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The dispersion relation for the phase shift used by Ball and Frazer is generalized to include the effects of
zeros and poles in the S matrix. For complex S-matrix zeros near the physical cut, one obtains a new para-
metrization for a resonant state. For l =0, the usual Breit-Wigner phase shift is found. The method is easily
extended to resonances in higher partial waves (in terms of two parameters for the case of pure elastic
unitarity). The results are used to describe three partial waves in nil scattering: Pl&, D», and P». Excellent
agreement with the published P» phase shifts is obtained by using our resonant form plus the integral over the
inelastic cut. The inelastic contribution to the phase shift is small at low energies but becomes important
for Er)300 MeV (L'r, is the incident-pion kinetic energy). Inelastic eifects in the Dqa partial wave can
account for almost all of the phase shift up to El, =500 MeV. A narrow resonance plus inelasticity gives a
good 6t to the phase shifts up to E1.=900 MeV. Our Qt to the P~~ phase shift depends on the nucleon pole,
the Roper resonance, a zero in the S matrix below the elastic threshold, and inelastic effects. A good Qt to
the low-energy phase shifts can be obtained only if one assumes large inelasticity above 1 BeV; however,
the model does account for the qualitative behavior of the P~y phase shift.

I. INTRODUCTION

DISPERSION relation for the phase shift 6 was
used by Ball and Frazer' in an attempt to explain

the higher mÃ resonances in terms of inelastic processes.
Their procedure was to evaluate 8 from (for S waves)

k "inLri(s') j
5(s) = —— ds',

2n „k'(s'—)

where ri=exp( —2 Imb), k is the momentum in the
center-of-mass system, and s& is the inelastic threshold.
The left-hand cut in 8 is neglected because they were
only interested in a mechanism for explaining high-
energy inelastic resonances.

If a Breit-Wigner form is used to fit a resonance, one
6nds a pair of zeros in the S matrix for complex values
of s (s=—square of total energy in the center-of-mass
system) near the resonance. The zero in the S matrix
causes a cut in 6 which was not considered by Ball and
Frazer. We have generalized their dispersion relation to
include S-matrix zeros for complex values of s and also
zeros and poles for real s below the elastic threshold.

The result of including complex S-matrix zeros for
S waves is the reproduction of the usual elastic Breit-
Wigner resonant form for l=0. The advantage of this
procedure is that it can easily be extended to higher /

values. The resonant phase shift is found in terms of two
parameters (the position of the zeros), and inelastic
effects must be included by using the integral in
Eq. (1).

The dispersion relation for 8 is derived in Sec. II. In
Sec. III, we discuss the application to three partial
waves in ~g scattering: I'33, D~3, and P~~. The I'33
partial wave is mostly elastic, and we are able to get a
good fit to the accepted phase shifts' —' up to E1,=250

* Supported in part by the National Science Foundation.' J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).' L. D. Roper, Phys. Rev. Letters 12, 340 (1964);L. D. Roper,
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Mev (Er, is the laboratory energy of the incident pion).
By including inelasticity in the E» partial wave, the
phase shifts can be fitted to higher energies. In the D~3
partial wave, we find that the major part of the phase
shift up to 500 MeV can be accounted for by the
integral over the inelastic cut. This contribution never
rises above 30' and changes sign abruptly in the reso-
nant region. The phase shift up to E1,=900 MeV can
be accounted for very well in terms of a resonance plus
the inelastic contribution. Inelastic effects are very im-
portant in the P~~ partial wave also. We attempt to Gt
the phase shift in terms of the pole at the nucleon posi-
tion, a zero in the S matrix below threshold, a resonance
at E1.=590 MeV, and the integral over the inelasticity.
The major features of the phase shift can be explained,
but the Gt is very rough and is highly dependent on the
inelasticity above E1,=1 BeV.

II. DISPERSION RELATION FOR THE
PHASE SHIFT

The S matrix is given by

g2i8 ~g2i Re8

Following Ball and Frazer, we write a dispersion rela-
tion for 8(s)/k for S waves. We separate this into several
parts:

~(s) =~r (s)+» .~(s)+8n(s)+8~(a)

where 8L, is the contribution from the unphysical cuts,
8;,i is the integral over the inelastic factor, bg includes
the effects of complex zeros in the S matrix, and b~ is
the contribution from a pole in the S matrix for real s

R. M. Wright, and B.T. Feld, Phys. Rev. 138,B190 (1965);L. D.
Roper and R. M. Wright, ibid 138, B912 (196.5).

3 P. Bareyre, C. Brickman, A. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965).

P. Auvil, C. Lovelace, A. Donnachie, and A. Lea, Phys.
Letters 12, 76 (1964); A. Donnachie, A. Lea, and C. Lovelace,
ibid. 19, 146 (1965).
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below the elastic threshold;

k(s) B-(s')- ds'
br. (s) =

27( Z k(s') s' —s

k(s) " infra(s') j
2n- „k(s') (s'—s)

h(f(s)) means the discontinuity in f(s), and sr is the
inelastic threshold.

Now, assume that the S matrix has zeros for complex
values of s (see Fig. 1). If these zeros are at s=a+ib,
we may factor them out:

Im(s)

Sp

a+ib

----------- ----- —Re(s)
a-ib

~()=L —( + b)3L —( —b)3f(),

where f(s) has no cuts near a&ib. Now when we write
the dispersion relation for b/k ( lnS), we find a loga-
rithmic cut in 8 beginning at a+ib. The discontinuity
across this logarithmic cut is easily computed, and for
real s we Qnd

a+ioo Gs

bg(s) = —k(s) Im
k( ')( '—)-

bg(s) is thus a function only of a and b.
The same procedure may be followed to obtain the

contribution of a pole on the real axis below threshold.
We obtain

8g ds
Bp(s) = -', ik (s) „k(s') (s' —s)

(7)

and
p= L2(mg' —a) )'&',

(s—sg
bp(s)= —tan '

~

—Esg—Spi

(10)

In the case of elastic scattering of unequal-mass
particles, the integration cannot be carried out ex-
plicitly. However, in this case we may simply write the
disPersion relation for 8/Prs(s —sg)'I'g to begin with,
putting some more of our ignorance in the background
term bz, (s).

where sp is the pole position. LThe integral is inde-
pendent of the path of integration, and for scattering
of unequal-mass particles one can avoid cuts in. k(s')
by doing the integration from sp to sp+i~.j The
effect of a real zero in the S matrix is the negative o
Eq. (7).

s %1/2In the case of equal-mass particles, k=~qs —sg~
where s~ is the elastic threshold, and the integration
may be done"explicitly. We 6nd

y(s—sg)'"
bg(s) = tan-'

ssg —s
where

m gs= j(a sg)'+b'g"—+sg,

Fn. I. Position of zeros and poles assumed in the
5 matrix and the corresponding cuts in b.

We may follow the same procedure for P waves. In
this case we write the dispersion relation for sb(s)/
L(s—sg)'"j. Our result depends on the kinematical
factor we use. Another parameter could be introduced
by dividing b by (s—sg)'~'/(s+se). However, we find
that the results are insensitive to the value of so, and
we choose $0=0 in our calculation. For I' waves we find

v(s —sg)'"
8g ——tan '—

pEg —s

sg y (s—sg)' '

$ ply —sg

&(S»)'" Sg' 'y(s —Sg)'"
bg(s) = tan —'

1Ãg —S S2 82g2 —Sg

sg'Y(s sg)'" 1 7 sg
2mg' —sg ——— . (14)

s'(mg' —sg)' 3 mgs —sg

The equations for the phase shifts all have the
property that 5~k"+' at threshold. The disagreeable
feature is the appearance of the pole at s=O for partial
waves with /&0. ' The equations should still be useful
if we are far enough away from the pole. Note that
6& —+ x as s —+~, just as the Layson' resonant form
does. Also, bJ —+ ——,'x as s~~. This latter behavior
seems to be inconsistent with Levinson's theorem, ~

which requires that 5 approaches an integral multiple

' Of course, there is no pole in 8 when all of the contributions
to 8 are added together.' W. M. Layson, Nnovo Cimento 27 724 (1963). The Layson
form differs from the Breit-Wigner form only in the introduction
of a slowly varying energy denominator in the definition of t e
width. See the Appendix for a comparison of our form and the
Layson form.

7 J. Hartle and C. Jones, Ann. Phys. (N. Y.) 38, 348 (1966);
Phys. Rev. 140, B90 (1965)

&
Phys. Rev. Letters 14, 801 (1965).

s—sg l ' sgt s—sg )+—
I l, (»)

sg spJ s (sg—spi

where p and mg' are again given by Eqs. (9) and (10).
An expression for a D-wave resonance may also eb

found by dividing b by (s—sg)'"/s'. We get
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phase shifts found by Roper and Bareyre. The solid
line is the fit obtained from 6g alone. The dotted line is
the sum of 8g and the integral over the inelasticity,
which does not contribute significantly until EL,&300
MeV. The inelasticity was chosen to be a rough fit to
that found by Bareyre up to Ei,= 1 BeV. Various arbi-
trary forms were used above 1 BeV. The inelastic con-
tribution to 8 below 500 MeV was not strongly depen-
dent on the form chosen above 1 BeV. The dashed line
is only intended to be a rough estimate of the inelastic
effect.

We see that Bareyre's phase shift can be fitted very
well up to 500 MeV with our resonant form plus some
inelasticity. It would also be possible to find a rough
fit to his phase shifts at higher energies by assuming an
appropriate form for g for Ei,& I BeV. Roper's phase
shifts were found by using the Layson resonant form
plus a background term (which turns out to be negli-
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Fro. 2. F33 phase shift as a function of incident pion energy.
The solid line is the phase shift found from Kq. (12l, with mg
=8.72, y= j..45. The dashed line is the sum of the resonant phase
shift and the contribution from the inelastic cut. The crosses and
circles are Roper's and Bareyre's results, respectively. The circles
are used only to indicate possible errors made by the author in
reading Bareyre's data from the graphs.

of m as s ~~.The reason for this apparent inconsistency
may be seen by considering a simple example. If we
solve the N/D equations for /=0 for the case where the
left-hand cut in the amplitude is a simple pole, then it is
easy to adjust the residue of the pole so that a bound
state appears. We find that 8(~)= —s., in agreement
with Levinson's theorem. Our analysis also gives 8(ao)
= —w, since the left-hand —cut pole, as well as the pole
in the S matrix due to the bound state, gives a contribu-
tion of ——,'s. to 8(~).

In the Sec. III, the usefulness of these equations will

be tested by applying them to some partial waves in
7rX scattering. Since the term 8r, (s) cannot be explicitly
tak.en into account, we will neglect it, hoping that the
main features of the phase shift are due to the zeros
and poles of the S matrix and the inelasticity.
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III. APPLICATIONS TO mN SCATTERING

A. P~3 Partial Wave

Perhaps the best partial wave to use to test the
resonant form for /=1 is the 5'33 partial wave in xE
scattering, where it is known that the resonance is
dominant and inelastic effects are small at low energies.
The results of our fit are shown in I'ig. 2, along with the
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FIG. 3. D» phase shift as a function of incident pion energy.
The short-dashed curve is the contribution from the inelastic cut.
The long-dashed curve is found from Eq. (14), with m+=10.95,
7=0.1. The crosses and circles are defined in Fig. 2.
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gible) to 6t the Pss phase shifts. No inelastic effects
were included in the Layson form, and none were found
in the phase-shift analysis. It is clear, however, that
there should be a contribution to 5 from inelastic sects
above E&=300 MeV. Perhaps the use of the Layson
6t serves to mask the inelasticity. The Layson fit for
an elastic resonance involves three parameters, whereas
our Gt involves only two parameters and has a simple
derivation from dispersion theory. The scattering length
found by Roper is 0.24. We And a scattering length of
0.19 (from the resonance plus inelasticity), while the
value obtained by %oolcock' from the experimental
data is 0.215+0.004.

B. P~3 Partial Wave
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Inelastic e6ects are known to be very important in
the Dj~ partial wave. This is one of the resonances
which Ball and Frazer suggested might be accounted
for mainly in terms of the inelasticity. Again we 6t
the inelasticity by Bareyre's results up to EI,=1 BeV.
According to Bareyre, the inelasticity becomes small at
1 BeV, and the inelastic contribution to 8, b;„,i, shown
in Fig. 3, is found by letting g be very nearly one above
E~——1 BeV. The rapid variation in 5;,i near the reso-
nance is not a function of the high-energy dependence
of g, but the upper and lower limits on 5 will be affected
if there is appreciable inelasticity not too far above 1
BeV. With this form for g, we find that the phase shif t
below E1.=500 MeV is almost entirely due to the
inelasticity. However, 8;„,& increases only up to about
600 MeV, at which energy it decreases rapidly (inde-
pendently of the high-energy behavior of rt). One must
add. in a resonance near this energy to account for the
high-energy phase shifts. It is clear that the resonant
width which we obtain is appreciably narrower than
that found by Roper by fitting the resonance with the
Layson form. The agreement with Bareyre's phases is
very good up to EL,= 900 MeV.

C. P~~ Partial Wave

Our 6t to the P~~ phase shifts is more ambiguous be-
cause we require a large amount of inelasticity for E&)1
BeV in order to obtain a reasonably good fit (we use
Bareyre's inelasticity up to 1 BeV). There is evidence
that the inelasticity is large above 1 BeV,' but it is
clear that our values for 8;„,& are very rough. The in-
elasticity used above 1 BeV was chosen to give a fairly
good fit to the low-energy phase shifts.

There are two well-known features of the P~~ partial
wave: (1) the nucleon pole below the elastic threshold
and (2) the Roper resonance at Er,=590 MeV. The

e W. S. Woolcoclr, in Proceedengs of the Atx en Provence -Co-n
ference on Etententary Particles, 1961 (Centre d'Etudes Nuclttaires
de Saclay, Seine et Disc, 1961),Vol. I, p. 459.

9 A phase-shift analysis up to 81,=1300 MeV suggests that g
may be substantially less than 0.1 above 1 BeV LC. Johnson
(private communication)g. We never let v get smaller than 0.1 in
the form which we assume above 1 BeV.
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FIG. 4. E» phase shift as a function of incident pion energy.
The short-dashed curve is the contribution from the inelastic cut.
The long-dashed curve is found from Eq. (12),with mtt= 10.78 and
7=1,75, plus the contribution from the nucleon pole at IV=6.7
and an S-matrix zero at W=7.16. The crosses and circles are
defined in Fig. 2.

contribution from the nucleon pole, given by Eq. (13),
is seen to depend only on the nucleon mass. There is,
however, another feature of the E~~ partial wave which
is strongly dependent on the pion-nucleon coupling
constant. We know that the S matrix is equal to one at
the elastic threshold and approaches —~ near the
nucleon pole (the residue of the scattering amplitude
is positive because /= 1). Thus the S matrix must have
a zero between s~ and m'. The zero must actually appear
before the beginning of the short cut due to nucleon
exchange if it is to appear at all. It is likely that the S
matrix is negative before the short cut is reached, since
it starts at 8'=6.84""and the nucleon pole is at 5
=6.7, while the elastic threshold is at W = 7.7 (W=gs).
The position of the zero is clearly strongly dependent on
the pion-nucleon coupling constant and has a large
effect on the low-energy phase shifts. This is the reason
why dynamical calculations of the E» partial wave
which give too large a value for the mÃ coupling also

'e W. R. Fraser and J. R. Fulco, Phys. Rev. 119, 1420 (1960);
S. C. Frautschi and J. D. Kalacka, ibid. 120, 1486 (1960).

"We use units A=c=m =1.
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fail to reproduce the low-energy phase-shift behavior. '2

In these cases the zero in the S matrix is too close to
the elastic threshold, which causes a large negative
phase shift at low energy.

Our 6t to the phase shift, shown in Fig. 4, involves
three parameters in addition to the inelasticity —the
position of the zero in the S matrix near the Roper
resonance and the position of the zero on the real axis
below threshold. " The 6t cannot be considered very
impressive in view of all this freedom, but the model
does account for the qualitative features of the phase
shift. '4

IV. DISCUSSION

that using the Layson form with k replaced by
rs(s —ss)'" will tend to give a smaller effective width
above the resonance, thus increasing the discrepancy
between the Layson form and the one used here.
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APPENDIX

The relation between our resonant phase shift and
the elastic Breit-Wigner or Layson phase shift will be
demonstrated here. For /= 1 the resonant form is

The method proposed here can be a useful tool for
interpreting phase-shift analyses. In the partial waves
treated here, we obtain good fits to the phase shifts
even though the left-hand —cut contribution 6~ is ne-
glected. In any case, it is clear that 51. is a smoothly
varying function of s (for physical s), and any sudden
variations in 6 must be due to zeros in the S matrix or
rapid changes in g. This method can be used as a con-
sistency check for a phase-shift analysis: A phase-shift
analysis showing rapid changes in g without corre-
sponding fluctuations in 8 cannot be self-consistent. (A
reliable calculation of the fluctuation due to changes in
r1 can be made without knowing r1 at all energies. )

An interesting point brought out in this analysis
concerns the deinition of the elastic width of a reso-
nance. We obtain a considerably narrower width for the
a~3 resonance than Roper does. Inelastic effects due to the
decay of a resonance into other channels can cause the
elastic width to appear to be much larger than this
analysis would imply. Thus it may be misleading to
attempt to compute the elastic width of a highly in-
elastic resonance by simply 6tting the resonance with
a Breit-Wigner resonant form.

Finally, one might object to this analysis on the
grounds that using ~~ (s—sz)"' instead of k is the major
reason for the difference between the Layson resonant
form and the form used here (see the Appendix for a
comparison). However, a moment's reflection will show

"P.W. Coulter and G. L. Shaw, Phys. Rev, 141, 1419 (1966)."The phase shift B~ in Eq. (13) is sensitive to the pole position,
but the sum of the phase shift from the nucleon pole and the zero
in the S matrix is not very sensitive to the pole position.

'4 An interesting feature of Fig. 4 is the Quctuations in 8 associ-
ated with Quctuations in g. If q is changing rapidly in a given
energy region, one could not expect to get a good 6t to 8 by using
a parametrization that does not allow for sudden changes in 6.

7 (S—»)'" » 7 (S SE)—"'
by=tan '

5$g —s s pl g —sg
(A1)

If the second term is small, we may compute tansy& by
neglecting terms of order y'. We And

y(s —sa)s"
tan8g=

s (Bzg sag) —tBg —s

The corresponding Layson phase shift for the elastic
scattering of equal-mass particles is

(s—ss)@'
tan8g=

1+8 (s—s@) 1sg —s
(A3)

where a is a "range" parameter. We can introduce
another parameter in Eq. (A2) by letting the position
of the pole be adjustable. If we do this, then the pole
position can be chosen so that Eqs. (A2) and (A3) are
identical. Thus the range parameter is closely related
to the pole position of 5g. We have chosen the pole
position far enough away from the elastic threshold so
that 8z is not very sensitive to the pole position. We
regard this insensitivity as a requirement for using our
equation.

Thus the resonant phase shift which has been derived
here is very nearly the same as the Layson elastic
phase shift if the second term in Eq. (A1) is small.
There are some differences, however. Near the position
of the resonance in the F33 partial wave in srÃ scatter-
ing, the second term in Eq. (A1) contributes about—16' to 8g, so that the phase shift does not go through
90' until s)mz', whereas the Sz from the Layson fit is
90 at s=mg'.


