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Two classes of unusual possibilities for the leading angular momentum singularities in vacuum quantum
numbers are explored. The erst class attempts to eliminate the need for an essential singularity at J= 1 by
requiring the Pomeranchon to be a "self-reproducing" singularity. The second class attempts to implement
a maximum-strength principle through a "colliding poles" mechanism. None of the models studied is
believed likely to correspond to the actual situation.

~ 'N this paper we examine various possibilities for the
~ - structure of angular momentum plane singularities
in amplitudes having the quantum numbers of the
vacuum. There are a number of indications, both
experimental and theoretical, that these quantum
numbers have some unique features. One obvious way
in which vacuum channels are singled out is that the
forces in them are the most attractive ones so that the
leading vacuum Regge pole, called the Pomeranchon,
is the highest lying one of all, at least in the vicinity of
1=0. Indeed, it appears to be at, or at least very close
to, the maximum value allowed by unitarity, i.e., the
I'roissart limit. Another unique experimental feature is
the apparent lack of slope of the Pomeranchuk tra-
jectory, as manifested by the absence of shrinkage of
diffraction peaks in elastic scattering. ' On the theoretical
side there is some consternation over the possibility that
angular momentum branch points may pile up in such
a way as to produce an essential singularity at J= 1. It
is ironic that the existence of these branch points is
deduced from the requirement that another class of
essential singularities not be present. '

In the following we consider a mechanism to eliminate
the need for an essential singularity, namely that the
Pomeranchon is a "self-reproducing" singularity. We
also comment upon another mechanism which has been
recently suggested. Next, we explore the consequences
of a conjecture that a principle of maximum strength is
implemented by the existence of "colliding poles. "The
signihcance of the phase at high energy is discussed,
leading to the conclusion that the colliding poles
Inechanism probably does not occur, but that some
effects attributable to angular momentum branch
points may have been seen already.

Suppose that the Pomeranchon is a simple pole with
position J=n(t). Then arguments given by Mandel-
stam' imply that there should also be branch points,

* Work supported by the U. S. Air Force Once of Research
Air Research and Development Command Under Contract No.
AF49 (638)-1545.' In practice, the situation is complicated by competition from
other quantum numbers, so that some di6'raction peaks are ob-
served to shrink while others remain unchanged or even grow.' V. ¹ Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962}; C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271
(1967); S. Mandelstam and L.-L. Wang, ibid. 160, 1490 (1967);
A. H. Mueller and T. L. Trueman, ibid 160, 1296 (19. 67); 160,
1306 (1967);I. H. Schwarz, ibid 162, 1671 (19.67).' S. Mandelstam, Nuovo Cimento 30, 1148 (1963).

which may be regarded as arising from exchange of e
Pomeranchons, with positions given by

J=n„(i)= terr(i/n') —(n —1) . (1)

One notices, in particular, that if n(0) = 1, then n (0)= 1.
Also, the slopes are related by

n '(0) =-n'(0).

Thus we see that an infinite number of singularities
intersect at the point J= 1, 3=0, whereas for t@0 they
accumulate at the value J=1, making this point an
essential singularity.

It is not surprising that no serious attempts have been
made to utilize the complete structure of an essential
singularity. The phenomenologists understandably
prefer to assume that branch points give negligible
contributions compared to poles, even though it is clear
that in the scattering region (t(0) the branch points
are the higher lying singularities. Another suggestion
made recently' is that n(0) = 1—e (with e =0.07), so that
n (0)=1—use, and the accumulation of singularities is
averted. Several authors4'~ have tried to utilize such a
suggestion to account for certain experimental facts. It
seems, however, that the arguments they give do not
provide compelling evidence for such an interpretation.
On the esthetic side, we tend to feel that the elimination
of the essential singularity in this fashion is no great
victory. There is no reduction in the number of singu-
larities present, just a slight displacement of their
positions. Also, the abandoning of the simple principle
n(0) = 1 seems to be a high price to pay, especially as the
most recent experiments' appear to allow very little
latitude to the range of acceptable nonzero values for e.

A somewhat different way to avoid the essential
singularity would be for the singularities arising from
many-Pomeranchon exchange to coincide with the
Pomeranchon itself, i.e.,

n(t) =2n(-', 1)—1. (2)
4 N. Cabibbo, J. J. J. Kokkedee, L. Horwitz, and Y. Ne'eman,

Nuovo Cimento 45A, 275 (1966); N. Cabibbo, L. Horwitz, and
Y. Ne'eman, Phys. Letters 22, 336 {1966).

5 L. P. Horwitz and H. Neumann, Phys. Rev. Letters 19, 765
(1967); Y. Ne'eman and J. D. Reichert, ibid. 18, 1226 (1967);
Y. Srivastava, ibid 19, 47 (1967). .

6K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love,
S. Ozaki, E. D. Platner, C. A. Quarles, and E. H. Willen, Phys.
Rev. Letters 19, 193, (1967); 19, 330 (1967); 19, 857 (1967).

1342



UNUSUAL POSSIBILITIES FOR POMERANCHON 1343

A solution of this equation is given by

(3)

This is not the only solution of Eq. (2), but we shall

argue later that the others are too pathological to be
seriously considered. It is necessary that an amplitude
with vacuum quantum numbers be regular at /= 0, and
it therefore follows that an additional singularity is
required at

n(t) = 1—yP". (4)

' T. Sawada, Nuovo Cimento 48A, 534 (1967);HA, 208 (1967).
D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29

(1962); Nuovo Cimento 26,[896 (1962).
9 R. Oehme, Phys. Rev. Letters 18, 1222 (1967).IJ.Finkelstein and C. Tan, Phys. Rev. Letters 19, 1061 (1967).

n(t) and a(t) have the property of being self-reproducing
in the sense that exchange of several of either one of
these singularities gives rise to a new singularity at the
same position. It is trivial to verify, but nevertheless
remarkable, that no singularities arise from simultane-
ous exchange of singularities at n(/) and n(t).

It should be remarked that even though poles with
trajectories given by Eqs. (3) and (4) give rise to branch
points having the same positions, the analytic structure
still remains rather complicated since a frightening
superposition of singularities results. Sawadav has made
the interesting observation that if the Pomeranchon is
a double pole, then it is possible for the singularities
arising from multi-Pomeranchon exchange to be double
poles also, at least in a model of the type considered by
Amati, Fubini, and Stanghellini. Thus in this case one
can conceive of the entire singularity structure in the
neighborhood of J=1 and t=0 being described by a
pair of double poles with positions given by Eqs. (3)
and (4). The close relationship between the principles
of maximal analyticity and maximum strength in this
model is quite striking.

Analytically continued elastic unitarity

b(J,f)—b( Jf zz)
= 2spg(/)b(J, 1)b(J,fzz) (5)

must not be forgotten. Since the singularities described

by Eqs. (3) and (4) do not contain the normal threshold
branch points in their trajectory functions, they have
the same position in b(J, f) and b(J,tzz), i.e., on the two
sheets of the normal threshold. Thus an in6nite singu-
larity (double pole, single pole, infinite logarithmic
branch point, etc.) is inconsistent with Eq. (5), unless

there is a suitable set of moving branch points that
collide with all the normal thresholds when J=n(t) or
J=n(t). Such a possibility has been discussed in con-
nection with the suggestion that the Pomeranchon is a
simple pole with cr(t) = 1.' Other authors" have pointed
out that there is no known mechanism that would
produce the required branch points, and indeed it is
quite unlikely that there is an unknown one either. The
same remarks apply to the more general case (&NO),
which we have been discussing.

As another possibility, suppose the Pomeranchon
itself were not a pole but a branch point of finite type,
then there would be no obvious inconsistency between
elastic unitarity and a trajectory function not contain-
ing normal thresholds. There would still be the possi-
bility of just one or two (depending on whether or not
y= 0) isolated singularities. This suggestion seems quite
unreasonable as it is hard to understand how the dynam-
ics would generate a branch point that could not be
interpreted as arising from the exchange of several
poles. It has been previously observed, however, that
square-root-type branch points are present in potential
theory with a singular potential" and, also in certain
model 6eld theories. " Their possible relevance in the
present context has also been discussed. "Even though
it is unclear how such branch points could be understood
in S-matrix theory, the possibility of their occurrence is
of interest because this is the only suggestion we can
offer Lother than o.(0)(1$ that eliminates the need for
an infinite accumulation of singularities. It is probably
consistent with the experimental situation as it gives
no shrinkage, total cross sections which vanish logarith-
mically, and reasonable phases (a point to be discussed
sozne more later). One difhculty with such a model
would be a breakdown of factorization, but there
probably is su%.cient flexibility in any phenornenological
application to avoid trouble on this score.

It remains to be investigated whether solutions of
Eq. (2) other than Eqs. (3) and (4) could accommodate
a normal-threshold branch point so as to make a pole
(or other infinity) consistent with elastic unitarity. In
order to explore this possibility, let us suppose that n(t)
is a solution of Eq. (2) with a branch point at (= as.

From Eq. (2) it is then apparent that there are also
branch points for t=to/4", with v=&1, &2, . These
branch points would also appear in b(J,1), where they
are completely unacceptable. Thus, such a solution is
to be rejected.

In the preceding paragraphs, we have discussed
mechanisms for eliminating the infinite accumulation
of many-Pomeranchon singularities. The only ones we
were unable to exclude outright were: (1) the Pomeran-
chon intercept is slightly below 1, and (2) the Pomeran-
chon itself is a finite self-reproducing branch point
rather than a pole. I et us now explore a somewhat
different suggestion. Start from the assumption that
only simple poles need to be considered and attempt to
implement a principle of maximum strength. (In this
discussion we are resigned from the outset to accept the

"R.Oehme, Nuovo Cimento 25, 183 (1962)."J.D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963);
R. F. Sawyer, ibid. 131, 1384 (1963); D. Atkinson and A. P.
Con togouris, Nuovo Cimento 39, 1082, 1102 (1965); A. P.
Contogouris, ibid. 44A, 927 (1966).

"P. G. O. Freund and R. Oehme, Phys. Rev. Letters 10, 450
(1963). These authors consider a fixed branch point competing
with a normal Pomeranchon, rather than a branch point alone
such as we are discussing. Their formulas become somewhat
modified when signature is taken into account.
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infinite accumulation of branch points at J=1.) The
following theorem has been proved by Martin'4: If for
some t~&0, but below the leading threshold or bound
state (e.g., 0& fr&4p, ' for vacuum quantum numbers),
the scattering amplitude is known to be bounded by a
power n(i'r)) 1, then f'or 0& t& tr the amplitude has the
power bound

(~)&1+k (~)-1j(~/~)'" (6)

An attempt to "saturate" this bound for the Pomeran-
chon can be made by supposing

(i) = f(")+~'"g(")

where f(0)= 1, f and g are analytic at 3=0, and at least
one or the other of them contains the normal thresholds
in order that there be consistency with elastic unitarity.
Analyticity at 3=0 requires that there also be another
pole at J=n(t), where

of values of t, even if the branch points have appreciable
strength.

The Inaximal strength principle, as implemented
above, does not give completely unique predictions, but
it does suggest that there may be a pair of poles which
collide for t= 0 so as to effectively produce a double pole
for 1=0. As a consequence one obtains the prediction
that total cross sections grow proportionally to lns.
Present experimental data cannot, of course, distinguish
such a behavior from constancy, especially if there is
also competition from inverse logarithms (branch
points) and decreasing powers (other poles). Another
experimental prediction of this double pole behavior is
apparently useful. One Ands from the Sommerfeld-
Watson formula the asymptotic behavior at t=0

A (s,0) (const)sgln's —ln'( —s)$

~(~) =f(~)—~'"a(~). = (const) sLi ins+s ]. (13)

np(t) =np+u't,

and the Pomeranchuk trajectory by

~,(t) =1+qP»

(10)

The branch point which arises from simultaneous ex-
change of these two poles then has the trajectory

(12)trpb(t) = np —(p'/4n')+gpss.

An interesting feature of this result is that the I,=O
intercept of the branch point is displaced downwards
from the intercept of the p trajectory. This fact suggests
that the pole may control the shrinkage for some range

14A. Martin in StrorIg Irlteractions and High Energy Physics
edited by R. G. Moorhouse, (Oliver and Boyd, Edinburgh, 1964).

Thus the partial-wave amplitude has the structure

o(J,&) =r(J,i)/(I:J—f(~)1'—&g'(~)), (9)

with the requirement that r(J,t) is analytic at &= 0. For
/= 0 the amplitude has a single pole or a double pole at
J=1 depending on whether or not r(J,O) contains a
factor of J—1. We shall assume that in general r(J,O)

is finite at J=1.
One motivation for studying the colliding poles

mechanism for the Pomeranchon is a desire to under-
stand why there is little shrinkage when vacuum
quantum numbers are exchanged and appreciable
shrinkage when other quantum numbers are exchanged.
The principal observation to be made in this regard is
that if f(t) =1 for t&0, then we have Ren(t)=1 for
1&0. Thus, as Reu(t) determines the power behavior of
the amplitude, little shrinkage would be expected. to
result from Pomeranchon exchange. For other quantum
numbers the shrinkage depends on the position and
strength of the leading pole and perhaps the competing
branch points. As a simple example take the p tra-
jectory to be described approximately by

This formula implies that at high energy the ratio
ReA/IrnA in the forward. direction is positive" and
approaches zero logarithmically. At s= 100, for example,
the ratio is still about 0.7.

Experimentally, the vacuum quantum numbers can
be isolated by combining amplitudes for s-+p and s- p
scattering. The ratio ReA/ImA is found' (both experi-
mentally and by dispersion relations) to be about —0.13
at 20 Gev/c. This fact rules out the colliding poles
mechanism we have described for all practical purposes.
The only way to reconcile it with the experimental
phase information would be for the competing branch
points (which give rise to logarithmically vanishing
negative values for ReA/ImA) to account for the major
portion of the total cross section at energies in the tens
of GeV. Such a model seems too artificial to pursue. It
is also of some interest that a knowledge of the phase at
high energy is useful information in attempting to
account for the data from a more conventional point of
view. From crude calculations we have concluded that
a simple Pomeranchon pole with tr(0) = 1 together with
a I"pole, constrained to 6t the total cross-section data,
may give a real part that is too large, although of proper
sign. Agreement probably can be restored by allowing
an admixture of branch points, also having intercept
unity. The situation here is rather similar to the prob-
lem of polarization in charge-exchange scattering. " In
the present case, one has data at higher energies, how-
ever, and it therefore appears safer to neglect effects
due to the direct channel.

In conclusion, we have examined a number of possi-
bilities for the leading J-plane singularities in vacuum

In obtaining the relation ln( —s) =1ns —t's one uses the same
arguments that give rise to the signature factor e ' &1., not
pion~ f

"V.M. de Lany, D. J. Gross, I.J. Muzinich, and V. L. Teplitz,
Phys. Rev. Letters 18, 149 (1967); C. B. Chiu and J. Finkelstein,
Nuovo Cimento 48A, 820 (1967).
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quantum numbers. While a number of exotic sugges-
tions —such as a self-reproducing branch point or
colliding poles could not be rigorously excluded, in our
opinion the orthodox picture of a single simple Regge
pole with intercept unity (plus all the associated branch
points) is preferred. We have suggested that important

information can be derived from the phase at high
energy. Perhaps, branch points are required to fully
account for it.

I wish to express my appreciation to Professor M. L.
Goldberger and Dr. S. Nussinov for interesting dis-
cussions and helpful suggestions.
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The usual current-algebra techniques are used in two separate models for relating CP-violating eRects in
E~ 2m decays with possible CP violations in ordinary and strange P decays. In the 6rst model, one meson
is removed from the K —+ 2~ matrix element, and the resulting current-current spurion is saturated with a
limited number of intermediate states. The second model is essentially that of Glashow, Schnitzer, and
Weinberg. In this model, it is found that the CP-violating rate can be calculated in terms of the chiral-
symmetry spectral-function sum rules. The CP-conserving rate, on the other hand, required the use of SLr (3)
spectral-function sum rules. It is found that (a) the leptonic CP violations appear to be quite small, (b) the
BI=~3 CP-violating transitions do not seem to be suppressed by the usual AI=q dynamical mechanism,
and (c) there is a (model-dependent) tendency for the nonleptonic CP violation to vanish in the limit of
chiral symmetry.

I. INTRODUCTION

''N this paper, we use the hypothesis of partially
conserved axial-vector current' (PCAC) and the

chiral SU(3)SU(3) current algebra' to get an esti-
mate of the relation between the nonleptonic and
possible leptonic CE-violating effects' in the weak
interactions. The assumption is made that the weak
Hamiltonian can be written in current-current form.

Two separate models are considered. In the 6rst,
described in Sec. II, the effective Hamiltonian is taken
to be a first-order strictly local one. Then, using the
standard techniques, ' one meson is "removed" from
the E—+ 2z matrix element, and the resulting current-
current spurion is "saturated" with a limited number of
intermediate states.

The second model is the one which has been used by
Glashow, Schnitzer, and Weinberg' to treat the E —+ 2x,
CP-conserving decay. The weak interaction is in this
case taken to proceed by an intermediate vector boson.
Furthermore, all three mesons are removed from the

*Work supported in part by the U. S. Atomic Energy Com-
mission.' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev. Letters 4, 340 (1960).' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

3 J. Christenson, J. Cronin, V. Fitch, and R. Turlay, Phys. Rev.
Letters 13, 138 (1964).

4This model is based on the one described by Y. T. Chiu, J.
Schechter, and Y. Ueda, Phys. Rev. 157, 1317 (1967).' S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 205 (1967). Denote this by GSW.

decay matrix element, and the resulting vacuum ex-
pectation values are calculated by assuming that the
Weinberg-type sum rules' are strictly true. Whereas
this approach involves the SU(3) spectral-function
sum rules for the CP-conserving case, it turns out to
involve the chiral-symmetry sum rules for the CI'-
violating case. The second model is described in Sec. III.

It is clear that each model involves a number of
somewhat drastic and digerertt assumptions. Therefore
we will not attempt to compare the two models at this
time. We note, however, that the following two con-
clusions emerge from both:

(a) The predicted CI' violations for ordinary and
strangeness-changing P decay seem to be quite small,
on the verge of or below the present experimental
uncertainties.

(b) The BI=as CP-violating amplitude is not sup-
pressed in the same way as the BI=~3 CP-conserving
amplitude.

In the second model, and for a (plausible) special
case of the 6rst model, we have an additional con-
clusion:

(c) The CP-violating IC —+ 2sr decays vanish in the
limit of chiral symmetry.

A discussion of the results will be given in Sec. IV.
' S. Weinberg, Phys. Rev. Letters 18, 507 (1967);T. Das, V. S.

Mathur, and S. Okubo, ibid. 18, 761 (1967);J. J. Sakurai, Phys.
Letters 24B, 619 (1967); S. L. Glashow, H. J. Schnitzer, and S.
Weinberg, Phys. Rev. Letters 19, 205 (1967).


