S-Wave π ⁻⁺p Scattering and a Possible η -n Bound State

B. K. PAL

National Physical Laboratory, New Dehli, India

(Received 5 December 1966; revised manuscript received 30 November 1967)

The $\pi^- + p$ $T = \frac{1}{2}$, $J = \frac{1}{2}^-$ scattering length and phase shift are calculated in a coupled-channel mode of π - N and η - N scattering. The η - n system is treated as a Regge pole associated with quasibou The Born terms associated with ^p and nucleon exchange are included in the calculation. The results are compared with experimental data.

 $A^{\scriptscriptstyle\rm N}$ extension of Regge¹ representation for studying the low-energy behavior of scattering amplitudes ^N extension of Regge' representation for studying has been applied to $T=\frac{1}{2}$, $J=\frac{1}{2}$ state of π -N scattering. The Khuri representation² was modified by Bohm and Rashid³ for $T=\frac{1}{2}$, $J=\frac{1}{2} \pi$ -N scattering, and by Pal⁴ for $\bar{K}-N$ scattering, by introducing Born terms where possible. Bulos *et al.*⁵ and Peterson *et al.*⁶ found a rapid rise in the inelasticity in $\pi^{-}p$ scattering associated with the threshold for η production in the reaction $\pi^-+ p \rightarrow$ $\eta + n$. The elegant phase-shift analysis of Auvil et al.⁷ suggests that a discrete baryon state may exist in the neighborhood of $n+n$ threshold. Further evidence for such a state is obtained from the recent experimental $data$, which show that the total cross section for the reaction $\pi^- + \rho \rightarrow \eta + n$ rises steeply from threshold to a value of 1 mb at an incident pion kinetic energy $(T_{\pi^{-}})$ between 655 and 704 MeV, and then falls gradually to 0.25 mb at 1300 MeV. The quantum numbers of this baryon state are of course $T=\frac{1}{2}$, $J=\frac{1}{2}$.

In the present paper, we use the modified Khuri representation for π -N scattering and the foregoing data on the η -*n* system to calculate the $T=\frac{1}{2}$, $J=\frac{1}{2}^-$ scattering length and phase shift. The η -n system will be treated as a Regge pole associated with a quasibound state in all the channels $\pi^-+p \rightarrow \pi^-+p$, $\eta+n \rightarrow \eta+n$ and π^- + $p \rightarrow \eta$ + n in S-wave $T = \frac{1}{2}$ scattering.

The $S_{1/2}$ partial wave for these reactions can be written as a matrix in the following way:

$$
T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} . \tag{1}
$$

Using the Khuri representation, the contribution of the η - n Regge pole to the elements of the T matrix can be calculated in a straightforward way. The result for T, including the Born terms associated with nucleon and ρ -meson exchange in $\pi^- + p \rightarrow \pi^- + p$ elastic scattering, is

$$
T_{11} = \frac{\beta}{\alpha(W) - \frac{1}{2}} \Big[e^{(\alpha - 1/2)\xi_1} + e^{(\alpha - 1/2)\xi_2} \Big] - \frac{g_{NN\pi}^2}{4\pi W^2} \Big\{ \Big[(W + m)^2 - m_{\pi}^2 \Big] \Big(\frac{W - m}{2k^2} \Big) Q_0 \Big(\frac{2E^2 + 2m_{\pi}^2 - W^2 - m^2}{2k^2} \Big) \n+ \Big[(W - m)^2 - m_{\pi}^2 \Big] \Big(\frac{W + m}{2k^2} \Big) Q_1 \Big(\frac{2E^2 + 2m_{\pi}^2 - W^2 - m^2}{2k^2} \Big) \Big\} - \frac{2g_{\rho\pi\pi}g_{\rho NN}}{4\pi W^2} \Big\{ \Big[(W + m)^2 - m_{\pi}^2 \Big] \n\times \Big(\frac{W - m}{k^2} \Big) Q_0 \Big(\frac{2E^2 - 2m^2 + m_{\rho}^2}{2k^2} \Big) + \Big[(W - m)^2 - m_{\pi}^2 \Big] \Big(\frac{W + m}{k^2} \Big) Q_1 \Big(\frac{2E^2 - 2m^2 + m_{\rho}^2}{2k^2} \Big) \Big\} , \quad (2)
$$
\n
$$
T_{12} = \frac{\beta_{12}}{\sqrt{(W) - 1}} \Big[e^{(\alpha - 1/2)\xi_1} + e^{(\alpha - 1/2)\xi_2} \Big], \quad (3)
$$

$$
T_{12} = \frac{\beta_2}{\alpha(W) - \frac{1}{2}} \left[e^{(\alpha - 1/2)\xi_1'} + e^{(\alpha - 1/2)\xi_2'} \right],
$$
\n
$$
T_{22} = \frac{\beta_2}{\alpha(W) - \frac{1}{2}} \left[e^{(\alpha - 1/2)\xi_1'} + e^{(\alpha - 1/2)\xi_2'} \right].
$$
\n(4)

The coupling constants
$$
g_{NN\pi}
$$
, $g_{\rho\pi\pi}$, and $g_{\rho NN}$ are taken
from experiment. In (2)–(4), $\alpha(W)$ is the trajectory
function, and the β 's are the corresponding residue

' N. N. Khuri, Phys. Rev. 130, 429 (1963). 'N. N. Khuri and B. M. Udgaonkar, Phys. Rev. Letters 10, 72 (1963) .

- A . Bohm and R. A. Rashid, Phys. Letters 10, 451 (1964).
	-
- ⁴ B. Pal, Nuovo Cimento 36, 1392 (1965).
⁵ F. Bulos *et al.*, Phys. Rev. Letters **13**, 486 (1964).

⁶ V. Z. Peterson *et al.*, University of California Radiation
Laboratory Report No. UCRL-11575 (unpublished).
⁷ P. Auvil *et al.*, Phys. Letters 12, 76 (1964); C. Lovelace, Nuovo
Cimento 33, 473 (1964).

⁸ W. Bruce Richards et al., Phvs. Rev. Letters 16, 1221 (1966).

167

- functions. The ξ are given by
- (5) $\cosh \xi_1 = 1+8m_\pi^2/k^2$,
- (6) (7) $\cosh\xi_2 = \left[W^2 - (m-m_\pi)^2\right]/2k^2 - 1$, $\cosh \xi_1' = 1 + 2m_\pi^2/q^2$,

$$
\cosh \xi_2' = (W^2 - m^2 - 2m_\pi^2)/2q^2 - 1, \qquad (8)
$$

$$
\begin{aligned} \n\cosh(z) &= \frac{(W - m - 2m\pi^2)}{2q^2 - 1}, \\ \n\cosh(z)' &= \left[(m\pi + m\pi)^2 - 2m^2 \right] \n\end{aligned} \tag{8}
$$

$$
+2(k^2+m^2)^{1/2}(q^2+m^2)^{1/2}]/2kq\,,\quad (9)
$$

 $\cosh \xi_2'' = \left[W^2 + m^2 - m_{\pi}^2 - m_{\eta}^2\right]$

$$
-2(k^2+m^2)^{1/2}(q^2+m^2)^{1/2}]/2kq.
$$
 (10)

1350

k and q are the center-of-mass momenta in the $\pi^+\!+\!p\!\rightarrow$ π^-+p and $\eta+n\to\eta+n$ channels, respectively. In (5) – (10) , *W* is the total c.m. energy and *m* is the nucleon mass. m_{π} , m_{η} , and m_{ρ} denote the masses of the corresponding particles. The β 's are given by the relations based on the threshold behavior and the factorization theorem.⁹ The η -*n* trajectory may be written in the form

$$
\operatorname{Re}\alpha(W) = \frac{1}{2} + \epsilon(W - m_{\eta n}), \qquad (11)
$$

$$
\operatorname{Im}\alpha(W) = \frac{1}{2}\epsilon \Gamma\left(\frac{W-m-m_{\pi}}{m_{\eta n}-m-m_{\pi}}\right)^{\alpha_0},\tag{12}
$$

TABLE I. Comparison of the $T=\frac{1}{2}$, $J=\frac{1}{2}^-$ phase shift calculate with the present model, and the experimental results of Miyaket al. (Ref. 11).

Center-of-mass momentum of pion in units of $m_{\pi}c$	Phase shift δ in radians	
	Experimental value	Present calculation
0.50	0.100	0.108
0.63	0.143	0.128
1.02	0.150	0.210
1.25	0.158	0.258
1.38	0.163	0.263
1.50	0.168	0.310

⁹ S. K. Bose and S. N. Biswas, Phys. Rev. 135, B1045 (1964) .

where $\alpha_0 = \alpha(W) |_{k^2 \to 0}$. In the above, $m_{\eta n}$ and Γ are the mass and width of the η - n state. For the slope of the η -*n* trajectory, we take the same value as that found for the nucleon, $\epsilon = 0.4$. The complex scattering length for the reaction $\pi^- + p \rightarrow \eta + n$ is $a+ib$, where $a=0.8304$ F and $b=0.05$ F according to Peterson *et al.* The width Γ of the η -*n* state can be calculated very crudely in terms of a and b; we obtain $\Gamma = b/\mu_{\eta}a^3 = 83.4$ MeV, where μ_{η} is the reduced mass of η and n . Now the expression for T_{11} becomes

$$
T_{11} = \frac{C_1}{\alpha(W) - \frac{1}{2}} \left[1 + e^{(\alpha - 1/2)(\xi_2 - \xi_1)} \right] + \text{Born terms.} \tag{13}
$$

The constant C_1 may be determined, using unitarity, in terms of ϵ and Γ . This procedure yields $C_1 \approx -\epsilon \Gamma/4k_{nn}$
 ≈ -0.02 . The calculated value of the S-wave $T=\frac{1}{2}$ scattering length is $A_{11} = T_{11}(W) \mid_{k \to 0} \infty 0.15$, which can be compared with the experimental data by Woolcock,¹⁰ be compared with the experimental data by Woolcock,¹⁰ $A_1=0.17\pm0.005$. The $S_{1/2}$ phase shifts calculated for the reaction $\pi^-+p\rightarrow \pi^-+p$ are compared with the the reaction $\pi^- + p \rightarrow \pi^- + p$ are compared with the experimental data by Miyake *et al*.¹¹ in Table I and Fig. 1. The quantity Q is the momentum of meson in units of $m_{\pi}c$ in the center-of-mass system.

¹⁰ W. S. Woolcock, in Proceedings of the Aix-en-Provence International Conference on Elementary Particles, 1961 (Centre d'Etude Nucléaires de Saclay, Seine et Oise, 1961), p. 459.
¹¹ K. Miyake *et al.*, Phys. Rev. 126, 2188 (1962).