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We investigate the properties of a class tt of form factors F(t) which include some with the asymptotic
behavior suggested by Wu and Yang: F (t)~A expL —a(—t)'"j, a)0, for large negative t. A simple repre-
sentation theorem for such form factors is proved. This theorem is then used as the main tool to obtain
the results which follow. "Asymptotic lower bounds" are derived for any F(t) of class 8, both at large
positive and at large negative t. It is shown that any form factor belonging to class 8 satisfies a generalized
unsubtracted dispersion relation. A whole set of sum rules for ImF and ReF on the cut are obtained,
generalizing those which follow from a superconvergent dispersion relation. An asymptotic lower bound
on the number of changes of sign of ImF and of ReF along the cut at large positive t is derived. As an
illustration, we Qrst construct according to a simple procedure F(t)'s which have the given asymptotic
behavior and whose only singularities are simple poles. We then derive an asymptotic lower bound on the
number of these poles at large positive t for any F (t) of this type.

I. INTRODUCTION

ECENT electron-proton scattering measure-
ments" are compatible with the suggestion of Wu

and Yang' that the electromagnetic form factors of
elementary particles might decrease like exp( —tt

~
t

~

' "),
a) 0, for large spacelike (that is, negative) values of the
squared momentum transfer t.

The first comment we wish to make in this connection
is the following. In the framework of our present theo-
retical description of elementary particles, it is assumed
or proved, as the case may be, that form factors have
properties of analyticity and moderate growth. In view
of these properties, asymptotic behaviors of the Wu-
Yang kind seem to have some special significance in the
following sense. It has been proved under rather general
conditions4 ' that form factors cannot decrease faster
than exp( —tt~ t~

't') for every positive tt as t tends to
—~ (unless they vanish identically). We could express
this fact by saying that the behavior postulated in Ref.
3 is an "asymptotic lower bound" for form factors at
large negative t.

Our next comments apply only to a narrower class
5 of form factors. Class 5 is de6ned as the class of those
form factors F(t) which fulfill the following conditions:
They are holomorphic in the t-plane cut along the real
axis from some finite b to + ao, they satisfy the reality

condition F(t*)= LF(t)j* (an asterisk means complex
conjugation), and they are polynomially bounded as

~
t~ tends to co. LFurther assumptions will be made in

Sec. II to ensure that the Ii 's have well-behaved bound-
ary values on the cut. In this Introduction, we shall
take for granted that these boundary values are con-
tinuous, and that they are smoothly reached. ) It is ex-
pected for well-known mathematical reasons that the
properties of a given form factor Ii of class 5 will be
very closely related to the properties of its discontinuity
on the cut, which we shall call ImF, following a wide-
spread usage. The hope is that the properties of Imp will
have a reasonable physical interpretation. If we now re-
quire that the given Ii have the Wu-Yang asymptotic
behavior, we have to describe the effect that these addi-
tional requirements have on the properties of ImF.

I et us state the Wu-Yang assumption in the weak-
ened form we have found convenient to work with. We
shall assume that Ii satisfies

limsup tt( 't'lnjF(t) j(—tt
g ~ao

for some positive a. )From Sec. II on, we shall denote
by 0', the class of those form factors of class F which
satisfy a condition like (1.1).j

The known consequences of condition (1.1) for ImF
can be summarized as follows:

(a) It has been proved by one of us' that if (1.1) is
satisfied, then ImF (t) cannot decrease as fast as
exp( —Pt'") as t tends to +~ (9: any given positive
number, however small), unless F is identically zero.
Therefore, (1.1) implies an asymptotic lower bound for
Iml for large positive t.7
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(r—1)
—' ImF(r)dr, (1 2)

where the real-valued measurable function ImF satisfies

(1.3)

(b) It has been proved by Martin in Ref. 4 that ImF
determines F uniquely when (1.1) is satisfied.

(c) It is generally known that conditions of decrease
of the kind (1.1) sometimes imply superconvergence
sum rules for Imt. Sum rules of this and related types
have been discussed and put to various uses in many
places. ' ' More precisely, the results one has are of the
following nature. Assume that the form factor F is
given by the equation

condition (1.1) is imposed, it follows from (b) that the
subtraction polynomial will be uniquely given by Imt.
This welcome feature, however, should not let us forget
consequence (d), which indicates that ImF has of neces-
sity a complicated asymptotic behavior for large positive
t if (1.1) has to be satisfied.

The basic idea of the present article is to use a repre-
sentation for a given form factor F satisfying the %u-
Yang assumption in terms of a (generalized) function S
subjected only to a very simple support condition de-
duced. from (1.1). This representation is explained in
Sec. II. The simplicity of the condition on 5 is in strik-
ing contrast to the complicated nature of ImF as re-
flected in statement (d).

More precisely, our starting point is the following. If
F is a form factor of the class 5' which satisles condition
(1.1), then we show that we can write it as

for all 0.&0. Then in order that

-=0

for all o.&0, it is necessary and su@.cient that the sum
rules

r~ ImF(r)dr=0 (1.4)

be ful6lled for all non-negative integers E.
(d) It is well known that conditions of decrease like

(1.1) imply that ImF has to change sign an infinite
number of times. '

The form factors F of the class 5 just described are
usually represented in terms of Imt by a dispersion in-
tegral like (1.2), with some subtractions if needed. When

8 We give a short bibliography of the subject. For form factors,
see: R. G. Sachs, Phys. Rev. 126, 2256 (1962};A. P. Balachandran,
P. G. 0. Freund, and C. R. Schumacher, Phys. Rev. Letters 12,
209 (1964); and Ref. 6. For partial waves, see: G. F. Chew, M. L.
Goldberger, F. K. Low, and Y. Nambu, Phys. Rev. 106, 1345
(1957); A. P. Balachandran and F. von Hippel, Ann. Phys.
(N. Y.) 30, 446 (1964); A. P. Balachandran, J. Math. Phys. 5,
614 (1964); Ann. Phys. (N. Y.) 30, 476 (1964); M. Kugler, Phys.
Rev. Letters 17, 1166 (1966); and Phys. Rev. 160, 1574 (1967).
For forward scattering amplitudes, see: M. L. Goldberger, H.
Miyazawa, and R. Oehme, Phys. Rev. 99, 986 (1955}; A. P.
Balachandran, Phys. Rev. 134, B197 (1964). For forward and
6xed-t scattering amplitudes, see: V. de Alfaro, S. Fubini, G.
Rossetti, and G. Furlan, Phys. Letters 21, 576 (1966); L. D.
Solov'ev, Vadern. Fiz. 3, 188 (1966) i English transl. : Soviet J.
Nucl. Phys. 3, 131 (1966)j; T. I.. Trueman, Phys. Rev. Letters
17, 1198 (1966); P. Babu, F. J. Gilman, and M. Suzuki, Phys.
Letters 24B, 65 (1967); B. Sakita and K. C. Wali, Phys. Rev.
Letters 18, 29 (1967);M. B.Halpern, Phys. Rev. 160, 1441 (1967);
R. Musto and F. Nicodemi, Nuovo Cimento 49A, 333 (1967);R.
H. Graham and M. Huq, Phys. Rev. 160, 1421 (1967); N. J.
Papastamatiou and S. Pakvasa, Phys. Rev. 161, 1554 (1967);
and a very large number of other recent papers. For Axed-angle
scattering amplitudes, see A. P. Balachandran, Phys. Rev. 137,
8177 (1965).

9 Reference 6 makes use of the sum rules to prove the result
mentioned under (a).' See Ref. 3. In Ref. 4, Martin notices that this follows from a
theorem of Y. S. Jin and A. Martin, Phys. Rev. 135, 81369
(1964).

(1.6)F(1)= hm z.—' (r—1) ' ImF(r)e 'dr—
5~0

Equation (1.6) may be considered as a refinement of
statement (b) above, which follows from it as a corol-
lary. Other results are asymptotic lower bounds for F.
It: In Sec. IV, we derive a whole set of generalized sum
rules. Examples are

lim r~ ImF(r)e s'dr=0
b~o

for all non-negative integers S, and the continuous in-
finity of sum rules

lim
6~0 Re/F (r+i0) exp( —ir)(r —b) '~')]

XexpL —Br)dr =0 (1.8)

for all ri(a. Relations (1.7) are generalized versions of

where 0(arg(t —b)(2z. and S is a real-valued tem-
pered distribution on the real line whose support is con-
tained in {$~ $&a}.Conversely, if S is a tempered dis-
tribution with these properties, formula (1.5) defines a
function of class F satisfying (1.1).

Notice that the asymptotic lower bound for E at large
negative 1 follows immediately from this statement (see
Sec. IIIB).

In Secs. III and IV, we use this representation to re-
derive, refine, and generalize the results listed above
about the properties of ImF which follow from a condi-
tion like (1.1). We give here a brief and somewhat im-
precise summary of our results.

The main result of Sec. III is the following general-
ized unsubtracted dispersion relation:
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(1.4) which hold even when (1.3) does not. "The distri-
bution of "changes of sign" of ImF is then investigated
with the aid of the sum rules and the asymptotic lower
bound for ImF at large positive t. It is shown that given
any real number T, however large, ImF must change
sign in6nitely often on the half-line t& T. We also show
that if u(r) denotes the number of changes of sign of
ImF in T&t&7, then

limsup r '~'rt(r))rr 'a
f' ~+00

where a is as in condition (1.1).
We observe that all the results on ImF stated in Secs.

III and IV can be easily taken over to ReF on the cut
by considering Fr(f) = (b—f)'"F(f) instead of F(f).
Clearly, if F belongs to F and satisles condition (2.1).
FJ does so too, and

ImF r(t) = —(t b) '"8(t—b) ReF(—t) .
Section V illustrates some of our results. The kind of

examples we have chosen represents a concession to
current fashion. We give a prescription to construct form
factors F which have the Wu- Yang asymptotic behavior
and whose only singularities are simple poles. "We also
show for such F's that if Ns(v) denotes the number of 8
functions in ImF with support in t&r, then

limsup r '~sns(r)&v. 'a.
T~ 00

If these poles are interpreted as resonances, and if the
value of u found in Ref. 2 is used, one would conclude
that it follows from the Wu-Yang asymptotic behavior
that there are an infinite number of resonances with
masses spaced (asymptotically) no more than about
2 BeV apart. We prefer to leave such an inference to the
reader, however.

The Appendix contains a function-theoretic lemma
used in one proof.

For mathematical convenience, many of our con-
siderations involve distribution-theoretic arguments. '
We believe, however, that a reader not familiar with this
theory should be able to follow the proofs by the stand-
ard device of treating distributions as ordinary func-
tions. In this spirit, we ourselves often use in what fol-
lows a symbolic functionlike notation to express distri-
bution-theoretic relations.

We have aimed at mathematical rigor. However,

» The sum rules of R. F. Dashen and M. Gell-Mann (in Proceed
ings of the Third Coral Gables Conference on Symmetry Principles at
High Energy, edited by B. Kursunoglu, A. Perlmutter and I.
Sakmar (W. H. Freeman and Co., San Francisco, 1966)] and S.
Fubini LNuovo Cimento 43A, 475 (1966)j can be inserted into
these equations to obtain constraints on the absorptive parts of
scattering amplitudes.

"Models leading to form factors of the Wu-Yang type have
been discussed by S. D. Drell, A. C. Finn, and M. H. Goldhaber,
Phys. Rev. 157, 1402 (1967); and J. D. Stack, Phys. Rev. 164,
1904 (1967).

13 Our main source on this subject is L. Schwartz, Theoric des
Distributions (Hermann R Cie., Paris, 1957), Vols. I and II.

many arguments are not spelled out completely and are
given in an intuitive form. '4 It is our conviction that the
interested reader will be able to complete our arguments
without difhculty.

II. REPRESENTATIOÃ THEOREM

A. General Assumptions and Definitions

The form factors we consider in the present paper
will all belong to the following class of analytic functions.
Let a be a positive number, and let b be a real number.
We denote by 0! the class of those functions F which
have the following properties:

(A1) F is holomorphic in the t-plane cut along the
real axis from b to + co.

(A2) There are positive numbers cr, P, and IC, depencl-
ing on F, such that, for all t in the cut plane,

IF(&) I «(1+ I&l) I &(&)?',

where A(f) denotes the distance from f to the cut.
(A3) We have (r real)

limsup
I
r

I

'~' ln
I F(r) I

&—a.

(A4) For v(b, F(r) is real.
Notice that we do not require F to be actually dis-

continuous on the entire cut. Neither have we excluded
poles on the half-line v.&b. Remark also that if we mul-
tiply F in 8, by a polynomial with real coefficients, we
obtain again a function in O', . Similarly, if we divide F
in 6, by a polynomial whose zeroes are all on the cut,
then we obtain again a function in 8.

It is convenient to introduce a second class of func-
tions for reasons which will soon become apparent. Let
us denote by the class of those functions 6 which
satisfy the following conditions:

(81) G is holomorphic in the upper-half u plane
(Imu) 0).

(82) There are positive numbers 7, 5, and L, depend-
ing on G, such that, for all u with Ime&0,

IG(u) I (L(l+ Iul)&(imu)-'.

(83) We have (o real)

limsup o 'lnlG(io. ) I&—a.
4r ~+00

(84) For o)0, G(io.) is real.
It is possible to associate each function F in 8, with

a function 6 in S in the following way. .The relation

(2.1)

"For example, we speak freely of real-valued distributions
without bothering to de6ne what we mean by this concept. Also,
in a symbolic expression like (2.3), we do not comment on the fact
that e' &, considered as a function of g for a fixed u with Imu&0,
is not actually in S, and that (2.3) makes sense only because of the
support properties of S.
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establishes a one-to-one correspondence between the cut
t plane and the upper-half I plane. For any function Ii

dehned on the cut t plane, we de6ne the corresponding
function 6 on the upper-half I plane by

Theorem II.B.Z

If a function G has properties (BI) and (BZ), thee there
exists a tempered dkstributiom G+ om the real lime such that,
for all &pim g,

G(u) =F(t), (2.2)

t and u being related by (2.1). Obviously, the corre-
spondence so defined between 6 and F is one-to-one. We
shall say that P and 6 are associated with each other.
One shows easily that G is ie S if and oely if its associ
ated function F isim S.

G+(to) = lim
tycho

G(t+io) v (t)dt

G (t) =G(t+i0).

We shall sometimes write symbolically

(2 5)

B. A Useful Theorem The tempered distribution 6+ is the Fourier transform,
in the sense of the theory of distributions, of the tem-

The reason behind our assumption (82) [or (A2)] is pered distribution S. Symbolically,
to be found in our wish to make use of the following
beautiful result. " +oo

Theorem II.B.j G+(p) = e'I'&S(g) dt

In order that a function G have properties (Bl) and

(BZ) it is necessary and segcient that there exist a tern

pered distributioe S oe the real lime whose support is coe
tained im {)i)&0},such that we have the followieg
(symbolic) relation for Imu) 0:

e '"G+(t)dt

C. Representation Theorem

(2 6)

etrS($)d).
From Theorem II.B,1, we can derive the following

(2.3) generalization of the Paley-Wiener theorem.

This theorem is proved in Ref. 16. It can be reformu-
lated in the following way. It is shown in Ref. 13 (Chap.
VII, Th. VI) that any tempered distribution S is the
eth derivative (in the sense of distributions; e depends
on S) of some continuous function which is polynomially
bounded. Therefore, ie order that a function G have

properties (Bl) and (BZ), it is eecessary aed sufficient
that there exist c worn-eegatke integer e used e coetielols
functioe f oe the real lime such that

for $(0,

for some positive C aed rr, and

Represeetati on Theorem II.C.1

G(u) = e"'S($)dh. (2.7)

Proof (sketch): (n) Sugciency If the c.ondition is
satisfied, it follows from Theorem II.B.]. that G satis6es
(81) and (82). (84) follows from the reality of S. Let
us show that (83) also is satisfied. In (2.4) we can as-
sume that f is real and that

The function G betongs to S if aed only if there exists
a real valued tem-pered distribution S oe the real line wltose
support is coetaimed in {)i$)a}, such that we have the
following (symboHc) relatioe for Imu) 0:

G(u) = (—iu)" f(&)e'"&d& (2.4)
for $(a. Therefore,

for Imu&0 The distribu. tion S in (2.3) is the mth deriva-
tive of f in (2.4) in the sense of distributions.

Theorem II.B.1 has the following corollary. '7 o
—"G(io)= f(8e 'd$+ f(()e «(-

"For the notion of tempered distribution, see Ref. 13, Chap.
VIL

"Seminar notes by students of M. Zerner, University of
Marseilie, France (unpublished).

» S is de6ned in Ref. 13, Chap. VIl, Sec. 3. It is the set of those
C" functions s(p) on the real line Pi.e., of those functions s(p) on
the real line which are difFerentiable in6nitely many times/ which
together with all their derivatives vanish at in6nity more rapidly
than any power of p '. S is equipped with the topology described
in Ref. 13.

=It+Is, (o &0, 2 & a) .

iI, [(m e &d&(Mo ' exp( ao)—
Let M be the maximum of

i f(&) i
in the interval [a,A];

then
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For any positive number e, and for 0-& e,

f(g) exp( —fo.—e) $) exp( —~$)d$

where
(1V exp(—(o.—e)A),

~ f(t) ~
exp( —eg)d$.

e
—iaaG(u)— So($)e'"&d$,

where the tempered distribution 50 has its support in

{$~ $&0}.Putting (symbolically)

we get (2.7). The reality of S follows from (84). Q.E.D.
In an obvious way, we get from this theorem the

following.

CoroOar Y II.C.Z

F is in 0', if and only if there exists a real tempered
distribulion S on the real hne whose suPPort is contained
in {$~

$& a), such that for all l in the cut plane we have

the (symbolic) formula

(83) follows from these estimates.

(P) Eecessily. Since G satis6es (81)—(83), the func-
tion G&, defined by

Gi(u) = (u+i) "G(u),

where m is a large enough integer, satisfies (81), (83),
and, instead of (84), an estimate of the form

~
G, (u)

~

(1.(rmu)-~.

Using now Theorem 6.2.4 of Ref. 18 for any half-plane
Imu&o(&0), we find that

~

e-""G (u) ~
(L,(Imu)-'.

Therefore, e ""Gi(u) satisfied (81) and (82). By
Theorem II.8.1, we thus have (symbolically)

F(r i0)=—F (r)

F can be seen to be the complex conjugate of F+, be-
cause of (A4). We define ImF as

ImF= (2i)—'(F+—F ). (2.9)

It is a real-valued tempered distribution whose support
is contained in {r

~
r&b), because of (84).

Similarly, if G is in 55, we have a tempered distribu-
tion G+ such that, symbolically,

G+(p) =G(p+io). (2.10)

Ke shall frequently consider the distribution G;, given
symbolically by

G, (p) = (2i)—'LG+(p) —G+(—p)J. (2.11)

If Ii in 8 and G in form a pair of associated func-
tions (in the sense of Sec. IIA), then there is a one-to-
one correspondence between ImF and G;. To see this,
assume for a moment that G can be extended to a con-
tinuous function on the closed upper half-plane Iml &0.
Then ImF and G; are ordinary functions, and

ImF(b+p') =+G;(p) for p&0
= —G (p) for p(0. (2.12)

(Remember that two locally integrable functions which
are equal almost everywhere dehne the same distribu-
tion. ") In the general case, the rules which enable one
to compute the distribution ImF given the distribution
G;, and conversely, are more complicated. We give them
below, together with their heuristic justification.

Assume first that G; is given. To find ImF(q), or,
symbolically, to find

which belong to class S. We therefore conclude the
present section by making a few remarks about the
boundary values of functions in 6, and S.

If F belongs to 8, it satisfies obviously (81) and
(82). Therefore, by Theorem II.8.2, there is a tem-
pered distribution F+ such that, symbolically,

F(+'0)=F.( ).
A similar argument shows that there is a tempered dis-
tribution F such that, symbolically,

F(l) = dE Su) expL 5(b l)"—')de, —(2.g) ImF(r) q (r)dr

where ~arg(b —t)
~
&vr.

D. Remarks on the Boundary Values of
Functions Belonging to 8 and

In the sections which follow, we shall show how to
make use of the representation theorem to obtain vari-
ous properties of the values on the cut of form factors F

for any p in 5, let us look at the result of a formal change
of variables. We find, using (2.12),

ImF(r) v (r)dr= G,(p)py(b+p')dp.

But if q is in g, P(&p), defined by

"R. P. Boas, Entire Functions (Academic Press Inc. , New York,
1954). "SecRef. j.3p Chap. I.
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is also in S, so that the integral on the right-hand side is
well de6ned. Thus we guess that the following is true.

G'(4) = G;(p) p(p) dp = ImF (r)P(r)dr, (2.13)

Pro positi on II.D.I
If F in 8 and Gin 6l are associated with each other, then

ImF(y) =G;(I'(q ))
for all /p in S.

Assume next that ImF is given. I.et y be in S. Then
we formally get from (2.12)

convince the reader of their truth. A complete proof can
be based on the following fact: Let q be the Fourier trans-

form of o,fgnctionin X) (ip is therefore an entire function
of u, say, whose restriction to lines Iml= const is in S).
Let G /Jnd G+ bc as in Theorem II.P.Z. Thee, for all o)0,

G(p+i~) ~(p+i~) dp

III. APPLICATIONS OF THE REPRESENTATION
THEOREM, ASYMPTOTIC LOWER BOUNDS,

AND THE GENERALIZED DISPERSION
RELATION

where

P(r) —sr (r b)
—r/s[(p((r b) 1/2) /p( (r b)1/2)]. (2.14)

But the meaning of the integral on the right is ambigu-
ous. One correct way to get around this difhculty is the
following. We recall once more that, being a tempered
distribution, ImF is the eth derivative in the sense of
distributions of a continuous, polynomially bounded
function f Ther.efore, it can be extended by continuity
from S to S ."Let Ps, ft, . be a sequence of functions
jn Q" such that

A'"'(b) = b/s .
We de6ne for each non-negative m a continuous map

from S into S by

I'„(q)(r)=P(r) for r) b

=cpfp(r)+ .+c P (r), for T(
where f is as in Eq. (2.14), and

ca= lim lb" (r)=k![(24+1)!g 'q""+"(0).
r~b+0

S,(P)= (2i)- [S(~)—S(—P)). (3.1)

The results we obtain in this and the next section rest
upon the important fact that since a is positive, S is

known to have its support in a closed ha1f line which-

does not contoin the origin Therefor. e: (a) S; also is zero
in a neighborhood of the origin. "(b) S can be recovered
unambiguously once S; is given. "

B. Asymytotic Lower Bounds

As we already remarked in the Introduction, the fol-

lowing asymptotic lower bound for F at large negative
t follows immediately from the representation theorem:
If F sotisPes (AI), (AZ), and (A4), and if for r reaL

A. General Remarks

According to the representation theorem stated in Sec.
IIC, if F is in 8, then the boundary values of G+ and G;
[Eqs. (2.10) and (2.11))of its associated function G in
(8 are Fourier transforms of tempered distributions S
and S; which are related symbolically by

We are now ready to state the content of Eq. (2.13) in a
precise way.

lim r "'ln~F(r)
~

= —oo,
f~00

(3.2)

ProPosition II.D.Z

If F in 8 and G in S are associofed with each other, and

ImF =d"f//dr",

where f is u continlogs, Polynomially bolndcd function,
thee

G;(q) = ImF(1'„(p))
for all /p in S.

%e shall not give a proof of these two propositions.
We hope that the heuristic arguments given above will

&hen F is identically sero For it th. en follows from (3.2)
that F satisfies (A3) for any positive a, however large.
Therefore, by the corollary of Section II C, the support
of the tempered distribution S appearing in (2.8) is

empty. Thus, S is zero."With it, F is (identically) zero,

by (2 g)
I et F be in 8. Let p and v be real numbers, and let

p(b, Then

R„(r)= exp[la(r —v) t/s) ImF(7')

is a weil-defined distribution (in K)' s') because of the

support properties of ImF."
so S„ is the set of those functions v (p) which have n continuous

derivatives, and which together with their first n derivatives
vanish at infinity more rapidly than any power of p . S„ is
equipped with the topology given by the seminorms p&, &(s)
=sup! (1+p')'! rp&"&(p)!!—~ (p(+ ~ }, k,l: non-negative inte-
gers, k&n. 5 is dense in 8„."I) is the set of those functions ~(p). which are infinitely differ-
entiable, and which vanish outside a compact interval. See Ref.
13, Chap. I.

"For this concept, see Ref. 13, Chap. I, Sec. 3.
"Namely, because of (a), 8(f)S;(g) has an unambiguous mean-

ing and can be seen to be equal to (2f) 'S($); cf. (3.1).
'4 This follows from the fact that S is dense in S (Ref. 13, Chap.

VII, Thboreme III) and from the definition of the support of
a distribution (Ref. 13, Chap. I., Sec. 3)."Cf. Ref. 13, Chap. I., Sec. 2.I Cf. Ref. 13, Chap. V, Sec. 1.
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Propositioe III.B.1

If there is a positive cumber y such that RY is a tern

pered distributt'oe, thee F is identically sero.
Proof: Let G be the function in S which is associated

with F. Put
Tp(p) = exp(pp)G, (p) .

Because of Proposition II.D.2, it follows that T~ and
T ~ are tempered distributions. Therefore, the Fourier
transform S; of G, is a function which is holomorphic
in the strip

I
Im)

I
(y.'r But it vanishes (almost every-

where) on the real axis between —a and +a. Therefore,
S,=O. This implies S=0, i.e., F=0 by (2.8). Q.E D.

This result may be interpreted as giving an asymp-
totic lower bound for ImF at large positive t. As re-
marked in the Introduction, a similar result can be ob-
tained for the real part of Ii on the cut by considering
the function Fi(t) = (b—t)'I'F(t) instead of F.

More refined results might have been obtained by us-
ing the notion of quasianalyticity, as discussed in Ref. 5.

C. The Generalized Dispersion Relation

We are going to prove now that form factors of class
8 satisfy a generalized dispersioe relation without "sub-
tract~ops. " This result is a refinement of a uniqueness
theorem due to Martin4 which can be formulated in the
following way: Let Fi aed Fs be form factors beloegieg to

the class S. If

1 +" ImF(r)
Ps(t) =- exp(-br) dr . (3.5)

Propost'tioe III.C.Z

We have as a corollary to the preceding lemma:

lim Fs(t) =F(t)

uniformly ie t whee t lies ie aey compact set contained t'n

the complement of the cut (r I
r& b}

Ptoof: Let G be the function in 0 which is associated
P. Using Proposition II.D.1 and the symbolic relation

I We have used Eqs. (2.6), (2.11), (3.1), and (3.3). Re-
member the definition of the Fourier transform of a
tempered distribution. "]Because of the support prop-
erties of S;,

S,(xs,„)=S;(nxg, ),
where 0. is any C" function which is equal to 1 for

I $ I
&a and to 0 for

I $ I
(-',a, say. But rrx~, tends to

xs, ($) =icr($)8($)e'"& in 8 when b tends to 0 through
positive values, uniformly in I for I in any compact set
contained in the half-plane (uIImu)0). The lemma
now follows of the representation theorem with the help
of (3.1) and (3.4). Q.E.D.

Let F be a form factor in the class g. For 8&0, de6ne
the function Ii& by the symbolic expression

ImF] = III1F2
~

we 6nd
G (p)+G (—p)=o

Ps(b+u') = exp( —bb)G)(u) .
We first derive the following lemma. Let G be a func-

tion in . For 8&0, define the function G& by the sym-
bolic expression

Gs(u) =7r—' G;(p)(p —u'j-' exp( —bp')dp (3.3)

Q.E.D.
From this result, it is easy to obtain the following

(symbolic) formulas for the derivatives of F:

e! +" ImF(r)F'" (t) = lim — exp( —br)dr, (3.6)s~o ~ „(r—t) "+

for Iml&0."
We then have

Lemma III.C.l
lim Gg(u) =G(u),
5~+0

valid for 3 in the cut plane.
If ImF turns out to be a measurable function such

that

II~()I(1+I I) " 'd &"
uniformly in u whee u lies ie any compact set contained in
{uIImu) 0).

Proof: For 5)0, Imu) 0, define a function x&,„by
for some positive integer ns, then it is easy to derive
from Proposition III.C.2 the usual subtracted disper-
sion relation:

xs..(8=(2~) ' exp(ip&)(p u) ' exp—(—8p')dp. P(t) =co+el(t d)+ ' ' '+c~ 1(t d)—
This function belongs to S. We have

G~(u) =2S'(xs.-) (3.4)

(t—d)" +" ImF(r)d7

(r—d) (r—t)

"Cf. Ref. 13, Chap. VD, Sec. 6.

where d is any number in the cut plane, and where the'r L. Scbwartz, Medd. Lunds Mat. Semin, Suppl. , 196 (1952)."For any b&0 and any u with Imu&0, the function
p -+ (p —u) r exp( —bpm) belongs clearly to S
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subtraction constants cI, are given in terms of Imp by tion the following "continuous in6nity" of sum rules:

1 " ImF(r)
ci, ——lim —

exp�(

br—)drb~ 07I' (r d)k@1
lim
b~p Re[F (r+i0) exp( —i' (r—b) '~')]

Xexp( —br)dr=0
[cf. Eq. (3.6)).

IV. FURTHER APPLICATIONS OF THE REPRE-
SENTATION THEOREM. GENERALIZED

SUM RULES. AN ASYMPTOTIC
LOWER BOUND FOR THE RATE

OF OSCILLATION OF ImE

A. Generalized Sum Rules

In order to illustrate the main idea of the proof of the
sum rules stated in Proposition IV.A.2 below, we erst
derive a simpler set of sum rules.

for all g(a (the integral converging in the sense of
distributions).

We now derive a more reined class of sum rules.

Proposition IV.A.Z

Let F be a function belonging to class 8, Let f be ae
entire function of order less thae or equal to 2 such that

limsup r '~' ln
l
f(re"'~)

l (ao[~(1+ l
cosg l)]'~ (4.2)

where ao(a. Thee (symbolically)

lim G+(As, „)=0
b~o

for all rt(a.
Proof: Define 0'i, , by

(4.1)

~s, (p) exp(ihip)dp

= (7r/8) 'I' exp[—(48)
—'(t —t')']r.

Pro posi tioe IV.A.1

I.et G be in S, md let G+ be its boundary value according
to Theorem II.B.Z. For b) 0, g real, let the function hs, „
ie g be defined by

~i,,(p) = exp( —6m) exp( —bp').

lim ImF(r) f(r) exp( br)dr—=0 (4..3)s~o

Remark that the choice f(t)=P (1V: non-negative
integer) leads to the sum rules (1.7).

We shall derive this proposition from the following
lemma, whose proof is based on the idea that was used
in the proof of Proposition IV.A.1.

I.enema IV.A.3

Let T be a tempered distribution such that its Fourier
transform Thasi ts support ie ($ l l $ l

)a},where a is some

positive number Let g be.ae entire function of exponential

type such that its indicator diagram D '0 is contained ie
the opec square (p+io. l l pl+ l

o l (a}.Define gi by

Using the de6nition of the I"ourier transform of a tem-
pered distribution, we get

G+(~i, )=S(es,.)
Them

g (p)=exp( b)pg(
—)p

lim T(gi) =0.
$~p

(4.4)

(4.5)

[cf.Eq. (2.6)].Let it be smaller than a. Put $0= ~ (a+g).
Letn($) be a C"function, equal to 0 for $&)0 and to1 for
f& a According .to the representation theorem, the sup-
port of S is contained in the set ($l $&a}.Therefore,

S(Og „)=S(nO) „).

But, for all non-negative integers m and n,

dn
»m P [ ($)H~,.R)]=0,5~0 dP

Remark: Our normalization conventions are 6xed by
the following symbolic relation:

T(p) e '&&dp. -

Proof of Lemma IV.A.3: Let

«=m»(l pl+ lol I p+i«D}

(remember that the indicator diagram D is a compact
set). Let co, ci and c~ be real numbers with

uniformly in $, i.e., nO'&, „ tends to 0 in g as 8 tends to 0 (0&)ao(co(ci(c2(a.
through positive values. Relation (4.1) follows. Q.E.D.

If the form factor F belongs to 6, and if the function Let I'0 be the closed curve (p+io l l pl+ l
o l

=co}. I'0

G in associated with Ii is continuous in the closed is a square with its vertices at cp, icp, —cp, RIll —icp. Let
upper half-plane Imu&0, we obtain from this proposi- Di be the set (p+io l l pl+ lo l

&ci}.
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The function h, defined by

g(p) exp( —ps)dp, (4 6)

is obviously holomorphic in Res) a. It is well known
(cf. Ref. 30) that h can be analytically continued to a
function which is holomorphic in the complement of
D. One has the formula

g(e) = (2e() '$ exp(ee)g(e)ge, (4.7)

where I' is any rectifiable curve, homeomorphic to a
circle, lying in the complement of D, having D in its
interior, and positively oriented. V/e shall choose I' to
be the contour Fo defined above.

Let us define g& by

g.(k) = g (P) em(ib)dp (4 8)

The function gq is in 5 for 6)0. Let us show that for
any non-negative integers e and m

dn
lim &" Lgg(()]=0

() mo dP
(4.9)

uniformly in $ for
I t I

& c2. From (4.4), (4.7), and (4.8),
we obtain

dn
2m i I g()(P)]= (n/8)'(' ds h(s)

dP rp

dn

&& {expl (4l)) '(s+i$)']} (4.10)
dP

(the interchange of limiting processes is easily justified).
To find a bound for the exponential and its derivatives
on I'0, we proceed as follows. First, we remark that for
all s in Di and for all $ with

I )I &ci,

I expL(4b) '(s+ig)']
I
&expL (4()) '(I (I ci)'].

This follows from the inequality

Rel:(s+ik)']& —(I E I

—ci)',

since IImsl &ci and I&I
—ci&0.} Second, given any s

on Fo as center, we draw a circle tangential to the
boundary of D&. This circle is entirely contained in D&,

and its radius is R= ~i&2(ci—co). Cauchy's inequalities

supply now the required bounds: For z on I"0 and for

{emL(4~) '(s+ik)']}
83

&n!R "expL—(4()) '(I &I
—ci)'].

Therefore, it follows from (4.10) that

dn

Lg (t)] &~!& "I(!&)'"exp[ (4&)—'(Ill —c)']
dP

for
I $ I

&ci. We have put

L=(2~)-' lh(s) I
ldhl.

ro

Thus, (4.9) is verified. Now,

2'(g~) = I (g~)

Because of the support properties of T,

T(g~) = T(~g~),

where n is any C" function equal to 1 for
I ( I

&a and to
0 for l)l(cg. Since (4.9) implies that

lim. egg=0
5 ~+0

in S, relation (4.5) follows. Q.E.D.
Proof of Propositior( IV.A.Z: Let G be the function in

S associated with F. Using Proposition II.D.1, we get
symbolically

ImF(r) f(r) exp( t')r)dr—
which is valid under the same conditions. {Proof: Let

and

Then

=exp( —l)b).

where g is defined by

G'(p)g(p) exp( ~p)'dp, (411)

Rel (s+i&)']= (Res)' —(Ims+ t)'
& (Res)' —(I Ims

I
—

I E I)'& (ci—II~I)'
—(I I~I —

I & I)'« '+2 II~I (I ~ I
—ci)—I ~ I

'
& —(I SI — )',

"For the results on entire functions of exponential type use&
here, see, for example, Ref. 18„Chap. 5.

g(p) =Pf(h+P ).
Putting 6;=T, S;=T, we can apply Lemma 2 to the
right-hand side of (4.11).This is so because condition
(4.2) implies that the indicator diagram of g has the re-
quired properties, and because the representation
theorem implies that the support of 5; is contained in
{&Ilail&~} QED
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If ImF turns out to be a measurable function such
that

lImF(r)
/
(1+ I

r /")d« ~ (4.12)

for some positive integer X, it follows from (4.3) with

f(t) =t", 0&n&X, that

ImF (,),-dr =O.

If ImF is measurable, and if condition (4.12) is valid
for all positive integers E, or, more generally, if t~ ImF
is a bounded distribution" for all positive integers X,
then the Fourier transform S; of the corresponding G;
is a C" function of moderate growth. "Therefore S itself
is a C" function of moderate growth. Using standard
methods, " we arrive via Eq. (2.7) at the following
strengthening of condition (A3):

lim ~t~~F(t) exp(a~t~'t')=0
g ~oo

for all positive integers S.

Remark: The example F(t)=exp/ —a(b —t)'") shows
that the right-hand member of (4.13) cannot be made
larger. See also Sec. VA.

Froof: We first construct an entire function f in the
following way. Consider the set of the zeros of g which
are in &r ——(7 ~r&pr ——max(0, po,

—b}}.If this set is
finite, we can as well assume that it is empty, by taking
ps large enough. We then put f= &1, choosing the sign
of f in such a way that f ImF be positive on t),t. If on
the other hand this set is not 6nite, it is countable. We
can enumerate it in such a way that

p~& 7~& g2& e ~ ~

Because of (4.13), we can apply the Lemma shown in
the Appendix. According to this Lemma, the infinite
product

~ II L1—(t/r-) 3"",
tn=1

where v denotes the multiplicity of the zero 7. , con-
verges to an entire function f of order smaller than or
equal to —,'satisfying

Froposiitort IV.B.1

Iet F bein S. If thereis a real number ps and afunction
gie 5 zenith

llxllsup r t n(r) &sl a
q

T~00 (4.13)

such that g ImF is a positive dkstribution ort As ——(r
~

r
&ps},'4 thee F is identically zero.

"Cf. Ref. 13, Chap. VI, Sec. 8.
"Cf.Ref. 13, Chap. VII, Sec. 5 and Thdoreme XV.
"See for example A. Krdelyi, Asymptotic Expastsiosts (Califor-

nia Institute of Technology, Pasadena, Calif. , 1955), p. 29.
's That is, such that g Imt(s) = Imt(gq) )0 for any non nega-

tive function y in S vvhich has its support in A0. See Ref. 13,
Chap. I, Sec. 4.

B. The Number of Changes of Sign of ImE

It is generally known that if F is a function of class

8, then ImF has to change sign infinitely often (see
Ref. 10). We propose below a precise meaning for such
a statement even when ImF is not a continuous function
with isolated zeroes. %e shall also give an asymptotic
lower bound on the number of changes of sign of ImF at
large positive values of t.

Let 6 be the set of those C" functions g defined on the
real line which have only zeroes of 6nite multiplicity
$i.e., if g(r) =0, then there is a positive integer nt such
that d g (r)/dr" WO; the multiplicity of r is the smallest
of such integers). If g in 8, then the set of its zeroes has
a finite number of points in each compact interval. Let
us denote by n(r) the number of zeroes of g (counted ac-
cording to their multiplicity) in the interval (o

~ ~

o
~

& r}.
The product of a function g in 6 with the tempered dis-
tribution ImF is a distribution in X) (see Ref. 26).

limsup r 't' ln~ f(re")
~

&a,[', (1+~-cos8~)g't' (4 14)

with ao(a. The sign is chosen in such a way that the
C" function g(r)/f(r) is positive on dr. The distribution

f ImF is then again positive on Dr.
In both cases, the function f(t) so constructed, as well

as the functions t"f(t) for all positive integers n, satisfy
the conditions of Proposition IV.A.2. Therefore, we
have (symbolically)

lirn r"f(r) ImF(r) exp( —br)dr=0 (4.15)
+0

for all non-negative integers e.
We now use (4.15) together with the fact that f ImF

is a positive distribution on hr to show that f ImF is
actually zero on Dr (see Ref. 22). Let ps, ps, p4, and ps

be numbers with

Pi~p2~P3+P4~P5,

and let q be a non-negative function of X) with its sup-
port contained in the interval (r~ p4&r&ps} Let n be.
a C" function which is equal to 1 for 7.&p2 and to 0 for
~(p~. Then, for all non-negative integers e and all
positive 8, we find

0&f ImF(q ) =f ImF(ny) &f ImF((r/ps) "nq)
=f ImF((r/ps) "n exp( —br) y exp(br)) &exp(bps)

Xmax((p(r) }f ImF((r/ps) "n exp( —br)),

using the positivity of f ImF on 6r. We now show that
we can make the last line as small as we please, thanks
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to (4.15). We have (symbolically)

(r/ps) "L1—n(r)]f(r) ImF(r) exp( —8r)dr

(r/p, )"n(r)f(r) ImF(r) exp( —br)dr=8(S, n),

where E(b,n) tends to 0 as 8 tends to 0 through positive
values for each fixed value of e. Given e, it is now suAi-

cient to choose e so large that the absolute value of the
first integral is less than ~e for all 8 with 0&8(1, and
then to choose 5 so small that! E(B,n)

~ (are. The interval

fr~ p4(r(ps) being an arbitrary interval contained in

Dr, we have thus shown that f ImF is zero on Ai.
We next show that the vanishing of f ImF on Ar im-

plies that ImF has compact support. This is obvious in
the case when f=&1.In the other case, we argue in the
following way. Since f ImF vanishes on Ai, the inter-
section of the support of Imt with A1 is contained in the
set of the zeroes of f. In other words, we can write

00 Vns 1

ImF =T+ Q Q c(rn, v) 8'"&(r r), —
en=1 V=0

where T has compact support and vanishes on 61, the
c(m, v)'s are real numbers, and 8&"i denotes the vth
derivative of the 8 function. We want to show that the
c(n«, v)'s are all equal to 0. We limit ourselves to show
that for any ns, c(rn, v —1) is equal. to 0. The method
used can then be applied to show that c(rn, v —2),
c(rn, v —3), are also equal to 0. Consider the entire
function fs defined by

fo(«) = L1—(«/ )3 'f(«).
We have

fo(«) =9- («/ -)3"='~(«),

where cp is the entire function defined by

v («) = L1-(«/r-) j "™f(«).

According to the de6nition of v,
~(.)«

One computes fs ImF easily and finds

fe ImF= fsT+(v„—1)!r„"+'(p(r„)
)&c(rn, v —1)5(r—r ).

Thus, since T vanishes on 3,1, and since 8 is a positive
distribution, fo ImF is a distribution with a definite sign
on Dr. Since fs satisfies the conditions of Proposition
IV.A.2, it follows from what we already showed that
fs ImF is zero on Ar. This implies c(m, v —1)=0. We
conclude that all the c(n«, v)'s are equal to 0. We have
thus shown that ImF has compact support.

To show that the last fact implies F=—0, it suffices to
use Proposition 111.8.1. Q.E.D,

V. POLE MODELS

A. Examyles

It is not difficult to give examples of functions Ii of
class 6, which are meromorphic. One such example is"

F(«) = H —«)'" »nh(a( —«)'")] '

Here b can be taken to be zero. The poles of F are at

r.= (7m/a)',

where v= 0, 1, 2, ~ . They are simple. ImF is found to
be given by

ImF(.) =a-i~Le(r)+2 Q l, )"&—(r r.)—j
In view of Proposition IV.B, one can make the following
remark. The entire function g defined by

g(«) = cos(a(«)'")

belongs to class 8. The corresponding function n(7) can
be seen to satisfy

n(r) = r'"s='a+0(1)

as r goes to +~. Also, g ImF is a positive distribution.
This shows again that the right-hand member of the
inequality (4.13) cannot be replaced by anything la,rger.
Let us compute the tempered distribution S of Eq. (2.8),
One way to do this is to make use of Proposition II.D.2
to compute G, in terms of ImF, and then to calculate its
Fourier transform S;.S is then obtained from S; by Eq.
(3.1).6; is found to be given by

X [b(p sn/a) b—(p+-~n/—a)j,
and 5; turns out to be fuse Eq. (2.6) for normalization j

5;(&)= ——,'i($/a) —s- 'i Q (—)"n—' sin((em/a)&).
n=l

—7r-'2a P (—)"n-' sin((~n/a)P) =s((),
n=1

where s is the periodic function with period 2a defined by

s($) = $ 2na for—(2n —1)a( $( (2n+1)a
(n=O, ~1, ~2, ".).

Therefore, S; is in the present case a measurable function
given by

S,(j)= in for (2n——1)a($((2n+1)a.
Remark that it vanishes as it should between —a and

"A similar example was shown to us by Stack (see Ref. 12).
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+u. From Eq. (3.1), we get simply

s(~)= 2'0(~)s'(~) .

It is easy to verify that Eq. (2.8) is indeed fulfilled.
Other examples of meromorphic functions of class 8

with simple poles only may be constructed as follows.
Without loss of generality, we choose b =0. Then we take
S; to be a locally integrable measurable function with
the following properties: (a) It is periodic with period
2c(c&0); (b) it vanishes on ($ ~ ~ $~ &a); (c) it satisfies
S,(—$)= —S;($); and (d) it takes on only imaginary
values. The its Fourier transform G; is of the form" limsup r '~'Np(~)&pr 'a.

f' ~00
(5 1)

where the sequence r, which we assume to satisfy
b&r~(r2(, has no accumulation point. The c 's

are real. We shall assume that they are different from
zero.

If the sequence 7- had a finite number of terms only,
then ImF would be of compact support, and it would
follow from Proposition III.B.1 that it would be identi-
cally zero. We shall therefore assume that the sequence

is infinite.
Let tip(r) denote the number of terms of the sequence

r which satisfy
~
r

~

&r. We shall show that

G;(p)= Q )t„b(p—s.e/c), We 6rst remark that the sequence c must show an
in6nite number of changes of sign. In other words, the
number of pairs (c,c~t) of consecutive elements with
c @~AD&0 is infinite. For if it were not the case, it would

+C follow from Proposition IV.B (with g=+1 or g= —1)
S;($) exp(in7r$/c)d$. that F=—0. Thus, the set formed by the numbers

s(r +r~t), m being such that c c~i&0, is infinite.
Let 0. be an enumeration of this set such that b&ai

They are real and tend to zero as ~ts~ tends to po;

the sequence o such that
~
o„~ (v. We have obviously

k
op(r) &ts(r) —1. (5.2)

Using Proposition II.D.1 to find ImF, we obtain

2z
ImF(7) =—P nk„b(r (wn/c)'). —

From this formula, we guess that F will be a mero-
morphic function with simple poles located at the
points (wm/c)', with residues equal to —(2/c)N)t„,
(I=1, 2, . . .). This guess is in fact correct. The
distribution S of Eq. (2.8) is just e($)S;($).Remark that
S;, 6;, . vanish identically if t,"&a; this illustrates the
content of Proposition IV.B since then the positions
(s.ts/c)' of the poles would be spaced too far apart.

limsup r '~sts(r)&n- 'a
g ~OO

(5.3)

Inequality (5.1) follows from (5.2) and (5.3).
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We now make an application of Proposition IV.B.1 to J. Nuyts who pointed out an important error.
functions F of class 6, whose only singularities are simple
poles. For such functions, ImF is of the form'~

ImF=Q c 5(r r), —

"Cf. Ref. 13, Chap. VlI, Sec. 1.
'VThe sequences ~ and c must obey certain restrictions in

order that g c 6(v —r ) be a tempered distribution. lt is, for
example, sufhcient that there exists an integer k such that

Z Ic-I(i+r-') "&~.
m=1

This condition is not necessary. This can be seen froS the follow-
ing example. Set

TQm —1 m) 7 mls —m+ exp (—m),
cpm —j exp(m), cs~= —exp(m), m= I, 2, 3,

These sequences do not satisfy the condition just given. However

Let 0(7.~&72 be a sequence of real numbers. I et
ts(r) be the number of elements of this sequence which
satisfy v &v.

Lemma: Assume that thereis u real cumber a sech that

hmsup r—'&'N(r) &w—'a.
g moo

(A1)

we have, in the sense of distributions

dm

g c B(r—v )=—g(r),
trs=l dT2

where g(r) is a continuous function with
~
g(7) ~

&
~
r(. It follows

that g c B(7—r~) is a tempered distribution.
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Then the product Using Lebesgue's bounded convergence theorem, we see
that the first term on the right-hand side of (A4) is a

(A2) continuous function of r which tends to

converges for all complex t to an entire function f of order
smaller than or equal to ~, ~hose zeros coincide with the

7 0

~ms

r 'n(r)-dr

as tr~ tends to ~. The integral in the second term is, and mhzch satzsfies

limsup r 'I' In~ f(re")
~
&aL2(1+ ~cos8~)7"'. (A3)

Proof: It follows from (A1) that '&2(r2+r2) idr= %2~(r)

r ' n(r)—dr(~

for all u with n)-', . Therefore, the product (A2) con-
verges for all complex t to an entire function f of order
smaller than or equal to —,', and whose zeroes coincide
with the r„'s."We have f(t)) 0 for t(0. Let g(t) be
that branch of log f(t) which is real for t(0. The func-
tion g is holomorphic in (t~0(argt&2m}. In this do-
main, we have the formula"

Put t= ir. XVe have for r real

Therefore, since

we find (r real)
»~ f(t) l =Reg(t),

limsup (r l

't' 1n( f(ir) )
& 2v2a.

l~l

Thus, for any positive e, the function h, defined by

h(t) = f(t) exp( —(a+e)t'")

( ~
argt l

& 2i~) is holomorphic for Ret) 0 and continuous
for Ret) 0. Furthermore, it is bounded on Ret=0, and
since it is the product of two functions of order smaller
than or equal to 2,

Thus, for any positive e, there is a real number C such
that

Reg(ir) (C+ i2v2(a+ e) t
r

~

'~'

Reg(ir) = r' Lr(r2yra) 7
—In(r)dr sup(

~

h(re'~)
~ [ ~

8 [
&-,'lr} =O(exp(r1+~))

According to (A1), for any positive e, there is a number
T such that r & T implies

Therefore

Reg(ir) &r' [r(r'+ r') 7-'n(r) dr

for any positive z as r goes to +~. Using Phragmen-
Lindelof's theorem, "we see that h is bounded in Ret& 0.
Thus, letting e go to zero, we obtain

limsup r ' lt~fn(re'8)
l
(a cos(-', 8)

g ~00

for
~ 8~ & ~~a.. A similar argument yields

limsup r ' lnl f(re'e)
l
(a cos(2(8—m))

T~X)

+~ (a+e)r r (r +r ) dr (A4) for ~8—m
~

&2i7r. Taken together, these estimates give
(A3). Q.E.D.

"See Ref. 18, I.emma 2.5.5 and Theorem 2.6.5.
"See Ref. 18, Eq. (4.1.4).

"See Ref. 18, Theorem 1.4.1. Our argument is modelled on the
proof of Theorem 5.1.2 of Ref. 18.


