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Covariant Theory of the Disintegration of the Deuteron by Pions
and Photons at High Energy*

D. J. GEORGE]

Institute of Theoretical Physics, DePartrnent of Physics, Stamford Unkersity, Stanford, California

(Received 11 September 1967)

A covariant form of the Austern model of the disintegration of the deuteron is developed within the
framework of relativistic perturbation theory. It is shown that the model reproduces the recent polarization
and asymmetry measurements, but suffers from the same defects as the noncovariant calculations.

1. INTRODUCTION

~ ~ ~ ~

~

HEN the first cross-section results for photo-
disintegration at high energy became available,

an enhancement at about 300-MeV laboratory energy
was seen. It was natural to associate this with the
enhancement seen in the xE system which is now called
the A(1236). Austern' and Wilson' suggested a de6nite
model for the e6ect. They considered that the enhance-
ment was because of the process shown in Fig. 1.

Their cross-section estimates were in reasonable
agreement with experiment except that the peak
occurred at slightly too high an energy and the differ-

ential cross section was too large in the forward and in
the backward directions. A few years ago, Gourdin and
Salin' calculated the cross sections for photoproduction
off nucleons and elastic zS scattering using the isobar
method. This treats the resonance as an elementary
particle with a complex mass. They obtained excellent
agreement with experiment. No attempts at a formu-

lation of the photodisintegration using their method
was attempted at that time, probably because of the
very complicated y algebra involved. The reason such
a calculation is now possible is that computer programs
which can perform y algebra are now available. 4

Liu' ' has measured the asymmetry and the polari-
zation in photodisintegration. In the case of the asym-

metry he obtained rather bad disagreement with the
existing theory of Partovi. 7 Liu Inentioned in his paper'
that he believed meson sects to be the cause of this
disagreement. Indeed, we think we can explain his

results with the present model.

When the theory of the photodisintegration had been
formulated, we found that we had two parameters
which had to be 6xed by experiment. The photo-
disintegration data has an unusual amount of spread
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and so we decided to calculate pionic disintegration and
use that data to fix our parameters. Then armed with
the values from pionic disintegration we could judge
between the rival sets of data on photodisintegration.

The diagrams (Figs. 2—4) which we use to describe
the disintegration processes are simply those which are
valid in the low and intermediate energy range as
discussed by Le Bellac et al.' and Vasavada, ' together
with the resonance diagram corresponding to the
Austern model. No other graphs are known to play any
signi6cant part at these energies.

2. METHOD AND NOTATION

The method we shall employ is relativistic perturba-
tion theory. The justification for this is the belief in
nearest singularity dominance. Many authors have
used this so-called isobar method and we can feel fairly
confident of the results.

A. Kinematics

The metric, y-matrix convention, and similar things
are treated in Appendix A. The 4-momenta of the
external particles are labelled by Fig. 5. They are, in the
center-of-mass (c.m. ) system,

d=(d'; —k), pr=(E p)

h= (h'; k), ps ——(E; —y).

The Mandelstam variables are

s = (0+d)'= (pr+ p,)'= 4E',
t= (tt —pr)'= (d—ps)'= M'+rn' —2(d'E —p k), (2)
st= (&—Ps)'= (d—P )'= M'+nt' —2(d'E+y k).

Ke shall also use

=p pP)

3=ps/~s,

s= cos8,

o =tt'/nt',

q =nt*/nt.

An important scale factor is 0., where n'= MB and 8 is
the binding energy of the deuteron. In the definitions

8 M. Le Bellac, F. M. Renard, and J. Tran Thanh Van, Nuovo
Cimento BB, 594 (1964); 34, 450 (1964).' K. V. Vasavada, Ann. Phys. (N. Y.) 35, 191 (1965).
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of the invariant amplitudes we shall use

0= 2 (Pi+P2),
~=l(P —P )

B. Invariant Amplitudes

In the usual way, the T matrix is defined by

sr; 8/;+——Pi/(27r)']PtP1/(4k'd'F. ')'"j
X8&'&(k+4 pi —p2) T—r, . (5)

Then the T matrix can be expanded:

Tf;——u(pi)p H, (s,t,n)I~Cu~(p~),

where C is the charge-conjugation matrix which has the
value yoy2, B; are the invariant coefficients, and I; the
invariant amplitudes.

The invariant amplitudes for photodisintegration are
taken from Le Bellac et al. and given in Table I(a) for
reference. The invariant amplitudes for the pionic
disintegration of the deuteron in Table I(b) are slightly
diferent from those chosen by Vasavada. They have
greater similarity to those of photodisintegration and
also seem to give simpler coefFicients. Also in Table I
we give the sylnmetry of the I; under the interchange
of pi and p2. Denoting such an interchange by a prime,
we 6nd

Ii= &ili ~

C. Helicity Amplitudes

In Appendix 8 we show how the helicity amplitudes
Ii;+ are defined and how they can be calculated from the
invariant coefficients.

The asymmetry Z(8) is defined as

&(8):Lda'/d& Ii do/d& I r r 1/Ldo'/d& I
i+do'/dfl

I »j (8)

where the subscripts J and
~j

refer to photons polarized
perpendicular and parallel to the production plane. In
terms of the helicity amplitudes it can be shown that

~(8)= 2 ReP1&8- +F1-F8+ F2+F2— F4+F6-
—F~6+*+F5%5 'j/2 IF' I' (-9)

FIG. 2. The deuteron-pole diagram. As explained in the text,
this diagram only appears in photodisintegration.

The polarization F (8) of the proton in the final state is
defined as

F(8)= LZ~/do
I & d~/de

I
&—]/La~/de I &+d~/de I &j, (10)

where the subscripts f and $ denote protons polarized
up or down with respect to the production plane. It is
then easy to show that

F(8)= 2 Im[Fi~F4p*+Fi F4 *+F,~,+.
*

+F~ F5 *+F~+-F6+-*+FM~*j/2 IF'. I' (ll)
for photodisintegration, and that

F(8)=2 ImLFi+Fp+*+FiW2 *+Fg+Fg *j/Q (F;.('
(12)

for pionic disintegration. Finally, the cross section is

do m~ p 2

dQ (8~E)'k J '=i .=+

where J, the spin multiplicity of the initial state, has the
value 6 for photodisintegration and 3 for pionic dis-
integration.

3. VERTICES AND PROPAGATORS

A. de Vertex

This has been treated extensively in the literature'
and we shall just quote the results. For a deuteron of
polarization vector U decaying into two nucleons with

FIG. 3. The nucleon-pole diagram.

FIG. 1.The Austern model. In this diagram, as in Figs. 2—5, the
solid lines represent nucleons, the double lines represent deuterons,
the wavy lines represent photons or pions, and the broken lines
represent pions. The shaded area here represents the resonant
process.

' R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745
(1960); J. Tran Thanh Van, Nuovo Cimento Bo, 1100 (1963);
M. Gourdin, M. Le Bellac, F. M. Renard, and J. Tran Thanh
Van, ibH. 37, 524 {1965);I. J. McGee, Phys. Rev. 158, 1500
(1967).
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FxG. 5. The general-
reaction diagram.

Qp

FIG. 4. The resonant diagram. In this case, the combination
solid/wavy line represents the n(1236). The shaded area repre-
sents the Selleri-Ferrari pion factor.

relative momentum g we have

1'~sr~ F(~U ——bU q)w—(q'), (14)

where Ii is a coupling constant and has the value
(87r/m)'~'E, where E'=155.8&5.7 MeU; w(q') is a
form factor

C. Lk Vertices and Propagators

Gourdin and Salin' showed that the dominant AS'
and ASy couplings are

H;.&
——() /p) (4A a~y.+ H.c.), (21)

H'- = («/p—)(4v.v 4.+H c )f"" (22)

They gave X= 2.07 and C3——0.37, but a reanalysis of the
data by Dalitz and Sutherland" indicates A, = 2.16 and
C3——0.29, and these are the values which we use.

The one-pion-exchange picture of AX —+ EX must
be modi6ed by the Ferrari-Selleri" form factor

te (q2) (P2 ~2)/(P2+ q2) P 5 1 8rr ~ (15) F(t) =A —Bp'/(t Cp')— (23)

a and b are two constants

g= 1+p/V2, mb= 3m'p/vs'+-, 'a, (16)

where p is the D-state mixing parameter. From static
properties of the deuteron p is inferred to be about 3%.

This vertex function (14) is not exact. The approxi-
mations implied by such a vertex are discussed in
Ref. 10.

B. Nucleon and Deuteron Vertices

There are two types of SEp vertices. The Dirac
coupling is

where A =0.28, 8=3.42, and C=5.75. This was included
to estimate sects of Anal-state interactions. It does not
signihcantly aBect the results of the calculation.

The 6 propagator is still in dispute. We shall use'the
one proposed by Mohan and Agarwal" which is the
most direct generalization of the nonrelativistic spin-~
projection operator. It is

P „(R)/(R'—m*') P, (R) = L
—s

(g „RR„/m*')—
+ (i/3m*) e„g,.ps'"R'j (R+m*) . (24)

The results of the calculation are not sensitive to which
propagator is used.

H; g=e(Py elt+H. c.), (17)
4. BACKGROUND TERMS

where H.c. means Hermitian conjugate. The Pauli
coupling is

H;„,= (e~/2m) (lt k7 eP+H. c.), (18)

where ~, the anomalous magnetic moment has the
values sc„=1.793 for the proton and a„=—1.913 for the
neutron.

The well-known /Ex vertex is

H;&'& =4FpgmR;('&/(s M'), —
and then the only nonzero E.; are

(25)

These have been calculated in the papers of Le Bellac
et al. and Uasavada. The deuteron pole graph (Fig. 2)
occurs only in photodisintegration. We write the in-
variant coeKcients:

H;,=g gygk+H. c.), (19) (26)
with g'/4s-= 14.5.

Sakita and Goebel" showed the ddt vertex to be
given by

(U'd'~H; g
~
ek; Ud) = —e[U' Ue (d+d')

—2pg(e Uk U' —e U'k U)]) (20)

with p, &=0.8576. Quadrupole-type terms have been
omitted as they are very small (see, for example,
Ref. 8).

"B.Sakita and C. Goebel, Phys. Rev. 127, 1787 (1962).

The nucleon exchange graphs (Fig. 3) contain the
factor

1/D(t) =w(q')/(t —m') =1/(t™)—1/(t —P"), (27)

where P"=m'+2(P' —n'). Then we can write for the

' R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(t96u).

'3 E. Ferrari and F. Selleri, Nuovo Cimento, Suppl. 24, 453
(1962); Nuovo Cimento 27, 1430 (1963).

'4 G. Mohan and S. C. Agarwal, Nuovo Cimento 37, 431 (1964).
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TABLE I. Invariant amplitudes. R,(»=mb,
R4"&=amo/Q k,
Rg~» ———,'mb,

Ro~'&=mbq k/Q k, Roi"= m—'b/Q 1~

R5(3) —g R,(»= ——,'mb8 g )

R~, (»= —a. (31)
(a) Photodisintegration

1 (1/2m')(e qk U —e. Uq k) +
2 (1/2m')(e Uk. Q —e Qk U)
3 (1/m')(e qk Q—e Qq. k)U q

4 (1/m')ic qk Q—e.Qq k)U
5 (1/2m) (e Uk —k. Uy. e) +
6 (1/2m')((e Qi't —k Qy e)U k —2(e qk —

q kp e)U q) +
7 (1/2mm) ((e qk —

q ky e) U k+2 (e Qk —
Q kp. 6) U q)

g (1/4m')[v. ~,k)U k +
9 (1/2mo)[y e k]U q

10 (1/2m')([U, y e]q .k [U—,k)e q+2e QU k —2e UQ k}
11 (1/2m~)([UY e]Q k —[Ukase Q+2e. qU k —2e Uq k} +
12 (1/2m)ipse'"I"yak, c„U,

(b) Pionic disintegration

1 (1/2m)p5U k

2 (1/m)y5U q

3»U
4 (1/2m) f5[k, Uj
5 (~/2m~)»U ~A.

6 (1/m')ypU qk

isovector and isoscalar parts of H;

H;vt"&=2mG& t"&R,t"&[1/D(t) —e;/D(u)], (28)

H.st+& 2mGs "R, "'[1/D(t)+e~/D(u)], (29)

where Gq'") and Gy(") are the scalar and vector coupling
constants for process n. For the pionic disintegration
Gy(') =42gIi and Gq(') =0. Then we find the nonzero
R, ('~ to be

R t'&= —a, R4io&= —-',a, R ('&= ,'b, R'o(=&-,' .b(—30-)

In the case of photodisintegration we treat the two
types of SSp vertices separately. For Dirac coupling
Gy&'~=Gq~»=eIi. Then for the nonzero R;&» we find

It should be noticed that Le Bellac et al. give R~(') as
—mb but we disagree with this value.

The Pauli coupling has Gs'4& =m(lr„+It„)F and
G& "&=m(lr„Ir„)—F For. the R, &4& we find

R2(4) = —mb,
R6("= -'mb,

Rgg(" = —,'a
)

R &') =-,'mb,
24t4& = ——',mb,

Ri2 t4& = a+ q'—b/m.

R5(4) =a )

Rio'4& = —,'(a —mb),

(32)

5. RESONANT TERMS

A. Energy-Denominator Integral

In order to calculate the resonant terms (Fig. 4), we
must make two simplifying assumptions. The first
assumption is due to Austern. It is that the inter-
mediate particles are at almost at rest. In terms of the
momenta shown in the diagram,

le I« lk I (33)

This assumption is only Tnade in the denominator;
while in the numerator where we wish to keep every-
thing covariant we make a slightly different assumption,
i.e., that

qy= (2= ~d. (34)

It will be seen below that only values of —(qi —qo)'((100 MeV)' contribute to the integral and so this is a
reasonable assumption.

Kith these assumptions we have to evaluate

1 d'V tt& (U')F (qoo)—z )D' (2m-)4 (R'—m*') (qro —m') (qoo —m') (qoo —p')
(35)

where V—= —,'(qi —q,).
Details of the integral can be found in Appendix C.

The result is

1

D' 2''
{&+Ilu'/[2m(& —m)+ (C+1)p'])[ii.—n arctan(A/rr)]

2 [(do+k' — )'— *']I:2 (R— )+t '] (36)

B. Resonant Pion Disintegration

In this case we can write

H;"&= ', V2(gX'F/-ti') (2 /Dm')Rg ' v(, &(37)
where R;i'»'=—R;"&(s,t,u) —e;R;"&(s,u, t) The factor. 4

comes from isospin considerations as explained in
Vasavada. In order to find the R, (5)~ we have to split
E(5& into invariants where

1V" =u(p ) (R—p )&F (R)k"

X (-,'d+m) U( ;d m)yoC-ur—(Po), (38)

After a considerable amount of algebra, we find the
result shown in Table II(a).

C. Resonant Photodisintegration

The invariant coeKcients can be written

H;io& = 2(+~a)ge(CoX—F/u') (2m/D')R;"& (39)

where, again,

R i' =R' (s, tyu) e;R ( (s—iu, t). —
In this case the numerator is

where

R= —',0+k= —,'(pi+ po+1}).

1V&o& = 2mu(pi) (R—pr)&p„„(R)f"&y, (-', d —m) UCur(po) .
(40)
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TmLz II. Invariant coefBcients.

(a) Invariant coeffrcients in resonant pionic disintegration
1 0

(2wm'/3n') 9(1—y) —
n (1+3n+2n') j

(m4/+2)I 2 (2+q q2)y2+ (4+Sr' 3~2)oy 2q (1+~)0$
(2wm4/3n') b(1—y) —n (1+3n+2n') 3

5 (—m4/12rP)I 16'(1+q)+4y(2+s') —(1 7r—i)~g 8y—' 8a—yg
6 (—wm4/3vP) I 2y+q (1—Sg)j
(b) Invariant coefficients in resonant photodisintegration

1 (gm4w/3') (1+3g')
2 (—4m4/3') (2+q+3vP+4P) —(4m4y/3q') (3+4rl+&P)
3 —Sm4

4 (2m4/3g') (2+ri+SrP+4rP)+ (2m4y/3q') (3+4')
5 (—m4w/3q) (1+3ri+2g')+ (2m4yw/3') (1—2q)
6 0

(2m'/3n') (2—~ —3n')+ (2m'y/~')
8 (2m4w/3q~) (2+re —11q~+10y)
9 (2m4/3gs) (2+g —Sqs —4')+ (2m4y/3') (11—g —am)

10 (2m4/3g') (2+3g—g' —8g') + (2m4y/3v') (7+4'—6g'+tsP)
11 ( 2m4w/—3g') (2+2v+2rP 3y')—
12 (2m4/3 P) (75 —7g 21qs 9—qs 9r—ly')+—(Sy~m4/e')

The algebra in this case is so prohibitive that a computer
was programmed to perform it, as explained in the
Introduction. In the program, the Pi and Ps were
eliminated and then each term in the sum is of the form

X&""f„„U&, or X~"'j„„U„k, (41)

where I&""is a tensor made up out of linear products of
pi„, ps„, g„„, and y„. Each possible X&"" not eliminated
by symmetry, must then be expanded in terms of the
invariants. The result is shown in Table II(b).

6. COMPARISON WITEI EKPERIMENT

A. Background

It will be seen from Figs. 6 and 7 that it is impossible
to achieve agreement with experiment for a value of p
greater than 0.6%%u~. There are a number of possible
explanations.

22

18

16

l4

I2

Io
b

0 20 40 60 80 IOO I 20 I40 I 60 I80 200
E~ (MeV)

FIG. '?. Same as for Fig. 6 but for pionic disintegration.

First, the Hulthen wave function cannot be correct
for the D state of the deuteron because it has the wrong
behavior in real space in the vicinity of the origin.
However, it is doubtful that it could be so incorrect as
to produce such a large discrepancy. If a different
D-state wave function is assumed which does have the
correct behavior, as was done by Le Bellac et al. , three
extra parameters are introduced. With the choices made
by Le Bellac et a/. , it is still not possible to obtain a good
fit in the high-energy region.

Secondly, when we wrote down the ding vertex, we
neglected terms which vanish in the limit q'+n' —+ O.

These terms are not negligible, as they are in the low-
and intermediate-energy ranges, but we have no way
of calculating them.

Finally, it is possible that final-state corrections are
to blame. This is unlikely as the phase shifts for pp
elastic scattering, which would be used for a distorted-
wave Born calculation, are relatively small. No amount
of final-state correction could produce the 80% reduc-
tion of background necessary to obtain a good fit with
experiment.

Lacking ways to overcome these three faults, we use a
phenomenological adjustment of the D-state admixture
parameter p. It is gratifying that the same value of p
can be used to fit both types of disintegration.
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250

Frc. 6. The calculated background cross section compared with
the experimental results for the total (i.e., including resonance)
goosy section for photodisintegration,

Fro. 8. The pionic disintegration total cross section as a function
of the energy of the pion in the c.m. system.
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FIG. 10. The proton polarization at 90' in pionic
disintegration as a function of energy.

The pionic disintegration total cross section and
diQerential cross section are well itted up to about
180 MeV. This energy marks the approximate threshold
for two-pion production which is the probable ex-
planation for the failure of the theory in this region.

The polarization points in I"ig. 10 are taken from the
inverse reaction, pp ~ x+d and are fairly well fitted.
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FIG. 9. The pionic disintegration differential cross section as a
function of angle at various energies: (a) E =40 MeV; (b)
E =76 MeV; (c) E =140 MeV; (d) E =180 MeV.

B. Total Calculation

In order to achieve peaking at the correct energy we
have to use a resonant mass of 1190 MeV instead of
1236 MeV as indicated by photoproduction. The reason
for this is not known but has been noticed by other
authors.

The cutoff h. is taken as 2.60 n which is close to the
value 2.53 o. used by' Barshay. "Then the results are
presented, in Figs. 8—14. (See Refs. 16-31.)

"S. Barshay, Phys. Rev. Letters 17, 49 (1966).
'6 R. Durbin, H. Loar, and J. Steinberger, Phys. Rev. 84, 581

(1951).
H. L. Stadler, Phys. Rev. 96, 496 (1954).

's C. E. Cohn, Phys. Rev. 105, 1582 (1957).' M. G. Meshcheriakov and B. S. Neganov, Dokl. Akad Nauk
SSSR 100, 617 (1955)."B, S. Neganov and L. B. Parfenov, Zh. Eksperim. i Teor.

FIG. 11.The photodisintegration total cross section as a function
of the energy of the photon in the laboratory.

Phys. 34, 767 (1958) /English transl. : Soviet Phys. —JETP 7, 528
(1958)g.

"A. M. Sachs, H. Winick and B. A. Wooten, Phys. Rev. 109,
1733 (1958).
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Proceedings of the International Symposium on Electron and
Photon Interactions at High Energy, Hamburg 1965 (unpub-
lished).

~ G. Barbiellini, C. Bernadini, F. Felicetti, G. P. Murtas, and
Frascali, in Proceedings of the International Conference on Low
and Intermediate Energy Electromagnetic Interactions, Dubna
(USSR), 1967 (unpubhshed).
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In the proton polarization we get qualitative agree-

rnent (Fig. 14) though again there is failure at the
highest energy.

The reason that the polarization results are better
than the asymmetry results probably lies in our approx-
imation of the integral in Eq. (35). The polarization is
independent of the value of this integral so long as the
resonance dominates. All the helicity amplitudes are
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Fzo. 12. The photodisintegration differential cross section as a
function of angle at various energies: (a) kr, =40 MeV; (b)
kr, =260 MeV; (c) 4,=300 MeV; (d) 4, =390 MeV.
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With the values of m*, p, and A taken from pionic
disintegration we plotted the photodisintegration re-

sults of Figs. 11—14. The differential cross section is

predicted to have large forward and backward scatter-

ing, a fact which is not borne out by experiment. Any
mechanism reducing the forward and backward cross
sections would presumably also appear in pionic dis-

integration but cannot be seen there. This is the most
puzzling result of the calculation.

The real success of this work is in correctly predicting
the asymmetry at high energies (Fig. 13). Although
there is some disagreement at 90' in the c.m. system at
low-energies, we get good results elsewhere.
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Fto. 13. The asymmetry in photodisintegration as a function
of energy at various c.m. angles: (a) 8,.~.=45'; (b) e..~.=00':
(c) 8,,~.=133',
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element. It is straightforward to show that

F2p = W (sme/&2m') [EpH2& (Ek&k'p) H4 —pk'H2],

F2g ——[(1ms)/%2m2] [apH2+ kH4
—(P'k/m') (1+s)H25,

F2+
——(1/m2M) [E'kH &+d'E psH2 mk—H2

+ (p2 2Eko) psH4 —EkkoH, —kopsH

F2 (si n——g/Mm) [Pd'H, (—PEk'/m') H2
—(P'kd's/m') H25.

(&2)

The helicity amplitudes for photodisintegration are the
same as those of Le Bellac et al., and their relationship
to the B; can also be found in that paper.
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FIG. 1.4. The proton polarization in hotodisintegration as
a function of angle at various energies: a) kL, =200 MeV; (b)
kg=350 MeV.
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formulation. It does not correctly predict the shape of
the photodisintegration cross section but otherwise it
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APPENDIX C

Vile wish to calculate the integral

w(V')F (q2')

(22r)' (R'—m*') (q~' —m') (q2' —m') (q2' —p')
(C1)

The dV' integral can be approximated by the residue
from the pole of g2' —m, which is easily shown to
occur at

V~o = 22doam[1+ (1/2m2) (V+ 2k)2 —ie], (C2)

where & is the small, positive imaginary part of the
nucleon mass. Then we see

d3 P' w (V')F (q22)
(C3)

(2')' 2m (qP m') (R—' m*') —(q2' —p')

e wish to thank professor A C Hearn for his help where everything is evaluated at V'= V '.
and guidance in the course of this work.

APPENDIX A

Vite shall use the metric gpp= —gyp= —g22= —gg3= I
so that

A~B„=A B=A'B'—A B.

qP —m'= —2 (V'+oP),
R'= (d'+k' —m)2,

q22=2m(m —E),
so that (C3) becomes

(C4)

1 1

(A2) D' 2m[(d'+k m)' m*—25[2m—(E m)+1225-

8@' d'V w(V')

The Dirac equation is

X A+
2m (E—m)+ (C+1)p2 (22r)' V'+n'

The spin matrices are o""= ',i $p",&"5 and &5=-i&0&&&2+2.

A useful formula in our notation is (CS)

APPENDIX B

iy, ~„„g.p'R =p„y„R+R„y„R„p„g„,R. (A—3)—
The integral in (CS) does not converge and. so we intro-
duce a cutoff A. :

The helicity amplitudes are defined in pionic dis-
integration by

F2„——(—1I T
I
w-,'w-,'),

F„=(o
I
2'I-,'w-', ),

where we have written (XD I
T

I X~,X~') for the T-matrix

A V'2dV'w(V2)d'V w(V') —&4m

(22r)' V'+~2 V'2+ ~2

=42r[h.—n arCtan(A/n)+O(h2/P2)5. (C6)

We can ignore O(A2/P2) which merely amounts to a
small shift in the cutoff. As the cutoff has no physical
significance, this is justified.


