scattering, on the other hand, takes
account of all multiple-scattering effects within the
meson-quark system. The corrections due to the
multiple scattering of the meson by the quarks of the
baryon should be possible to take into account in a
second-stage process within the present formalism
which appears to be general enough for such a purpose.
A limitation of the model is that its predictions are re-
stricted only to meson-baryon processes, and, un-
like other quark models, it does not claim to relate
processes like 88 or BBwith the above.

The model makes little explicit use of dynamics, ex-
cept to employ the method of spectator functions to
calculate the various amplitudes. The possible uses of
simple dynamical considerations by which one could
distinguish the larger amplitudes from the smaller
ones for pseudoscalar and vector mesons, are broadly
indicated. The various amplitudes are calculated in a
certain hierarchy of steps which go from the SU(3)
level of predictions concerning final mesons of only one
spin-parity type, at a time, to the more specific SU(6)-
level by which the interrelations between the produc-
tion amplitudes for different spin-parity types could be
obtained. It is also recognized that because of the large
mass-breaking effects a careful selection of the particles
involved in this second step is essential, in order to
obtain physically meaningful relations between the
amplitudes.

The contents are devoted almost exclusively to
formulation, and no attempt is made here to present
any comparison with experiment, which is relegated to
a further paper. Finally, while the results for negative-
parity mesons are similar to those obtained in other
contemporary models, the method outlined for the
production of positive-parity mesoos does not seem to
have had a previous counterpart.
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APPENDIX

The invariants ggg; (i=1, , 12) arise out of the
evaluation of the spin-matrix elements of (5.12) and
(5.13), using a common basis function X. We use the
general notations r, n, P, s for the invariants associated
with 3&-, 3&-, 8-, and 0--type mesons, respectively. The
following quantities appear in the derivation:

pp pk 8——, po'= pk' &;

p, =ipB. (kXo&'&) p, '=ipB (1 'X~~').

sl ——psk 4r ~21 sl' ——psk' 4r&";

np,
. np' ——Qgv2pA (k; k'),

nl, nl' ——g'gv2ip(4r&2»&2) (k; k'),

n.=k "o!0 kk'—(n0'+n, ');
n= ikXk';

o'; "=LV'(5/3) 32;.(.,"'~.'; ~,'~.),
rl',' rl"= L(+5/3)fpT&„[k„k„'k' e1 1; k&'k„'k e~ ~],

73—7g 72 N. 'k To ~

ln terms of these symbols the invariants m, are as
follows:

gggl =PP'

ting= Tp +Ql +0$1

mg =Pl'

ggg4 420 +2Q1 2 TO +0$1

gggo=2Q!0 0$1 2Q1+2To

gggo= pro' —( /5)342+1(1o/9)»'

mr =Pp —Pl

gggg 2 $1+420 421
1

Bgg= $1+&1 &0

ggglp
——pp'(k k'+a "'n)

5211=tl +Tgjpk $1+Q2

m12 71 g78~ 3k $1 g+2 ~

The invariants m~-m6 are formed out of the positive-
parity components of the wave function, and the re-
maining six quantities m7—m» out of the negative-parity
components.


