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Stark Effect in the Excited States of Rb, Cs, Cd, and Hg*
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Two new experimental techniques have been developed and used to measure the differential Stark shifts
between the Zeeman sublevels in excited atomic states. For states whose differential Stark shifts, in uniform
electric Gelds attainable in the laboratory, are comparable to the hfs separation, the method of pure electric-
Qeld level crossing may be used. This method has been applied to the 6p 'P3/2 state of rubidium and the
/p 'Ps~q state of cesium. The differential shifts are E(+-', ) —E(&2)=0.521+0.021 Mc/(kV/cm)' in Rb,
and 1.077+0.043 Mc/(kV/cm)' in Cs, For isotopes with no hyperfine structure (I=0) or states whose
Stark shifts are small compared to their hfs, we have used the level-crossing technique with parallel electric
and magnetic fields. This technique has been employed to measure the differential shifts in the 5sSP 3P& state
of cadmium and the 6s6p 'P& state of mercury. The results are E(+1)—E(0) = —2.550+0.105 kc/(kV/cm)'
in Cd, and —2.355+0.090 kc/(kV/cm)' in Hg. The theory of quadratic Stark shifts in terms of scalar and
tensor operators is presented, and the shifts in these four elements are calculated using the Coulomb approxi-
mation for the potential of the outer electron. The agreement between the experimental and the theoretical
values is satisfactory.

I. INTRODUCTION

l 'HE Stark eGect has not been exploited as exten-
sively as the Zeeman e6ect for the study of atomic

structures. This is due to the fact that, except in systems
with l degenera, cy (Coulomb and harmonic-oscillator
potentials), the Stark shift is quadratic in the electric
field, and the electric fields necessary to produce measur-
able changes in the energy of the sublevels of a given J
are harder to produce and measure than the correspond-
ing magnetic fields. Further, in order to calculate the
Stark shifts, the radial part of the electronic wave func-
tion must be known. But precisely for this reason, meas-
urements of the Stark shift oBer a convenient test of
proposed approximation Inethods for radial wave func-
tions and radial integrals.

In recent years, considerable progress has been made
in theoretical techniques for evaluating the radial in-
tegrals and for treating the infinite sums in the perturba-
tion expansion of the Stark eGect. ' Experimentally, the
techniques of double resonance, atomic beams, the
method of beats, level crossing, and anticrossing have
been used to measure Stark shifts. ' In this paper we
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present a development of the Stark shift in terms of
effective scalar and tensor operators, and give details
of the measurement of the tensor Stark operator in the
second V'3~2 state of Rb and Cs, and the first'P~ state of
Cd and Hg.

II. THEORY OF THE STARK SHIFTS

A. Scalar and Tensor Stark Operators

The Hamiltonian for an atom in a uniform electric
field is given by

X=Xp—6 y)

where Kp is the Hamiltonian in the absence of the field,
S is the electric field, and p= —p, er, is the electronic
dipole moment. The magnitude of the electronic charge
is denoted by e, so that —e is the charge of an electron.
For uniform electric fields that are attainable in the
laboratory the term —8 p can be treated as a perturba-
tion. If we assume the eigenfunctions of Kp to have
definite parity, then the expectation value of the per-
turbing term (Ol K.plo) vanishes since s p has odd
parity. Hence, the change in the energy of the state

l 0), to the lowest order in h, is given by the second-order
perturbation formula

(oI & plz)(zl & plo)
Az(o) =p

z(o) —r(~)

Since only the even terms are present in the perturba-
tion expansion of AE(O), the ratio of successive non-
vanishing terms is of the order of magnitude

This expression can be roughly estimated by substitut-
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& yls&(sl& y

E(o)—E()
Thus, we take the Hamiltonian to be

3C BCQ+X

(3)

with K, the effective Hamiltonian, given by (3). We
shall assume that Ko represents the usual atomic
Hamiltonian including hfs plus the interaction of the
atom with an external magnetic field directed along the
2 axis. Then the states of the atom may be designated
by the quantum numbers i = (yIJFm), where I and J

ing in 5 p er8 the following values: e is the electronic
charge, r = 1 A, and 8= 10 kV/cm. The energy denomi-
nator can be taken to be of the order of 1000 cm '.
The result is ~=6&&10 7. Hence, the Grst nonvanishing
term gives the change in energy with sufhcient accuracy.

The expression for AE(0), given in (2), is formally
equivalent to a Grst-order perturbation if we take the
perturbing term to be

are the nuclear and atomic angular momenta, and m is
the total s component of angular momentum. The label

y distinguishes between dNerent optical states with the
same quantum numbers I, J, and m, and P is an addi-
tional label to distinguish between diferent states with
the same values of y, I, J, and ns. When the external
magnetic Geld is zero, F will be the total angular mo-
mentum

~
I+J

~

of the atom, so that we can think of F
as labeling the total angular momentum of the state to
which the atomic state ~yIJFm& would evolve if the
magnetic Geld gradually decreased to zero. For an atom
with no nuclear spin we can use a simpler notation
~7Jm) to designate the eigenvectors. Since the energies

are independent of m in the absence of an external mag-
netic field, they may be designated by E(pJ)=E(yJm).
We take J to be a good quantum number in all calcula-
tions: This means that we treat only the cases where the
Stark energy is small compared to the fine structure.
Using explicit quantum numbers, the eGective Hamil-

tonian of Eq. (3) becomes

{~vIJFm&(vIJFm I
& y Iv'IJ'F'm'&(v'IJ'F'm'( & y

I'm
F"m"

y'J'F'm, '

X
~
yIJF"m"&(yIJI'"m"

~ ) LE(yIJF"m")—E(y'IJ'F'm') j ' (5)

l»m&(»mI & y 17'J'm'&6"J'm'I & yl»m"&(»m"
I (ATE,)
LZ II/ &(»13 1+0~

E(»)—E(v'J') (AE„,&

Since the optical energy differences AE, ~t, are of the
order of 10' cm ' while the magnetic and hfs splittings
are normally of the order of 10 ' cm ' or less, we can
neglect the second term in the curly brackets which is
at least 10 ' times smaller than the first. We can also
suppress the unit operators and write the effective
Hamiltonian as a purely atomic operator,

It is convenient to define two other tensors to be used in
the expansion of 3."as follows:

L—Q b lb 1(2I+1)I/2

X( 1)M+I
I (g)

M—/I —M/'
aild

3 3 2~'=2
I Jm&(J, m —/ill( —1)™-1

a y~~'J'm'&(~'J'm'~ a yx'=
F(yJ) E(y'J')—

The angular dependence of 3." can be explicitly dis-

played by expanding 3C' in terms of irreducible tensors. '
We shall use the spherical basis notation where the

components of 8 are

J J I.
X (2I.+1)I/s~

I
. (9)

km u —m

The inverse relations are
8~II——w-', V2($,+i8„), Bet ——8, . (6)

g lg I—P ( 1)v+v+1(2I+ 1)1/2

1 1 L
X iE„,„(10)

V /I V

and
(7)

~
Jm&(Jm'~ =P (—1)~ (2L+1)I/s

The components of y are deGned similarly. These com-
ponents form a tensor of rank one and the scalar prod-
uct 8 y is given by the contraction of two tensors 8„'
and pv

8 y =Q (—1) 8 „'p„', /I = —1, 0, +1.

' P. G. H. Sandars and J. R. P. Angel PJ. R. P. Angel, thesis,
University of Oxford, Oxford, England, 1967 (unpublished)g; W.
Happer and E. B. Saloman, Phys. Rev. Letters 15, 441 (1965).
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Explicit values of E~i are the following:

Ep' ——-',%3P,

P 1 O

Egg = —V2$p'Spy',

I 0
p — (h l)p

Eo'= (p&6)hh' —3(hp')'j.
(12)

The effective Stark Hamiltonian K' can now be written
as

We now define the scalar and tensor polarizabilities O.p

and n2 by the condition that for a uniform electric field
b in the s direction the energy of the m= J state is
—qo'ob —q&28 ~ Thus

3mP —J(J+1)
(Jm I

x'
I Jm) = —-,'~pb' —r'~p&' (18)

J(2J—1)

( 1)v+~

I Jm)(Jml h „ip„ilJ m &' E(J)—E(J')

X(J'm'I h .'p, 'I Jm"&(Jm"
I
. (13) Q, =2

I Jm)(Jml is the identity operator in the subspace
of a given J and the zero operator elsewhere. Making
use of Eqs. (10) and (11) and the relation

I(JIIpllJ') I'

~' (2J+1)I E(J)—E(J')j L3(2J+ 1)j'"
10J(2J—1) -"' I(JffpllJ') I'

3(2J+3)(J+1)(2J+1) z' F(J) E(J')—
(19)J J' 1

X ( 1)7+1'+1

( J 1 J')
(Jml p. I

J'm'&= (—1)'--I
, I(JlfpIIJ')(—m pm'&

we have

J(2J—1)
=4&p(&p)

(2J+3)(2J+1)(J+1)

—i/2

( 1 )M+2 J+J'—m' —2~+I
X'=P

E(J)—E(J')

x (Jllpll J')(J'Ilpll J) I (2L+1)(2L'+1)i'"

)1 1 I. (J 1 J'
xf

k—y —
1

—M i—m p m')

Although n2 is identically zero for J= —,', a small tensor
polarizability will still exist when hfs is present due to
the higher-order terms which were dropped from Eq.
(5').

In many cases the first few radial integrals are more
accurately determined from the measured oscillator
strengths than from approximate theoretical calcula-
tions. To facilitate calculations in these cases we may
write Idi in terms of the oscillator strengths to obtain

) J' 1 J)l'J J I')
xf If I, (14)(—m' v m "J E,m —m" CV')

'
EJ.=

where the sum is over the variables p, v, m, m', m", J',
L, L', M, and M'. If we use the identities relating the
products of 3j symbols to the 6j symbols we can simplify
this expression to

3(2J+1)rp
Z (&zz)'fz z

2

J J L
X (—1)"' (2o)

where

X'=Z &r, Z ( 1)~E ~'7—'~i,

( 1)1+J+J' J J
, I(JIIpIIJ') I'. (16)

~' E(J)—E(J') 1 1 J'

where rp ——e'/mc' is the classical electron radius,
(2J+1)fJ J = —(2J'+1)fJq, and fg q is positive if the
J' state lies higher than the J state. 4

III. APPLICATION TO 'Psf2 AND 'Pj STATES

The reduced matrix elements of y can be simplified by
the following equation:

I Jm)(Jm IT' p —p
m (2J+1)»'

I Jm)(Jm
I 2(/5) I

3m' —J(J+1)j
T p

L(2J+3)(2J+2)(2J+1)(2J)(2J 1)j'I'

(17)

It is evident from (12) that the expansion of X' given
by (15) consists of only two terms, Xp' and Xp', corre-
sponding to L=O and L=2. These two terms are re-
ferred to as the scalar and tensor interactions.

If we take 8 to be in the s direction then E~~
= p~, pE~i Lsee Eq. (12)i and we need only TpP and
Tp which are given by the expressions

(Jll pll J') = (~sL Jll pll~'s'L, 'J')
= (—1)e+L'+~+if (2J/1)(2J'+1)jiipgaq

L J 5
x (I-llpfli'),

and in the case of a single external electron we have

(ill pill') = e(—1) '&-'l&'i' R„rR.dr, (22)

4E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectre (Cambridge University Press, Cambridge, England, 1935),
Chap. IV.
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TmLE I. Experimental and theoretical Stark shifts for Rb and Cs in Mc/(kV/cm)'.

Nucleus

Rb83
RbSz
Cs133

State

6 2P3/g

7 'P3/2

A, Bin Mc'

8.16, 8.40
27.63, 4.06
16.609, —0.16

ao (calc)

3.34

9.03

a2 (calc)

—0.494

—1.05

n2 (expt)

—0.521~0.021

—1.077&0.043

Expt crossing
fields (kV/cm)

8.77+0.18, 10.95
14.3
11.07a0.2, 13.5

a G. zu Putlitz, Ergeb. Exakt. Naturw. 37, 105 (1965).

where l) means the greater of l and l'. If there is more
than one external electron, then (LIIpIIL') can be ex-
pressed as some combination of single electron integrals
of the form (22). For the 'Pi state of Hg and Cd one
finds that for states J' only one electron has different
quantum numbers compared to the state J and this
electron is the only one contributing to (21) and (22).
Substituting appropriate quantum numbers into Eqs.
(19) we have for the sPsts state (Rb and Cs) the follow-
ing values for the polarizabilities:

fsns fwaga'gs'm'gm's
R(f,g)=C Z ' 1+2rrirv(tr, ti')

(26)

IV. EXPERIMENTAL PROCEDURE

A. Rubidium and Cesium

The theory of interference effects in the resonance
Ruorescence from "crossing" excited atomic sublevels
has been adequately treated in the literature. The scat-
tered intensity is given by the Breit formula' 7

o's= —(1/43)L9D(s)+D(s)+10S(s)j
«= (1/225) L9D(s)—4D(s)+~0S(s)3

R(np)R(n'd)rdr
I

4 s
D(J')=2e'P

E(nPsts) E(n'Ds )—
qs

R(np)R(n's)rdr
I!

r

5 s
S(J')=2e' Q

E(nPsfs) —E(n Ss~)

where the following abbreviations are used:

(23)

(24)

Here f„=(ti If rIns), etc., where f and g are the polari-
zation vectors of the exciting light and the Quorescent
light, respectively.

The eigenvectors of the excited and ground states are
Iti) and Ins), respectively; r is the radiative lifetime of
the excited state, and v(ti, ti') = (E„E„)/h is th—e differ-
ence of excited-state term values. In (26) it is implicitly
assumed that the line profile of the excited light is es-
sentially Rat over the hyperfine components of the
atomic-resonance line. The Hamiltonian for the excited
state of an atom with a hfs in an electric Geld is

3(I J)s+asI J—I(I+1)J(J+1)
x=AI J+8

2I(2I—1)J(2J—1)

Theoretical values of rrr, for the 6p 'Ps~s state of Rb and
the 7p Ps/s state of Cs are given in Table I. In these cal-
culations we have used the Coulomb approximation for
the potential of the outer electron (the method of Bates
and Damgaard'). Only a finite number of terms are cal-
culated in evaluating the sums D(J') and S(J') and the
states near the ionization limit (E(0) and the contin-
uum states (E)0) have been neglected. Assuming the
Coulomb approximation to be valid otherwise, the errors
due to the neglected terms in these sums have been esti-
mated in the Appendix.

For the nsnp 'Pi state of cadmium and mercury, the
expressions for 0.1, are

ne ———(1/18) I 3D(2)+D(1)+4S(1)j,
(25)

o s
———(1/180)L

—3D(2)+5D(1)+20S(1)j,
where D(J') and S(J') are defined by (24) with the sub-
stitution of P1 for P3~2. Calculated values of ng for the
Ss5p 'Pi state of Cd and the 6s6p 'Pi state of Hg are
given in Table II.

3 D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London
242, 101 (1949).

+(8$J,)'. (27)

The first two terms represent the hfs, and the third term
is the rn dependent pa-rt only of the Stark-shift Hamil-
tonian (18), with

ay= —
sJ(2J—1)Ps. (28)

Expressions (26) and (27) were evaluated using a
computer program. The hfs constants 2 and 8, ob-

TACTILE II. Experimental and theoretical Stark
shifts for Cd and Hg in kc/(kV/cm)'.

Nucleus State

Cd 5 'P1
Hg 6 'P1

1.4998
1.479

no (calc) os (calc)

8.5 1.3
5.5 0.92

as(expt)

1.70&0.07
1.57&0.06

a R. Kohler and P. Thaddeus, Phys. Rev. 134, A1204 (1964).

6 G. Sreit, Rev. Mod. Phys. 5, 91 (1933);P. A. Franken, Phys.
Rev. 121, 508 (1961);M. E.Rose and R. L. Carovillano, ibid. 122,
1183 (1961).The expression (26) is often quoted in the literature
with the sign of s in the denominator incorrect (see, for example,
Franken).

U. Fano, Rev. Mod. Phys. 29, 74 (1957);T. R. Carver and R.
B. Partridge, Am. J. Phys. 34, 339 (1966).
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FIG. 1. Dependence of the Cs 7 'P3im hfs levels on the applied
electric Geld S. A common downward shift of all levels propor-
tional to 8' has been suppressed.

tained from earlier experiments, I, J, gJ, the lifetime of
the excited state T, and the polarization vectors f and

g formed the input to the program. The output in-
cluded the term values, the level-crossing signal, and its
derivative relative to the electric Geld. Figure 1 shows
the term-value diagram for the 7 'E3i2 state of Cs (the
term-value diagram for Rb" 6 'I'3/" was given in a previ-
ous paper'). Tivo level crossings occur in passage from
a region of low' electric Geld to a region of high electric
Geld. At each crossing there is a change in the angular
distribution of the scattered resonance radiation. The
tensor Stark shift is obtained from the value of the ap-
plied electric Geld at the crossing.

An atomic-beam apparatus was used in the Rb and
Cs experiments. Figure 2 shows the experimental geome-
try and Fig. 3 gives details of the apparatus. Resonance
radiation from a lamp is focused onto an atomic beam
in a region near the center of a pair of electric-6eld
plates. The scattered light is detected by a photomulti-
plier tube. The polarization of the incident and detected
beams of radiation were chosen perpendicular to one
another and to the electric field. To pass the 4202 A
line of Rb and the 4555 A line of Cs and exclude the
background light, a narrow-band interference filter,
appropriate to the wavelength under consideration, was
inserted in the output. Initial attempts to carry out the
experiment in a glass cell with internal electrodes failed,
since the alkali-filled cell would not support an electric

A. Khadjavi, %. Happer, and A. Lurio, Phys. Rev. Letters,
17, 463 (1966).

6eld. The electric field was produced by two circular
stainless-steel plates 2 in. in diam separated by —, in. by
two quartz rods. In order to increase the signal-to-noise
ratio, the applied voltage was modulated at 280 cps and
phase-sensitive arnplification of the signal was used. The
modulation voltage was introduced between ground and
the electrode near ground potential. The source of radia-
tion was an Osram lamp. Due to the relatively large
Stark shifts in alkalis, a very narrow source of radiation
is not advantageous. It was necessary to operate the
source at a relatively high frequency (20—40 kcisec) in
order to avoid any interference between the source and
the electric-Geld modulation frequencies.

COLD TRAP~%K Z?rl

PORT HOL
PLATES

,'MODULATION
INPUT

VOLTAGE
INP UT

QUARTZ
SPACERS

FLAG~:
OVEN

c',
I

c,'

COOLING~', ~
C0 I L S

I T

(THE EI ECTRIC FIELD PLATES ASSEMBLY
IS SHOWN OUTSIDE THE APPARATUS)

FIG. 3. View of the atomic beam apparatus in a vertical
planq 9Q to tba& sho~n jn Fig. 2,

VACUUM
PUMP

FIG. 2. Schematic diagram of the experimental geometry used
in the alkali experiments. The view is in the vertical plane of the
incident and detected light paths.
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IO
I

I&
kV/crn

~ cohst H ~
Hio Hc

FIG. 5. Dependence of the 'PI sublevels of Cd and Hg on the
applied electric and magnetic Gelds. On the left is shown the dis-
placement of the magnetic sublevels in a uniform electric Geld 8
at zero magnetic Geld. On the right is shown the Zeeman effect
at constant electric field G.

RC= io
SWEEP RATE revolts/cm sec
Mod. AmpIitude 650 voIts

zero magnetic 6eld and the other two occur when

ggpoII&+~Or28 =0, (3o)
FIG. 4. An experimental curve of the derivative of the level

crossing signal versus electric Geld in Cs.

The experimental derivative signal for Cs, corre-
sponding to the 6rst crossing of Fig. 1, is given in Fig.
4. In addition to broadening due to modulation of the
electric 6eld, this curve shows that the total scattered
light is decreasing with the electric field, since dR(f, g)/
db is negative. This is due to scanning of the absorption
line through the lamp pro6le. The experimental and cal-
culated values of the Stark shift for Rb 6 'I'3/2 and Cs
7 'Ps~s are given in Table I.

B. Cadmium and Mercury

The even isotopes of cadmium and mercury were
chosen for the study of the Stark effect in the esnp 'P&
state. In these isotopes I=0 and the hfs vanishes. In the
odd isotopes the hfs is present, but since the Stark shifts
are relatively small, sublevels belonging to different
values of the total angular momentum F cannot be
made to cross by applying an electric Geld. Conse-
quently, for either the odd or the even isotopes only at
zero electric field can a level-crossing signal be observed
(Hanle effects). The tensor Stark shift can be obtained
from the width of the zero-Geld crossing and the eGective
lifetime of the excited state. The eQective lifetime, how-
ever, can be strongly inQuenced by coherence narrowing
and atomic collisions. ' Furthermore, any stray mag-
netic fields present change the shape of the crossing
signal. In order to avoid such complications, parallel
electric and magnetic 6elds were used to obtain a cross-
ing at a finite electric field.

The Hamiltonian for the esnP sPr states of Cd and
Hg in parallel electric and magnetic Gelds is given by

K= ggysmH sfas+rrs(3ms 2—)Jgs. (29)—

The hfs terms are absent, since I=O for the even iso-
topes. The energy levels corresponding to (29) are
shown in Fig. 5. For a constant electric 6eld, three level
crossings occur as the magnetic field is swept. One is at

s W. Hanle, Z. Physik BS, 346 (1926).
'0 J. Barrat, J. Phys. Radium 20, 633 (1959).

where the subscript c denotes the crossing held. For the
case of parallel electric and magnetic 6elds along the s
axis and arbitrary incident and observing directions
perpendicular to the s axis we may write exactly the
rate of scattering given by Eq. (26). If we define direc-
tions as shown in Fig. 6, then we find for y= 0

R(rr, P) = s sin'n sin'P+ cossn cos'P —
~~ sin2n sin2P

AH —88'

1+(AH+Ms)' 1+(AH—M')s

—sr sin'n sinsp~ (31)
~,1+(22H) 'I

where AH= gqljsHr/A and BB'= $rrsB'r/A T—he ten-.
sor Stark shift is obtained from (30);

~s= sgr s(~H.)/&' (32)

Y

INCIDENT
LIGHT

Dl RECT I ON

08SER VATION
DIRECTI ON

FIG. 6. Light propagation, polarization, and Geld directions
in the Cd and Hg experiments.

In this experiment a cell containing cadmium or mer-
cury was subjected to a constant electric field and the
scattered resonance radiation was measured as a func-
tion of the applied magnetic field. The incidence and
detection directions and the direction of the applied.
fields were chosen to be mutually perpendicular. The
polarizations of the incident and detected lights were
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radial integrals is that of Bates and Damgaard, which
is surprisingly good in view of its simplicity. As yet there
are not enough calculations of the polarizabilities by the
Sternheimer or Dalgarno' method. In view of the num-
ber of recent accurate measurements becoming avail-
able, we hope someone will be encouraged to carry out
these calculations.

In special cases where only one nearby state produces
the principal part of the polarizability of the state being
investigated, one obtains directly the radial integral
between these two states. In other cases where one meas-
ures the Stark e6ect in several members of a fine-
structure multiplet we can obtain an estimate of the
similarity of their radial wave function. For example,
the Stark effect of the 6p 'E», ,„,doublet of cesium"
shows that their radial wave functions di6er signifi-
cantly. Another case of this kind which should be in-
vestigated is the Stark effect of the 'Pj and 'P~ states
of the group-II elements.

Finally, these data and this technique may be useful
in investigating the buildup of charge layers on trans-
parent insulating surfaces by using level-crossing tech-
niques to measure the electric 6elds.

APPENDIX

It is convenient to evaluate the error in

and
AE(+-,') = ', (no—+—ng)h'

~E(~2)= —2(~0—~2) &'

(34)

(35)

separately. We divide the sum in

I&of 8 yfi) f'
AE(0) =P

' E(o)—E(i)
(36)

into two parts: P; +P;, where li') are the states in-
cluded in calculating the sums D(J') and S(J'), and

"R. Marrus, D. McColm, and J. Yellin, Phys. Rev. 147, 55
($966).

for 8 in the s direction. The first term in (34) can be cal-
culated by writing s2 as

r2 cos'0= —r (4'/5)'"I'2 +—r'(4~)' 'Yoo (39)

and using the Wigner-Eckart theorem. The result is

&~-:I"I~l& = &")-:(1--:),
&+2 Is'I ~k&= &r'&3(1+-'),

(4o)

where &r') = (eP3~2 I
r'

I
nE3i2) can be calculated from the

hydrogenic formula. ' The second term in (38) is iden-
tical to the expression for the Stark shifts except for the
absence of the energy denominators and can be evalu-
ated similarly. In calculating the Stark shifts in Rb and
Cs, the 6rst 16 terms of the sum (36) were taken, al-
though only about eight were significant. The EE(&23)
error in rubidium turned out to be small but negative.
Hence, no delnite conclusion can be drawn concerning
the n2 error, except that it should be of the same order of
magnitude (about 1% of the calculated value). In
cesium both AE(m) errors are positive. Since the ne-
glected states all have higher energies than the per-
turbed states, the neglected terms all add to

I
AE(m) l.

Thus the error in the differential shift, n2=E(&~i)—E(&32), is the larger of the two BE(m) errors. The
upper bound of error due to the neglected states were
calculated according to (38) and (40) for Cs. The results
were about 1% for AE(m) and 4% for n2.

li") are those neglected. The sum P; represents the
error and satisfies the following inequality:

I&oft 1 li"&I' (—2 I&of & pli"&I' (3&)'- E(0)—E(")
Here 6 is the minimum value of —LE(0)—E(i")j.Now
using the identity g & I &a I

0
I b& I

'= &a I
O'I a& we obtain

~2/2

(38)


