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Kinematics and Saturation of the Sum Rules and Ineflualities for
Inelastic Electron-Nucleon Scattering*

FREDERICK J. GILMAN

Stanford Linear Accelerator Center, Stamford University, Stamford, Catefornea

(Received 6 November 1967)

The kinematics, sum rules, and inequalities for inelastic electron-nucleon scattering are reviewed, with
emphasis on the relations between the sum rules and inequalities and the assumptions needed in their
derivation. What can be learned from the manner of saturation of the inequalities is discussed. Limits are
put on possible modifications of the sum rules at large values of q' from what we already know at small
values of q', and for g'= 1 BeV' it is shown that the inequality for electron scattering is roughly satis6ed by
summing over the inelastic scattering spectrum up to 6nal hadron masses of 2 BeV.

I. INTRODUCTION

LTHOUGH there have been many impressive suc-
cesses for sum rules or low-energy theorems'

derived from the commutation relations of the integrals
of the time components of the vector and axial-vector
weak-interaction current densities'

LF (t)» (t)3= f F (l)

LF.(t),F,'(t)j= if.&,F.'(t),
LF'(t) F '(t)j='f. .F.(t),

where

F.(l) = —s r.4(x)d'x,

F.'(t) = —i S.4'(x)d'x,

the commutation relations of the current densities
themselves,

I p„(x),p„(y)$„„,= —f. ,F. (x)8(x—y), (3a)

I:+ 4(x)»s4(y)3*o= o= —f.s & 4'(x) ~(x—y) (3b)

L~. '(*),~ "(y)j*.=,.= —f. .~. ()&(*—y), (3 )

have yet to be subjected to similar tests through the
sum rules which they imply. It was Grst shown by
Adler' that Eqs. (3) can be directly tested in high-

energy neutrino reactions, where they lead to sum rules
which imply that

do z (9+N)/dq' do r (p+N)/d—q'

goes to a constant which is independent of the four-
momentum transfer q' as the incident neutriono energy
goes to infinity. This q' independent constant is the
same as the result one obtains for do+(f+N)/dq'—do r(r+N)/dq', assuming a pointlike nucleon whose
V—A weak current is coupled to the leptons in the
usual current-current interaction form.

*Work supported by the U. S. Atomic Energy Commission.' See the review given by R. F. Dashen, in Proceedings of the
Thirteenth Annlal International Conference on High-Energy
Pkysecs, Berkeley, Calef , 1966 (Uni. versity of California Press,
Berkeley, Calif. , 1967), p. 51.' M. Gell-Mann, Physics 1, 63 (1964).' S. L. Adler, Phys. Rev. 143, 1144 (1966).

By an isospin rotation, Bjorken4 has shown how the
part of Adler's results coming only from the vector cur-
rent can be transformed into a useful inequality for
inelastic electron scattering on nucleons. This inequality
essentially states that as the incident electron energy
goes to inlnity, the sum, do z(e+p)/dq'+do z(e+rt)/dq',
of the total electron-proton and electron-neutron cross
sections is greater than one-half the cross section for
electrons scattering off pointlike (spinless) protons.

All of these results depend only on the commutation
relations (3) of the time components of the currents.
More recently, Bjorken' has derived an inequality for
backward electron-proton scattering valid for large q'
only which depends on the commutator of the space
components of the vector currents. Using the chiral

U(6) X U(6) algebra, for large q' the sum of neutron and
proton backward scattering is predicted to be greater
than one-half the result for a pointlike Dirac particle.

Both of these inequalities should soon be subject tg
direct test using data from inelastic electron scatterino
at SLAC. In fact, data from CEA and DESY already
allows a very preliminary estimate' of contributions
from the low and intermediate energy resonance region
to the inequalities for values of q2 up to 1 or 2
BeV'. In this paper we 6rst review the kinematics of
electron scattering where only the Anal electron is
detected. The relation between the invariant ampli-
tudes and the total (massive) photon-nucleon cross
sections is given, as is their relation to sums of squares
of multipole amplitudes for single-pion electroproduc-
tion. Since each experimental and theoretical paper on
inelastic electron scattering seems to try to invent a
new notation, we relate to each other some of the more
common expressions for the form factors and cross
sections used by various authors. We then consider the
sum rules and inequalities of Adler and Bjorken,
stressing the assumptions needed to derive them and
their justification. We show that the inequality for
backward scattering derived by Bjroken follows from
his original inequality (derived by an isospin rotation

e J. D. Bjorken, Phys. Rev. Letters 16, 408 (1966).
e J. D. Bjorken, Phys. Rev. 163, 1767 (1967).
J.D. 8jorken, talk given at the 1967 International Symposium

on Electron and Photon Interactions at High Energies, Stanford
Linear Accelerator Center, 1967 (unpublished).
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from Adler's neutrino sum rule) if for large q' the
longitudinal or scalar photon-nucleon total cross sections
are small (in a sense to be made more precise later) com-

pared to the transverse cross sections. Finally, we con-
sider the convergence and saturation of the sum rules
and inequalities and how that convergence depends on
q2. We discuss what can be learned from the manner of
saturation of the inequalities. Some limits on possible
modifications of the sum rules at large q' are given from
what we already know for q2 near zero, as well as from
the CEA and DESY data. For a value of q2=1 BeV',
we show that the inequality for electron scattering is
quite possibly satisfied by summing over the inelastic
scattering spectrum up to final hadron masses of 2 BeV.

II. KINEMATICS

Let us consider inelastic electron scattering (Fig. 1)
where k and k' are the initial and final electron four-
momenta, q= k —k' is the four-momentum transfer, and

p is the target nucleon's four-momentum. The final
hadronic state m then has four-momentum p„=p+q and
invariant mass squaredr W'= —(p+q)'. In the labora-
tory frame, where E and E' are the initial and final
electron energies, we have

pq/M~ =—qo E E'= (——W' —M~'+ q')—/2M~ ) (4)

and q', the invariant four-momentum transfer squared
(neglecting the electron mass) is

q'= 4EE' sin'(-'8)

where 0 is the scattering angle of the final electron
relative to the incident beam direction.

If we only observe the energy and scattering angle of
the anal electron, then we may express the double
diGerential cross section in terms of two invariant form
factors which are functions of qo and q':

dQ'dE'

4n28"
L2 sin'(st))n(qo, q')+cos'(s8)P(qo, qs)] (6a)

q4

or equivalently,

420 4mn2 E'—P2 sin'(-,'8)n(qo, qs)
dq2dE' q4 E

+cos'(ze)P(qo q')] (6b)
4xn2 1—Lsq'n(qo q')+(E' —Eqo——:q')

q4 g2
xp(q. ,q')].

The functions n(qo, q') and p(qo, q') are the vector-current

'6'e use a metric where p'=p~p„= ~p~' —po', so that p~'
= —M&-' and q'&0 corresponds to a spacelike four-vector q„.=./4 =r/i37 .

Fn. 1. The kinematics of
inelastic electron-nucleon
scattering.

parts of functions first de6ned by Adler for neutrino
scattering. ' They have a rather simple interpretation
as follows. Consider forward Compton scattering of
massive photons (four-momentum q, mass'= —q',
laboratory energy qo) 0) on nucleons, with the nucleon

spin averaged over. If we call the Feynman amplitude
for this process (e„')*T„„(qo,q') e„, where c„and c„' are the
initial and final photon polarization vectors which

satisfy e q=c' q=0, then'

ImT"(qo, q') = (qo, q') (~" q.q /q'+—P(qo q')
4z2n

p'qqs) f p'qqv
X

q' ) & q'

= (2~) Z Z y(p)lj. (o)l.)
e~ n

x(~l~.(0) l&(p))~"'(p- —p —
q)

where P,„and P„denote averaging over the nucleon
spin and summing over final states e. The lowest-lying
state which contributes to P„ is the one-nucleon state
which gives'

n(qo, q') = (q'/4Miv') LFi(q')+liF s(q')]'8(qo —q'/2M&)
= (q'/4M')LG (q')]'h(qo —q'/2M ) (S )

and

P(qo qs) —(LF (qs)]2+ (q2+2/4M+2)LF (qs)]2)

X8(qo—qs ~2M~) (Sb)

LG@(q2)]2+ (qs/4M~2)l G~(q2)]2

1+qs/4Mivs

X8(qo—q'/2Miv) . (Sc)

It is easily veri6ed that on putting these one-nucleon-
state contributions to n and p in Eq. (6) and integrat-
ing over dj', one obtains the Rosenbluth formula for
elastic electron-nucleon scattering.

Since n(qo, q') and p(qo, q') are related. to the imaginary
part of forward Compton scattering of photons of

s The quantity J„(x) is the Heisenberg electromagnetic current
operator divided by the electronic charge e. By the conserved-
vector-current hypothesis, J,(x) is just the F-spin current, i.e.,
J„& &(x) = f,„(x)

FI(q') and F2(q') are the usual Dirac and Pauli electromagnetic
form factors of the nucleon, normalized so that t&(0) =ts(0) = l,
and p, is the anomalous magnetic moment in Bohr magnetons.
Gx=t~ (q'ij/4M~')ts and Gsr=ti+pts —are the Sachs electric
and magnetic form factors of the nucleon.
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to write Eq. (6) in terms of two form factors. Drell and
Walecka" write

mass'= —q', and the imaginary part of forward
Compton scattering is related to total photon-nucleon
cross sections, we may relate n(qo, q') and p(qo, q') to
the total cross sections, 0.~„„,(qo, q') and 0~, ,(qo, q'), for
the absorption of transverse and longitudinal (virtual)
photons on nucleons. We find

dn'dZ' q4 u~
X [2Wi(q', q p) sin'(-,'8)+W2(q', q P) cos'(-,'8)j, (12)

n(qo, q') = ~~....(qo, q')
4''n

(9a) so that their functions Wi and W2 are related to n and

pby
n= Wi/Mg,
p= W2/Mg.q2

p(qo, q') = («--(qo q') —~i-.(qo q'))
4vr'n fq f

(9b)
Another commonly used expression for the cross sec-
tion is given by Hand, "who writes

where ~q ~

= (q'+qo')'" is the ma, gnitude of the labora-
tory photon three-momentum. As q' —& 0, o-&, g ~ 0
and we find

d'0 n EE'p 2
&r &o8

dl'dE' 47r2 q' E (1—e

q2

P(qo, q'), - [~~--(qo,0)3,
&'"0 4z'nq

(10) where
q2 g 2 ~N2

E= qo
— --= —

)
2' 2M~

where ot,„„,(qo, 0) is the total photoabsorption cross
section for rea/ photons with laboratory energy qo.

Ef the state e consists of a nucleon and a pion, i.e.,
we have electroproduction of a single pion, we can ex-
press ~~- .(qo,q')»d Oi,„,(qo, q') in terms of squares of
multipole amplitudes":

and

1+2(1+qo'/q') tan'(-'8)
or

cot'(-'8)

1+qo /q
(16)=2

1

Comparing with Eq. (6), we find

n(qo, q') = (X/4ir'n) 0 r,
X (&+2)

~
K+ (

'+ (&+1)'(~+2)IM(i+i)- I

'

+~(~+1)~
I
~(i+i)-I'} (»a)

E q'
p(qo, q') = — (~r+~8)

4 ' igi'and

q' 4ir j p. ) ..m.
~i...(qo, q') = ——

Ill I ..-.
As q'~ 0, o-y becomes the real photon-nucleon total
cross section, and becomes the same as ot,„„,(q0, 0)
defined in Eq. (9). Generally, Hand's cross sections
&r= (Iil~/1&)ot, . »-dos=( —~g~/'IC)~i„„. Note thatfor
spacelike q', o-~, crq, a-&„„„and —oi,„, are all positive,
as therefore are n and p.

Xg {(~+1)'Ii.i+ I'+(f+I)'ll-(i+»-I'} (11b)

where

fp. [, =([W —M —M.) j
X[W'—(M~+M )']}'"/2W

III. SUM RULES AND INEQUALITIES FOR
INELASTIC ELECTRON SCATTERING

The vector current part of the original sum rule of
Adler for neutrino scattering can be written

is the magnitude of the center-of-mass pion three-
momentum and ~q(, .=(M~/W)~il( is the center-of-
mass photon three-momentum. Note that in our notation
0~,„,(q, ,q') is negative when q') 0 (q' spacelike) so that
the quantity p(qo, q') is actually the sum of two positive
quantities in Eq. (9b) for q') 0.

There are of course an infinite number of other ways

dqo[P' '(qo, q') —P'+'(q, q') j=1.

The functions Pi+&(qo, q') are defined just as in Eq. (7)
except that in place of the electromagnetic currents
J„(0) and J„(0) we have put the isospin raising or"The relevant multipole and invariant amplitudes for pion

electroproduction are dined by S. L. Adler and F. J. Gilman,
Phys. Rev. 152, 1460 (1966).Also see the discussion of electropro-
duction amplitudes of J. D. Bjorken and J. D. Walecka, Ann.
Phys. (N. V.) Ss, 35 (&966).

"S.D. Drell and J. D. Waleck. a, Ann. Phys. (N. Y.) 28, I8
(1964).

I2 L. N. Hand, Phys. Rev. 129, 1834 (1963).

K I NEMATI CS AN D SATURATION OF SUM RULES
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lowering F-spin currents 5'ti~;s»(0) [recall that Ps„(0)
is just the isovector part of the electromagnetic currentj.
If we explicitly separate out the nucleon Horn term in
Eq. (18), we have

pv 2

[Fiv(qs))sygs~ — [Fsv(g )$'
(2MN

dao[I' '(Vo C') —P"'(qs ~')j=-1
~+ {0+51~ ) /231 N

(19)
where the superscript V denotes the fact that we are
dealing with the isovector part of the current; the
isovector anomalous magnetic moment p, ~=p„'—p,

'
=3.70. As qs ~ 0, we see from Eq. (10) or (17) that only
the first term, [Fiv(q')$s, on the left-hand side of
Eq. (19) survives, and as q' —+ 0 it goes to 1, in agree-
ment with the left-hand side.

In the derivation' of Eq. (18) only two assumptions
enter: (1) the commutation relation Eq. (3a) of the
F-spin densities, and (2) an unsubtracted dispersion
relation for the forward Compton scattering amplitudes
(which are the coeKcients of p„p„and q„q„ in the ex-
Pansion of T„„)corresPonding to P(gs, qs). It is of course
the second assumption which is most open to question.
However, we note the following:

(a) The fact that as qs —& 0 the left- and right-hand
sides of Eq. (19) as it now stands automatically be-
come equal rules out a q'-independent subtraction. This
just means we have done nothing grossly wrong, e.g.,
introduced a kinematic singularity in q' in one of our
amplitudes.

(b) The assumption of an unsubtracted dispersion
relation for the amplitude corresponding to P for two
axial-vector currents, together with Eq. (3c), leads at
q'=0 directly to the Adler-Weisberger sum rule, '" so
it is very unlikely that there is a q -independent sub-
traction there either.

(c) Consider the derivative with respect to q' at
q'=0 of Eq. (19). From Eq. (10) we know that,

P' '(Vs, C') —P'+'(Vs, V'), -
F2~0 2&2+ qo

dao[I.(ss,s')+P.(zs, r') j&s, (22)

where P„and P„correspond to electron-proton and
electron-neutron scattering, respectively. Equation (22)
is only an inequality, both because we can say nothing
about the contribution of the isoscalar part of the
electromagnetic current from the commutation rela-
tion Eq. (3a) or the sum rule Eq. (18), aed because
o(y +E—& I= ss) &0. In fact, at q'=0 where only the
proton Born term contributes, the left-hand side of
Eq. (22) is equal to one, i.e., twice the right-hand side,
since one-half the nucleon's charge is isoscalar, about
which the sum rule Eq. (18) has no knowledge.

Equation (22) is just the inequality for inelastic elec-
tron scattering 6rst derived by Bjorken. If we integrate
over dF.' (=—

dies) in Eq. (6b) and. let F.—&~, we can
rewrite the inequality as

lim
g ~oo

0

—(d'o, r d'a. )—
+I

—(dgpdtt (dgpdg i

(do.„ do„) 27ras
=iim

/~""
(des dqsl

(23)
q4

final states and which come from the isovector part of
the "real photon. " Taking the derivative of Eq. (19)
with respect to q' at q'=0 we then find

dFt (g ) f p l 1 dies
+( i+

~ a~=0 (2~/ 2~ rr &~+sr„ /2M gs

[2ar(yv+p~ I s) rrr(7v+p~I $)j 0 (21)

This is of course just the Cabibbo-Radicati sum rule. "
If there was a qs-dependent subtraction in Eq. (19), the
right-hand side of Eq. (21) would presumably no longer
be zero. The fact that Eq. (21) appears to be satisfied" "
as it stands then sets limits on such a subtraction
constant. We will return to this point in Sec. V.

Let us assume for the moment that Eq. (18) [or
equivalently Eq. (19)$ is true as it stands. Then, since

2(P„+P ))Pt l+Pt+')Pt ' —P&+&, we can derive the
inc quality4

q
X [~&(~-+x)—~&(7+ye) j=

2Ã Q' qf)

X [2ar( i +p ~ I= ', ) ar(y "+p~I=-s—)], (2o)

which is just one-half the result for do/dg' for a point
(spinless) particle. The assumptions needed to derive
Eq. (22) or (23) are of course just those needed to derive
the sum rule Eq. (18).

where o.r(y +1V) and os(y++Ã) are the total, trans-
verse cross sections on nucleons of the fictitious
massless photons" y and y+ which correspond to
the isospin indices (1&i2)/v2, while o.r (Vv+ p —+ I=—,')
and .

(ayr+vp-+I= s) are the total, transverse cross
sections on protons which correspond to I=

& and I=
&

"S.L. Adler, Phys. Rev. Letters 14, 1051 (1965); W. I. Weis-
berger, ibid 14, 1047 (1965). .

4 S. L. Adler (unpublished), and Ref. 3; J. D. Bjorken (un-
published), and Phys. Rev. 148, 1467 (1966); N. Cabibbo and
L. Radicati, Phys. Letters 19, 697 (1966); R. F. Dashen and M.
Gell-Mann, in ProceedAzgs of the Third Coral Gables Conference on
Symmetry Principles ut High Energy, edited by S. Kursunoglu,
A. Perlmutter, and I. Sakmar {W. H. Freeman and Co., San
Francisco, 1966).

~5F. J. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362
(1966).

S. L. Adler and F. J. Gilman, Phys. Rev. 156, 1598 (1967).
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Bjorken's second. inequality, however, depends on
diferent assumptions. It reads'

lim q
Qm ~00

dq0

, [~.(qp q')+~. (qo q') j& s,
qp

(24)

where n„and O.„correspond to electron-proton and
electron-neutron (backward) scattering, respectively.
The right-hand side of Eq. (24) depends not on Eq. (3),
but on the commutator of two space conoponelts of the
currents. The number ~ on the right-hand side of Eq.
(24) corresponds to the U(6)XU(6) chiral algebra. It
would be zero if the nucleon's isospin was carried (for
large q') by spin-0 objects. As it stands, Eq. (24) predicts
that at large q' the sum of proton and neutron backward
scattering should be greater than one-half that of a point
Dirae particle.

q2

ors(qo, q') & o' r(qo, q'), —
qo

(25)

then Bjorken's inequality for backward scattering using
chiral U(6)XU(6) algebra follows from his original
inequality derived from Adler's neutrino sum rule.
This follows trivially since if we write Bjorken's original
inequality as

~qoP(qo q )

and use Eqs. (17) and (25), we have

00

dqo (rrr+ors)
4ws~ (tI (

s

E q' |' q'
&qo — —

~

+-
4orsn qs+qos k qp' )

dqpP(qo, q') =

& lim
@~~00

0

E q'
1&m dqo

p 4x'a qp2

&lim q
Q2 ~00

dqe
o.(qp, q'),

qo
(26)

'r We write Eqs. (25) and (26) without explicitly indicating that
&hey are only supposed to bc: true for the sgm of electron-proton

IV. RELATION BETWEEN THE TWO ELECTRON
SCATTERING INEQUALITIES

It is clear from the kinematics presented in Sec. II
that if a.~,„,or os=0, then, since in that case u and. P
would only depend on ~o„„,or o r, n and P are related by

2

P(q p, q') = n(qp, q') .
q +qo

The two inequalities presented in Sec. III are then
related. %e in fact now show the following'~: If, for
all qo and q' —+~,

the last line of Eq. (26) being just the inequality for
backward scattering derived using the chiral U(6) X U(6)
algebra [Eq. (24)].

Thus, the inequality for backward scattering which

depends on the commutator of two space components
of the currents also follows from the original electron
scattering inequality (which depends on the com-
mutator of two time components of the currents) plus
Eq. (25). It of course remains to establish the validity
of Eq. (25). For the nucleon, dropping a common factor
[including a li(qp —q'/2M')g, we have ors=[Gs(q'))'
and oT= (q /4M~ )[Gst(q )g so that Eq. (25) is true if

q2

[G.(q)j ="&
(q'/2M ') '

This appears to be true experimentally for both the
neutron and proton for at/ q'. In the region of the
Ã*(1238) resonance, recent data" indicate that Eq. (25)
is true up to q' 1 BeV' with gg consistent with zero
above qs~0.4 BeV'. Thus Eq. (25) appears to be true

for the nucleon and up through the region of the
E*(1238).At higher energies there is presently a con-

clusive lack of data on a 8.

V. CONVERGENCE AND SATURATION OF THE
SUM RULES AND INEQUALITIES

Before discussing in detail how the various integrals
in the sum rules and inequalities are (or are not) satu-
rated by a few (or many) resonances, we might well ask
whether the integrals converge at all. For Axed q', we

see from Eq. (9) that for large qp,
"

rr(qo, q ) oc qpororono(qo&q ) &

P(qo, q') "(1/qo) [«--(qo q') ~t-.«o q') j
where g (qp, q') is a total (massive) photon-nucleon cross
section. Thus for large qo, Adler's sum rule behaves as

dqy
[~' '(qs q') —~'+'(qo q') j

qo

where a& ' and a&+& correspond to antineutrino and

and electron-neutron scattering. Also, the same argument goes
through if we have [e n (to,oq)o( q&o(qo/qoo)noosns(qo, q') for ail qo
and q' —+ ~. We have used Hand's cross sections O.q and O.z only
because the experimental data are usually translated in terms of
them.

8 H. L. Lynch, J.V. Allaby, and D. M. Ritson, Phys. Rev. 164,
1635 (1967).

"Independent of sum rules and inequalities, it vrould be very
interesting to have experimental data on the total (massive)
photon-nucleon cross section ( oq q)ofoor large q' and various
values of qo. We might then answerer directly questions considered
here like: As q0

—+ , do the cross sections approach a constant? Are
the total cross sections q'-dependent? If they are q'-dependent, do
they behave in a vray understandable from vector-meson-domi-
nance models? Do the longitudinal and transverse t;ross sections
behave differently?
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neutrino cross sections or to the cross sections of
fictitious p and y+ photons. By the Pomeranchuk
theorem, these cross sections approach each other as

qp
—&~, and therefore, the integral converges. In fact,

one expects in a Regge theory of high-energy scattering-
that

0 ( ) 0 (+)
qp

(p)

where n, (0) is the f= 0 intercept of the p Regge trajec-
tory and is numerically about 0.5.

For Bjorken's two inequalities, however, we have an
integral like

dqp
0'y On )

qp

where o„and o are total (massive) photon-photon and
photon-neutron cross sections. If o.~ and 0-„approach a
constant as qp~~, as we naively expect them to do,
then the ietegrals ie Bjorkerl, 's ieeqlaHties diverge

logarithmically. Thus the inequalities for inelastic elec-
tron scattering are trivially satisfied if we integrate to
high enough values of qp.

What then can in fact be tested by the inequalities?
What ca22 be tested i s sPecific models for the saturation of
the integral in the inequalities, such as saturation by a
few resonances Gr by states in a "quasielastic peak. "'
It is of course a perfectly definite and testable model to
ask if the inequalities hold when we only integrate to
say qp=5 BeV or to where there are no longer any
bumps in the inelastic scattering spectrum. "If such a
simple model in fact works, we will have learned a great
deal about the structure of the nucleon. If such a
sPec2fic model does 22of work, however, we ca22 not 2m

@mediately say that the ieeqlaHty is vrrorsg or that Adler's
eeutrieo slm rile is mrorIg. It may be that Adler's sum
sum rule (and therefore the inequality) is sa, turated at
large q' only when we include a substantial part of the
high-energy tail. It may also be that Adler's sum rule is
plain wrong at large q', but we will be unable to tell
this by looking at the electron-scattering inequality be-
cause it diverges and will be satisfied simply by integrat-
ing to a large enough value of qp. However, since two
times the integrand in the inequality, Eq. (22), is an

upper bound on the integrand in the Adler sum rule,
Eq. (18), for each value of qp (and q'), and if the satura-
tion of the inequality by the resonance region is so poor
that we have to integrate to, say, 10' BeV to satisfy the
inequality, then the Adler sum rules are essentially
useless, even if they do finally converge.

For small values of q', the convergence of the P sum
rule has been studied by Adler and Gilman" who write"

/ qp qp
EP' '(qo q') P—'+'(qo q2)]

E 2E'

= 1+F2(E)(q'/M2r')+O((q /M&'))' (29)

This agrees with Eq. (18) at q'=0, but differs else-

where. It in fact corresponds to a q'-dependent sub-

traction constant of the form q'(2M'+q')/(M'+q')' in

the (massive) photon-nucleon forward Compton scatter-
ing amplitudes corresponding to P(qo, q2). If we take the
derivative with respect to q' a,t q'=0 of Eq. (30), we

obtain a modification of the Cabibbo-Radicati sum
rule

I Eq. (21)):

dF v(q2)
' ~v 22, +dq, q2 p 2M

M2r+~or 2/2M

I:~~r(V'+P ~ I= 2)

~r(V "+P~ I= 2)j= (2/M') (31)—

Available photoproduction data, which show that the
Cabibbo-Radicati sum rule is well satisfied"" (see
Table I), then limit2' M&1.7 BeV,i.e., greater than a p-

meson mass by better than a factor of two. Such
arguments, of course, apply only to subtraction con-

so that the P sum rule, Eq. (18), becomes the statement,
that if we take the limit of both sides of Eq. (29) as
E—& ~, then F2(E) ~ 0. Using existing photoproduction
data and assuming that F.(E) —+@„„0,it was shown"
that F2(E) is negative and that its magnitude is less
than 0.5 for E&5 BeV. Thus for small q' (say, q'=0. 1

BeV') we find the sum rule is satisfied to within a few

percent with an incident energy of 5 BeV. Note that,
although our expansion in powers of (q'/M~') is
strictly only good for small q', we would not be greatly
surprised from the value F,(5 BeV)~—0.5 if for
q2~M&2 we only obtained a 50% saturation of the
sum rule for 8=5 BeV, q'=M~'.

The data at or near q'= 0 also limit possible modifica-
tions of the P sum rule, Eq. (18), Suppose, for example,
we guess that Eq. (18) should be replaced by"

M2 )2
dqoLP' '(qo, q') -P'+'(qo—,q')) =

I I
(30)

&M2+q2)

'It is clear that if we integrate to some fixed mass lW of the
final hadron state, the inequality will no longer be satisfied if we
increase (t' sum. ciently, because the contribution of any given
resonance or finite sum of resonances is expected to be strongly
damped at large g2. One possible way the sum rule or inequalities
might be satisfied is for the region of bumps in the inelastic cross
section to move out in 8' as g' increases. This of course would be
very interesting to look for experimentally (see also Ref. 6 in this
connection).

"The extra factor of (1—
qp E/+qp' 2/E )2is related to the fact

that the authors of Ref. 16 were interested in the convergence of
do (7+X)/dq2 do (y+Iir)/dq' —and the extra factor comes from the
connection of the double differential cross section to a and P,
Eq. (6)."The author thanks D. Ritson for a conversation on this point

2' The limit on M is obtained by neglecting the contribution of
the high-energy tail in Table I and attributing it to the —2/3E on
the right-hand side of Eq. (31).
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TABLE I. Contributions to the Cabibbo-Radicati sum rule,

dP~F(go) ~F 2 1 dqo

dq', p-0 2&x 2x'u M +u '&mz qo

Xr&arh~+P~ I= ') a-T(—Y +P~ I=2)j=o

2L~F~'(V')/~a'8l o'-o
(p ~/2M~) '
S-wave(Zo+)
ar*(1238)
E*(1520)
or*(1688)

High-energy tail starting at q0=1.1 BeV to
make sum rule satisfied

—1720 pb
+1520 pb
+600 p,b—1200 yb
+400 p,b
+100 pb

+300 pb

See Refs. 15 and 16 for details.

stants which depend on q2 linearly, i.e., we can say
nothing using the above arguments about subtraction
constants that behave like (q'/M')' as q' ~ 0.

Let us now look brieQy at what the existing data on
inelastic electron scattering"' " say about the in-

equality for q2= 1 BeV2. In Table II we have calculated
rough values for P~(qo, q'=1 BeV') at the peaks of the
known resonances extracted mostly from the recent
DESY data. "We see that p~(qo, 1 BeV') is slowly de-
creasing but has a mean value of ~0.2/BeV in the
resonance region. As the valleys between the resonances
are rather shallow P~0.2/BeV gives a fair estimate of
the integrand of the sum rule. Integrating from thresh-
old (W =M~+M, qo=0.68 BeV) to around the region
of the E*(1920) (W=1.92 BeV, qo=2.02), we 6nd

TABLE II. Values of P(qo, g'= 1 BeV') at the peaks
of the known pion-nucleon resonances.

gp (BeV)

0.88(W = 1238 MeV)
1.28(W = 1512 MeV)
1.58(W = 1688 MeV)
2.02(W=1920 MeV)

P(ge, 1 BeV')

0.26/8eV
0.25/8eV
0.22/BeV
0.13/BeV

and the inequality is roughly satis6ed by integrating
over the resonance region.

It is of course clear that if we increase q2 much higher
(to say 2 BeV') the contribution of the low-mass region
considered above will decrease and the inequality will
no onger be satis6ed by considering only this region.
For information on what it takes to satisfy the in-

equality for large values of q2 we must await the outcome
of experiments underway at SLAC.

Assuming a similar value for

2.02

dqoP~(qo, q'= 1 BeV'),
0.68

(which seems to be true at least for q'= 0) and adding
on the Born-term contribution, which is ~0.j., we 6.nd

2.02

dqoLP„(qo, 1 BeV')+P„(qo, 1 BeV')$~0.6,

2.02

9.88

dqoP„(qo, q'= 1 BeV')~0.25.

'4 A. A. Cone et al. , Phys. Rev. 156, 1490 {1967)."F.W. Brasse et a/. , DESY Report, 1967 (unpublished).
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