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Stark Effect in the Excited States of Rb, Cs, Cd, and Hg*
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Two new experimental techniques have been developed and used to measure the differential Stark shifts
between the Zeeman sublevels in excited atomic states. For states whose differential Stark shifts, in uniform
electric fields attainable in the laboratory, are comparable to the hfs separation, the method of pure electric-
field level crossing may be used. This method has been applied to the 6p 2P3/, state of rubidium and the
7p 2Py, state of cesium. The differential shifts are E(+3)—E(%3%)=0.52140.021 Mc/(kV/cm)? in Rb,
and 1.07740.043 Mc/(kV/cm)? in Cs. For isotopes with no hyperfine structure (I=0) or states whose
Stark shifts are small compared to their hfs, we have used the level-crossing technique with parallel electric
and magnetic fields. This technique has been employed to measure the differential shifts in the 5s5p 2P state
of cadmium and the 656p 3P, state of mercury. The results are E(+1) — E(0) = —2.550+0.105 kc/ (kV/cm)?
in Cd, and —2.35524-0.090 kc/ (kV/cm)? in Hg. The theory of quadratic Stark shifts in terms of scalar and
tensor operators is presented, and the shifts in these four elements are calculated using the Coulomb approxi-
mation for the potential of the outer electron. The agreement between the experimental and the theoretical

values is satisfactory.

I INTRODUCTION

HE Stark effect has not been exploited as exten-
sively as the Zeeman effect for the study of atomic
structures. This is due to the fact that, except in systems
with / degeneracy (Coulomb and harmonic-oscillator
potentials), the Stark shift is quadratic in the electric
field, and the electric fields necessary to produce measur-
able changes in the energy of the sublevels of a given J
are harder to produce and measure than the correspond-
ing magnetic fields. Further, in order to calculate the
Stark shifts, the radial part of the electronic wave func-
tion must be known. But precisely for this reason, meas-
urements of the Stark shift offer a convenient test of
proposed approximation methods for radial wave func-
tions and radial integrals.

In recent years, considerable progress has been made
in theoretical techniques for evaluating the radial in-
tegrals and for treating the infinite sums in the perturba-
tion expansion of the Stark effect.! Experimentally, the
techniques of double resonance, atomic beams, the
method of beats, level crossing, and anticrossing have
been used to measure Stark shifts.?2 In this paper we

* This work was supported in part by the joint services elec-
tronics program (U. S. Army, U. S. Air Force, and U. S. Navy)
under contract DA-28-043 AMC-00099 (E).

1 Submitted in partial fulfillment of the requirement for the
degree of Doctor of Philosophy in the Faculty of Pure Science,
Columbia University. Present address: Westinghouse Research
Laboratories, Pittsburgh, Pennsylvania 15235.

1 A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233,
70 (1956) ; C. Schwartz, Ann. Phys. (N. Y.) 2,156 (1959); R. M.
Sternheimer, Phys. Rev. 127, 1220 (1962).

2J. E. Blamont, Ann. Phys. (Paris) 2, 55 (1957); R. D. Haun,
Jr., and J. R. Zacharias, Phys. Rev. 107, 107 (1957); E. Lipworth
and P. G. H. Sandars, Phys. Rev. Letters 13, 716 (1964); R.
Marrus, D. McColm, and J. Yellin, Phys. Rev. 147, 55 (1966);
E. B. Aleksandrov and V. V. Khromov, Opt. i Spektroskopiya
18, 545 (1964) [English transl.: Opt. Spectry. (USSR) 18, 313
(1965)7]; B. Budick, S. Marcus, and R. Novick, Phys. Rev. 140,
A1041 (1965); J. J. Forney and E. Geneux, Phys. Letters 20, 632
(1966) ; see also Ref. 8.
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present a development of the Stark shift in terms of
effective scalar and tensor operators, and give details
of the measurement of the tensor Stark operator in the
second 2Pj/, state of Rb and Cs, and the first 3P, state of
Cd and Hg.

II. THEORY OF THE STARK SHIFTS

A. Scalar and Tensor Stark Operators

The Hamiltonian for an atom in a uniform electric
field is given by

3€=5€0—8~p, (1)

where JCq is the Hamiltonian in the absence of the field,
& is the electric field, and p=—3_; er; is the electronic
dipole moment. The magnitude of the electronic charge
is denoted by e, so that —e is the charge of an electron.
For uniform electric fields that are attainable in the
laboratory the term — &-p can be treated as a perturba-
tion. If we assume the eigenfunctions of 3¢, to have
definite parity, then the expectation value of the per-
turbing term (0| &-p|0) vanishes since &-p has odd
parity. Hence, the change in the energy of the state
| 0), to the lowest order in &, is given by the second-order
perturbation formula

0l 8-
N I atubsividhally .
i E(0)—E(2)

Since only the even terms are present in the perturba-
tion expansion of AE(0), the ratio of successive non-
vanishing terms is of the order of magnitude

_ (&p)?
[EO)—EG)T

This expression can be roughly estimated by substitut-
128
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ing in &-p~er§ the following values: ¢ is the electronic
charge, =1 A, and §=10 kV/cm. The energy denomi-
nator can be taken to be of the order of 1000 cm™.
The result is e=6X10"7. Hence, the first nonvanishing
term gives the change in energy with sufficient accuracy.

The expression for AE(0), given in (2), is formally
equivalent to a first-order perturbation if we take the
perturbing term to be

&-pli)i|&p
=Y e 3)
i E(0)—E®)
Thus, we take the Hamiltonian to be
Je=35C,+3¢/, 4

with 3¢/, the effective Hamiltonian, given by (3). We
shall assume that 3Co represents the usual atomic
Hamiltonian including hfs plus the interaction of the
atom with an external magnetic field directed along the
z axis. Then the states of the atom may be designated
by the quantum numbers i= (y/JFm), where I and J

5= ¥

STARK EFFECT IN EXCITED STATES OF Rb,

Cs, Cd, AND Hg 129
are the nuclear and atomic angular momenta, and  is
the total z component of angular momentum. The label
v distinguishes between different optical states with the
same quantum numbers I, J, and m, and F is an addi-
tional label to distinguish between different states with
the same values of v, I, J, and m. When the external
magnetic field is zero, F will be the total angular mo-
mentum |I+4J| of the atom, so that we can think of F
as labeling the total angular momentum of the state to
which the atomic state |yIJFm) would evolve if the
magnetic field gradually decreased to zero. For an atom
with no nuclear spin we can use a simpler notation
[vJm) to designate the eigenvectors. Since the energies
are independent of 7 in the absence of an external mag-
netic field, they may be designated by E(yJ)=E(yJm).
We take J to be a good quantum number in all calcula-
tions: This means that we treat only the cases where the
Stark energy is small compared to the fine structure.
Using explicit quantum numbers, the effective Hamil-
tonian of Eq. (3) becomes

{|YITEmY{yITFm| & p|v' IJ F'm'Xy'IJ'F'm’| & p

X|YITE"m Yy ITF"m" | }LE(YITF"'m"")— E(y'IJ'F'm’) 1 (5)

|YTm)(yJm| & p|y'T'm'}y'T'm'| & p|vJm" )(yIm" |

E(J)—EX'T)

Since the optical energy differences AE,y are of the
order of 10* cm™ while the magnetic and hfs splittings
are normally of the order of 107! cm™ or less, we can
neglect the second term in the curly brackets which is
at least 10~° times smaller than the first. We can also
suppress the unit operators and write the effective
Hamiltonian as a purely atomic operator,

s'pl’yfjlml><,yljlm/] a_p
EGD)—EWJT)

The angular dependence of 3¢’ can be explicitly dis-

played by expanding 3¢ in terms of irreducible tensors.?

We shall use the spherical basis notation where the
components of & are

8u'=FVI(8,%i8,), &'=8.. ©

The components of p are defined similarly. These com-
ponents form a tensor of rank one and the scalar prod-
uct &-p is given by the contraction of two tensors &,
and p,!:

8 p=X (—1)*8_p)}, wu=—1,0,+1.
I

5= %

¥ J'm!

39

()

3P. G. H. Sandars and J. R. P. Angel [J. R. P. Angel, thesis,
University of Oxford, Oxford, England, 1967 (unpublished)]; W.
Happer and E. B. Saloman, Phys. Rev. Letters 15, 441 (1965).

= lm><zuu[1+o(ij“”)} - ")

opt

It is convenient to define two other tensors to be used in
the expansion of 3¢’ as follows:

Ex=Y 8,18u_,(2L+1)'
m

spun(t 1 L) ®)
(u M-y —M

and

Tat=2" |ImY{J, m—M |(—1)"7

J
X 2L+ 1)1/2(

m M—m

The inverse relations are

8,18,1= (—1)mHH(2L41)12
L

11 L
X(, )L+ (10)
v —u—v
and

| Jm)(Tm’| =§£, (=1)7QL+1)1?

J T L
X( >Tm_m:L. (11)
m —wm wm —m,
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Explicit values of E” are the following:

E00= %\/382, E:i:11= 0 >

EOI:O: E:t22= _—'(8&:11)2:
Eg?=—V28641",  Eo'=(3v6)[6—3(8")*].

The effective Stark Hamiltonian 3¢’ can now be written
as

12)

(—1)e+
T E(T)—E(T)

uv

3= [ Tm)(Tm| 8-, put| T'm’)

X (T | 8= p, | Tm" Y Im"| . (13)

> |Jm)(Jm| is the identity operator in the subspace
of a given J and the zero operator elsewhere. Making
use of Egs. (10) and (11) and the relation

J 1 r

gl 7m)= (= 107s( Yoy,

we have

—m u m

(___ 1)M+2]+J’—m’—2m+1
3C'= Z EMLTM,L’

E(J)—E(J")
XUNIINT NI NLQRLA-1) (2L +1) ]2

1 1 L J 1y
X ) s )
—m u m

- -y —

J 1IN/ J L
o ), a0
—m’ v wm'/\m —wm" M

where the sum is over the variables y, v, m, m’, m”’, J',
L, L', M, and M'. If we use the identities relating the
products of 37 symbols to the 67 symbols we can simplify
this expression to

3= K> (—1)ME_y T ", @1s)
where
K-y “hatsinre. ao
5 E(J)—-E(]’)[l g IEIT

It is evident from (12) that the expansion of 3¢’ given
by (15) consists of only two terms, 3¢y’ and 3¢, corre-
sponding to L=0 and L=2. These two terms are re-
ferred to as the scalar and tensor interactions.

If we take & to be in the z direction then Ea”
=08y ,0FEu" [see Eq. (12)] and we need only T¢® and
T% which are given by the expressions

[ Tm)(Tm|
To=Y ———,
§ (27+1)12
[ Jm)(Im|2(+/5)[3m*—T(J+1)]

m [(T+3)(2T+2)(2T+1) (2N @I —1) T2

17
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We now define the scalar and tensor polarizabilities ao
and as by the condition that for a uniform electric field
& in the z direction the energy of the m=J state is
— 20082 —1a28% Thus

Im?—J(J+1)
(Jm|3' | Tm)= —Fa8?— §ay8>—————, (18)
J(27—1)
[l ]2 2K,

2

S I DED—ET)]  [B@I+1)]
=2[ 10J(27—1) ]”2 [(TlpllT) |2
@U@+ T EG)—EW)

X(— 1)J+J’+1[ 1}
1 2 J

J(27—1) 1/2
(2J+3)(2J+1)(J+1)] '

=4K2(\/%>[

Although a; is identically zero for J=%, a small tensor
polarizability will still exist when hfs is present due to
the higher-order terms which were dropped from Eq.
(5.

In many cases the first few radial integrals are more
accurately determined from the measured oscillator
strengths than from approximate theoretical calcula-
tions. To facilitate calculations in these cases we may
write K in terms of the oscillator strengths to obtain

3(2]+1)70
L= — > )iy
7['2 J’
J J L
x| }<~1>J+J', (20)
1 1 7

where ro=¢?/mc® is the classical electron radius,
Q@I+10fy9=—@J'4+1)fs5, and fsr; is positive if the
J' state lies higher than the J state.*

III. APPLICATION TO %P3, AND 3P, STATES

The reduced matrix elements of p can be simplified by
the following equation:

pllI")= nSLI||p|[n"S'L'T")
= (_ 1) S+L'+J+1[(2J+ 1)(2]/_|_ l)jllzsss,

{7 s, en

X N,

J L' 1 ?

and in the case of a single external electron we have
ipllt)=e(— 1)l>-ll>”2[Rnar'dr , (22)

¢E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England, 1935),
Chap. IV.
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TasLE I. Experimental and theoretical Stark shifts for Rb and Cs in Mc/ (kV/cm)?2.

Expt crossing

Nucleus State A, B in Mc* ag(calc) as(calc) as(expt) fields (kV/cm)
Rbss 6 2P/, 8.16, 8.40 3.34 —0.494 —0.52140.021 8.77+0.18, 10.95
Rb#” 27.63, 4.06 14.3
s 7Py 16.609, —0.16 9.03 —1.05 —1.07740.043 1107402, 13.5

a G. zu Putlitz, Ergeb. Exakt. Naturw. 37, 105 (1965).

where /> means the greater of / and /. If there is more
than one external electron, then (L|[p||L’) can be ex-
pressed as some combination of single electron integrals
of the form (22). For the 3P, state of Hg and Cd one
finds that for states J’ only one electron has different
quantum numbers compared to the state J and this
electron is the only one contributing to (21) and (22).
Substituting appropriate quantum numbers into Egs.
(19) we have for the 2P3,, state (Rb and Cs) the follow-
ing values for the polarizabilities:

ao=—(1/45)[9D(5)+D($)+105()],

23
ax=(1/225)[9D(3)—4D($)+505(3)], @9
where the following abbreviations are used:
o 2
R(np)R(n’ d)rdr)
°
D(J)=2¢*3
n’ E(?I«P;;/z)‘—E(n’DJI)
(24)

00

R(np)R(n’s)rdr)2

S(J")=2¢ ; FTIT

Theoretical values of ay, for the 6p 2P3/, state of Rb and
the 7p %P3/, state of Cs are given in Table I. In these cal-
culations we have used the Coulomb approximation for
the potential of the outer electron (the method of Bates
and Damgaard?®). Only a finite number of terms are cal-
culated in evaluating the sums D(J’) and S(J’) and the
states near the ionization limit (£<0) and the contin-
uum states (E>0) have been neglected. Assuming the
Coulomb approximation to be valid otherwise, the errors
due to the neglected terms in these sums have been esti-
mated in the Appendix.

For the nsnp 3P, state of cadmium and mercury, the
expressions for ay, are

a==1/1BDA+DO+HSO], o
ar=—(1/180)[—3D(2)+5D(1)+205(1)],
where D(J’) and S(J’) are defined by (24) with the sub-
stitution of P; for P3js. Calculated values of ay for the

SsSp 3P, state of Cd and the 6s6p 3P state of Hg are
given in Table II.

5 D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London
242, 101 (1949).

IV. EXPERIMENTAL PROCEDURE

A. Rubidium and Cesium

The theory of interference effects in the resonance
fluorescence from ‘“‘crossing” excited atomic sublevels
has been adequately treated in the literature. The scat-
tered intensity is given by the Breit formula®’

REgH=C ¥ Sumfow Gt m gmt u

. (26)
wwmm! 14 2mwi7y(u,u’)

Here fum=(u|f-r|m), etc., where f and g are the polari-
zation vectors of the exciting light and the fluorescent
light, respectively.

The eigenvectors of the excited and ground states are
|u) and |m), respectively; 7 is the radiative lifetime of
the excited state, and v(u,u’) = (E,— E,)/h is the differ-
ence of excited-state term values. In (26) it is implicitly
assumed that the line profile of the excited light is es-
sentially flat over the hyperfine components of the
atomic-resonance line. The Hamiltonian for the excited
state of an atom with a hfs in an electric field is

3A-0)24-31- J—I(I+1)J(J+1)
ge=AI1-J+B
2I(2I—1)J (2T —1)
+(887.)z.

@n

The first two terms represent the hfs, and the third term
is the m-dependent part only of the Stark-shift Hamil-
tonian (18), with

ar=—37(27—1)B2. (28)

Expressions (26) and (27) were evaluated using a
computer program. The hfs constants 4 and B, ob-

TasLE II. Experimental and theoretical Stark
shifts for Cd and Hg in kc/(kV/cm)2.

Nucleus State g7 ag(calc) aq(calc) as(expt)
Cd 53P; 1.4998 8.5 1.3 1.700.07
Hg 63P; 1.479 5.5 0.92 1.5740.06

2 R. Kohler and P. Thaddeus, Phys. Rev. 134, A1204 (1964).

6 G. Breit, Rev. Mod. Phys. 5, 91 (1933) ; P. A. Franken, Phys.
Rev. 121, 508 (1961) ; M. E. Rose and R. L. Carovillano, ib:d. 122,
1185 (1961). The expression (26) is often quoted in the literature
with the sign of 7 in the denominator incorrect (see, for example,
Franken).

7 U. Fano, Rev. Mod. Phys. 29, 74 (1957); T. R. Carver and R.
B. Partridge, Am. J. Phys. 34, 339 (1966).
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Fic. 1. Dependence of the Cs 7 2P/ hfs levels on the applied
electric field & A common downward shift of all levels propor-
tional to & has been suppressed.

tained from earlier experiments, I, J, g7, the lifetime of
the excited state 7, and the polarization vectors f and
¢ formed the input to the program. The output in-
cluded the term values, the level-crossing signal, and its
derivative relative to the electric field. Figure 1 shows
the term-value diagram for the 7 2P, state of Cs (the
term-value diagram for Rb® 6 2P, was given in a previ-
ous paper®). Two level crossings occur in passage from
a region of low electric field to a region of high electric
field. At each crossing there is a change in the angular
distribution of the scattered resonance radiation. The
tensor Stark shift is obtained from the value of the ap-
plied electric field at the crossing.

An atomic-beam apparatus was used in the Rb and
Cs experiments. Figure 2 shows the experimental geome-
try and Fig. 3 gives details of the apparatus. Resonance
radiation from a lamp is focused onto an atomic beam
in a region near the center of a pair of electric-field
plates. The scattered light is detected by a photomulti-
plier tube. The polarization of the incident and detected
beams of radiation were chosen perpendicular to one
another and to the electric field. To pass the 4202 A
line of Rb and the 4555 A line of Cs and exclude the
background light, a narrow-band interference filter,
appropriate to the wavelength under consideration, was
inserted in the output. Initial attempts to carry out the
experiment in a glass cell with internal electrodes failed,
since the alkali-filled cell would not support an electric

8 A. Khadjavi, W. Happer, and A. Lurio, Phys. Rev. Letters
17, 463 (1966).
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Fic. 2. Schematic diagram of the experimental geometry used
in the alkali experiments. The view is in the vertical plane of the
incident and detected light paths.

field. The electric field was produced by two circular
stainless-steel plates 2 in. in diam separated by £ in. by
two quartz rods. In order to increase the signal-to-noise
ratio, the applied voltage was modulated at 280 cps and
phase-sensitive amplification of the signal was used. The
modulation voltage was introduced between ground and
the electrode near ground potential. The source of radia-
tion was an Osram lamp. Due to the relatively large
Stark shifts in alkalis, a very narrow source of radiation
is not advantageous. It was necessary to operate the
source at a relatively high frequency (20-40 kc/sec) in
order to avoid any interference between the source and
the electric-field modulation frequencies.

L

COLD TRAP—_| :::::::ﬁ
PORT HOLE——__|
PLATES
MODULATION
INPUT
7 AN
SPACERs
HIGH
VOLTAGE FLAG —]
INPU OVEN »
COOLING
COILS
P

(THE ELECTRIC FIELD PLATES ASSEMBLY
IS SHOWN OUTSIDE THE APPARATUS)

F16. 3. View of the atomic beam apparatus in a vertical
plane 90° to that shown in Fig. 2.
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Mod. Amplitude 650 volts
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I16. 4. An experimental curve of the derivative of the level
crossing signal versus electric field in Cs.

The experimental derivative signal for Cs, corre-
sponding to the first crossing of Fig. 1, is given in Fig.
4. In addition to broadening due to modulation of the
electric field, this curve shows that the total scattered
light is decreasing with the electric field, since dR(f,8)/
dé& is negative. This is due to scanning of the absorption
line through the lamp profile. The experimental and cal-
culated values of the Stark shift for Rb 6 2P;/; and Cs
7 2Pg;s are given in Table I.

B. Cadmium and Mercury

The even isotopes of cadmium and mercury were
chosen for the study of the Stark effect in the nsnp 3P;
state. In these isotopes =0 and the hfs vanishes. In the
odd isotopes the hfs is present, but since the Stark shifts
are relatively small, sublevels belonging to different
values of the total angular momentum F cannot be
made to cross by applying an electric field. Conse-
quently, for either the odd or the even isotopes only at
zero electric field can a level-crossing signal be observed
(Hanle effect®). The tensor Stark shift can be obtained
from the width of the zero-field crossing and the effective
lifetime of the excited state. The effective lifetime, how-
ever, can be strongly influenced by coherence narrowing
and atomic collisions.’ Furthermore, any stray mag-
netic fields present change the shape of the crossing
signal. In order to avoid such complications, parallel
electric and magnetic fields were used to obtain a cross-
ing at a finite electric field.

The Hamiltonian for the nsnp 3Py states of Cd and
Hg in parallel electric and magnetic fields is given by

3= gyuomH— [ ao+as(3m2—2)]82. (29)

The hfs terms are absent, since I=0 for the even iso-
topes. The energy levels corresponding to (29) are
shown in Fig. 5. For a constant electric field, three level
crossings occur as the magnetic field is swept. One is at

¢ W. Hanle, Z. Physik 35, 346 (1926).
1 J, Barrat, J. Phys. Radium 20, 633 (1959).
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€ const H—
He +1

F16. 5. Dependence of the 2P, sublevels of Cd and Hg on the
applied electric and magnetic fields. On the left is shown the dis-
placement of the magnetic sublevels in a uniform electric field &
at zero magnetic field. On the right is shown the Zeeman effect
at constant electric field &.

zero magnetic field and the other two occur when
gnol F3a:82=0, (30)

where the subscript ¢ denotes the crossing field. For the
case of parallel electric and magnetic fields along the z
axis and arbitrary incident and observing directions
perpendicular to the z axis we may write exactly the
rate of scattering given by Eq. (26). If we define direc-
tions as shown in Fig. 6, then we find for y=0

R(a,8)=4% sin% sin?8+ cos?x cos?6—1 sin2a sin2g
[ AH-+B&? | AH—B& :]
1+(4H+BE)? 1+(AH—B&)*

(31)

—1 sin% sin%’(—————) ,

1+ (24 H)?
where AH=guH7/% and B&%*= —3a28%7/%. The ten-
sor Stark shift is obtained from (30);

Q2= %g,;uo(d:Hc)/{%? . (32)

In this experiment a cell containing cadmium or mer-
cury was subjected to a constant electric field and the
scattered resonance radiation was measured as a func-
tion of the applied magnetic field. The incidence and
detection directions and the direction of the applied
fields were chosen to be mutually perpendicular. The
polarizations of the incident and detected lights were

a>

INCIDENT
LIGHT
DIRECTION

OBSERVATION
DIRECTION

FiG. 6. Light propagation, polarization, and field directions
in the Cd and Hg experiments.
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FiG. 7. Basic cell design for Cd and Hg experiments. The gas
heating was required for the Cd experiment, while for the Hg ex-
periment a side arm on the cell was maintained at ice temperature.

set at 45° to the field. This choice of polarizations maxi-
mizes the level-crossing signal amplitude. The basic cell
design and the gas oven used to heat the cell (in case of
cadmium) is given in Fig. 7. The central section of the
cell was made from quartz to allow the passage of the
3262 A line of cadmium and the 2537 A line of mercury.
Two 1-in.-diam stainless-steel disks, separated by 4 mm,
formed internal electric-field plates. By using appropri-
ate stops, the observed scattering region was limited to
the area near the center of the plates at least two plate
separations away from the plate edges. The error due to
the fringing of the electric field is negligible under these
conditions.

A cadmium Osram lamp and a mercury arc discharge
tube were used as the source of radiation. A Schott UG-5
filter, UG-11 filter, or an interference filter was placed
in the output before the photomultiplier tube. The range
of electric-field intensities investigated was up to 50
kV/cm in Cd and 80 kV/cm in Hg. These correspond to
crossing magnetic fields of approximately 3 and 8 G,
respectively. At higher field values, the cadmium cross-
ing signal could not be observed conveniently. This is
due to the “‘anticrossing”!! effects of transverse fields
when the electric and magnetic fields are not exactly
collinear. The order of magnitude of the angle 6 between
the electric and magnetic fields which can be tolerated
may be obtained by equating the radiative width of the
levels and the Zeeman energy associated with the trans-
verse magnetic field H, sind:

(l/h)gjﬂoHc Sino‘—‘l/T. (33)

Using the experimental value of the lifetime!? 7(Cd)
=2.4X107% sec and a typical value of 2.5 G for H,, we
obtain §~40'.

A comparison of the theoretical curve from Eq. (31)
and an experimental curve for Hg is shown in Figs. 8 and
9.

The experimental and theoretical values of the Stark
shift for Cd 5s5p 3P; and Hg 656p 3Py states are given in
Table II.

1T, G. Eck, L. L. Foldy, and H. Wieder, Phys. Rev. Letters
%(1)96273)9 (1963) H. Weider and T. G. Eck, Phys Rev. 153, 103

2 F. W. Byron, Jr., M. N. McDermott, and R. Novick, Phys.
Rev. 134, A615 (1964).
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3p, STATE OF Cd and Hg
SCATTERED INTENSITY
vs AH

SEP.= 8 xWIDTH

Fic. 8. Theoretical curve of scattered light 51gna1 versus H
(&=const) for y=0 and a=—B=45

V. DISCUSSION

We have demonstrated how the method of level-
crossing spectroscopy may be applied to the measure-
ment of the tensor polarizability of an excited atomic
state. Although one cannot measure the scalar polariza-
bility by the level-crossing technique, the same atomic-
beam equipment in conjunction with a Fabry-Perot in-
terferometer could also be used to measure the scalar
and tensor Stark effect.

One may now ask what we can learn from these meas-
urements beyond the obvious utility of the data to the
interpretation of Stark broadening and shift of spectral
line arising in plasmas, discharge tubes, stellar media,
etc. Since the Stark effect is well understood theoretic-
ally, the data provide a test of approximate methods of
calculating atomic wave functions or of calculating
radial integrals. The only general method for calculating

H963P|
64.4 kV/cm
2 gauss
—_—

Fic. 9. Experimental curve of scattered light intensity versus
magnetlc field at a constant electric field of 64.4 kV/cm in the
Hg 656p 3P, state.
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radial integrals is that of Bates and Damgaard, which
is surprisingly good in view of its simplicity. As yet there
are not enough calculations of the polarizabilities by the
Sternheimer or Dalgarno! method. In view of the num-
ber of recent accurate measurements becoming avail-
able, we hope someone will be encouraged to carry out
these calculations.

In special cases where only one nearby state produces
the principal part of the polarizability of the state being
investigated, one obtains directly the radial integral
between these two states. In other cases where one meas-
ures the Stark effect in several members of a fine-
structure multiplet we can obtain an estimate of the
similarity of their radial wave function. For example,
the Stark effect of the 6p 2Py/0,3/2 doublet of cesium!®
shows that their radial wave functions differ signifi-
cantly. Another case of this kind which should be in-
vestigated is the Stark effect of the 1P, and ®P; states
of the group-II elements.

Finally, these data and this technique may be useful
in investigating the buildup of charge layers on trans-
parent insulating surfaces by using level-crossing tech-
niques to measure the electric fields.

APPENDIX

It is convenient to evaluate the error in

AE(£3)=—3}(art )8 (34)
and
AE(£3)=—3(a0—a2) 6 35)
separately. We divide the sum in
0|&-pl7)|?
a0y 01821 -
i E(0)—E()

into two parts: Y_;+> v/, where |i’) are the states in-
cluded in calculating the sums D(J’) and S(J’), and

B R. Marrus, D. McColm, and J. Yellin, Phys. Rev. 147, 55
(1966).
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|4”") are those neglected. The sum Y, represents the

error and satisfies the following inequality:

= =[x LSRR Lo oreptini. 67
=y — < -pli)|2.

i i E(O)_E(i//) A it

Here A is the minimum value of —[E£(0)— E(:”")]. Now

using the identity 3>_s |(¢|O|b)|2=(a]| 02| a) we obtain

282
T I<—HOII0-S [01l9)]3 69

for & in the 2 direction. The first term in (34) can be cal-
culated by writing 22 as

72 c0s?0=3r%(4m/5)1 2V a0+ 5r2(4m) 12V oy (39)

and using the Wigner-Eckart theorem. The result is
(32 =0)301-3),
(F3[2[£5)=31+D),

where (r2)= (nP32|r2|nP3,s) can be calculated from the
hydrogenic formula.’ The second term in (38) is iden-
tical to the expression for the Stark shifts except for the
absence of the energy denominators and can be evalu-
ated similarly. In calculating the Stark shifts in Rb and
Cs, the first 16 terms of the sum (36) were taken, al-
though only about eight were significant. The AE(=3)
error in rubidium turned out to be small but negative.
Hence, no definite conclusion can be drawn concerning
the az error, except that it should be of the same order of
magnitude (about 19, of the calculated value). In
cesium both AE(m) errors are positive. Since the ne-
glected states all have higher energies than the per-
turbed states, the neglected terms all add to |AE(m)].
Thus the error in the differential shift, a,=FE(+1)
—E(#£3), is the larger of the two AE(m) errors. The
upper bound of error due to the neglected states were
calculated according to (38) and (40) for Cs. The results
were about 19, for AE(m) and 49, for as.

(40)



