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In a recent paper, the author gave a recipe for constructing exact interior solutions which might serve as
sources of the Kerr metric. Here the recipe is given again, but in simpler form, and an example of an interior
solution is given in detail. Some properties of these solutions are discussed, including the shape, mass density,
and rotation rates of the bodies described. It is proven that solutions of this type exist which describe
uniformly rotating bodies at least up to second order in the angular momentum parameter b. In the Gnal
section, a discussion is given which indicates that strong gravitational 6elds plus high-rotational velocities
can lead to correspondingly high-rotational inertial eBects on the observer who is near or inside the body.
These inertial effects also give some direct information about the rotation of the body. This enables us to
prove that uniformly rotating rings of mass could not serve as sources of the Kerr metric.

I. INTRODUCTION

~ 'HE study, in the framework of general relativity,
of finite bodies which possess angular momentum

is, in general, extremely difficult. But this is exactly
the problem set before us if, for example, we want the
gravitational field associated with a rotating star. The
need for understanding this problem assumes much
greater importance when we are concerned with ro-
tating super-massive or neutron stars where the gravi-
tational fields may be quite strong. Most studies of the
more difficult problems in relativity proceed by em-

ploying techniques such as perturbation theory,
linearization, numerical integration, etc. Here we shall
discuss a finite rotating body where the 6elds are known
exactly.

A particular solution of the Einstein field equations
of great interest is the Kerr solution' which is the only
known exact solution describing the field exterior to
some finite rotating body. In a recent paper' the author
outlined a method for constructing exact interior solu-
tions which might serve as sources of the Kerr field.
These sources described rtortfluid, ' axially symmetric,
rotating bodies which were obtained essentially by
perturbing strongly the familiar Schwarzschild interior
solution. The physical significance of these solutions
might be questioned because the material described may
be quite unfamiliar. However, little is known concerning
general relativistic theories of matter, especially nonQuid
forms, so, at present, we must be satisfied with any
solutions which do not violate any principles of physics.
Actually for weak enough fields one could construct

models in a laboratory which are identical to these
models to any given accuracy. These exact solutions
serve a useful purpose in the same sense that an exact
solution is useful in any area of physics. It provides a
concrete example with which to work and test our ideas.
In this case we may be led to a better understanding of
the role of angular momentum in general relativity.

In this paper, we shall look more closely at the in-
terior solutions constructed in the earlier work. The
original method for constructing interior solutions used
coordinates similar to those used in Kerr s original
paper. Recently, however, the Kerr metric has been
expressed in Schwarzschild-like coordinates' which in
many ways are simpler than the Kerr coordinates.
Hence, for the sake of completeness and because the
resulting metric is easier to understand, we shall, in
Sec. II, again give the method of construction of interior
solutions, but this time using the Schwarzschild-like
coordinates. We shall also give explicitly an interior
solution thus constructed and the details involved.
Section III is devoted to the investigation of the
physical properties of the interior solutions. More
specifically we discuss the shape of the body, its mass
density and rotation. In Sec. IV we discuss the eRects
of this rotating body on the inertial frames inside and
outside the body.

Throughout this work we use coordinates such that
c=G=1. Greek letters refer to the four coordinates
r, 8, @, and l.

II. SCHWARZSCHILD COORDINATES
AND INTERIOR SOLUTIONS

*National Academy of Sciences Resident Research Associate,
t Present address.
'R. P. Kerr, Phys. Rev. I etters, 11, 327 (1963).

W. C. Hernandez, Phys. Rev. 1S9, 1070 (1967).
'In our earlier work (Ref. 1) we showed that our constructed

solutions could not describe Quid bodies because our arbitrary
boundary (r=r&) could not be the boundary of a Quid. Moreover,
we also gave arguments which indicated that Quid Sources for
the Kerr metric do not exist,

The Kerr metric can be written in Schwarzschild-
like coordinates, ' i.e., coordinates such that when the
angular momentum parameter b is zero one gets the
Schwarzschild metric in its familiar form. These new
coordinates also simplify the metric by eliminating un-

' H. Boyer and R, Lindquist, J. Math Phys. S, 265 (1967).

167 1180



167 KERR ME TRIC, ROTA TING SOUR. CES

necessary g„&, g„~ cross terms. Thus we have

ds'= [(r'+b' cos'0)/(r' 2m—r+b') )dr + (r'+ b' cos'8) d0'+ [r'+b'+2mrb' sin'8/(r'+ b' cos'8) g

&& si n' Odg'+ [4mbr sin'0/(r'+ b' cos'0) jdidQ [—1 —2mr/(r'+ b' cos'8) )dP. (1)
Next we rewrite this as

dss= dr'/(1 —2m/r)+ r'd8'+ r' sin'Odg' (1——2m/r) dis —(b'/r') 1/(1 —2m/r+ b'/r') [1/(1—2m jr)—cos'8/dr'

+b' cos'Od8'+ (1+(2m/r) sin'8/[1+ (b'/r') cos'8]}b' sin'Odg'
—(2m/r')(b' cos'0/[1+(b'/r') cos'Oj}dt'+(4bm jr) {sin'8/[1+(b'/r') cos'8)) ddt (.2)

This has the form
gpu Spv+ bA pr y (3)

where S„„is the Schwartzschild metric and A„„is that part of the metric which has b as a factor.
The requirements we impose on our interior solution are that it have (1) non-negative energy density every-

where, (2) non-negative principal stresses everywhere, ' (3) energy density greater than the stresses, ' and (4) that
it satis6es the proper boundary conditions at the surface separating the interior and exterior solutions. This last
condition is met if we demand that the 6rst and second fundamental forms be continuous across the surface. ~

We shall choose the boundary as r=r& for simplicity. Then for a metric having the components g„, g&e, g@~, g~&,

and g« it is easily shown that these continuity conditions are satisfied if we choose the metric components such that
all the g„„g„,,&,and g„„,, except g,„,„are continuous at the surface. A Gnite discontinuity in g„„,, at the surface is
allowed. For the interior solution we choose

ds'= dr'/(1 r'/R')+—r'd0'+r' sin'OdqP —[ss (1—ris/R') "s—si (1—r'/R') '~'1'dt' —b'A (r) {1/[1—2mb(r)+ b'g (r)$}
X{1/[1—2mb(r)$ —cos'0}dr'+b'B(r) cos'Od0'+b'B(r)(1+2mf(r) sin'8/[1+b'g(r) cos'Oj} sin'Odg'

+(4bmC(r) sin'8/[1+b'k(r) cos'8$) ddt {2b'mF—(r) cos'0/[1+ b'g(r) cos'0$}dP. (4)

Thus to the S„„part of the metric we have simply
matched the familiar Schwarzschild interior solution
(with R' defined by ri'/R'=2m/ri). The remainder of
the interior metric has a form which makes it easy to
match it to the bA„„part of the metric. The various
functions A (r), f(r), etc. , are somewhat arbitrary analy-
tic functions chosen so that the boundary conditions
at r=r~ are satisfied and such that the resulting metric
and its inverse gI"" are analytic everywhere. As an
example we shall choose for the functions the simple
polynomials:

h(r) = r'/2mR') 0,
f(r) = ( 3/r2 )t(rs/2ri—') &0,
g(r) = (2/rt') —(r'/r t') & O

A (r) = rs/rt4&0,

&(r) = (Sr'/ri') —(«'/rt') &o,
C(r) = (Sr'/2ri') —(3r4/2ri') &0,
k(r) = (4r/rts) —(3r'/rt4) &0,
F(r) = (6r'/ri') —(Sr'/ri') &0

(S)

where r has the range 0&r&r~. It is obvious that the
metric is analytic in this range if 1—2nzh remains posi-
tive. For the choice of A; above this implies that we need

'This gives a material under pressure rather than tension and
hence tends to make the body more stable.' The velocity of sound in aphid is given by s, '=dP/dp. Cau-
sality requires that e,&c=1. This leads us to demand that the
physical components of the stress of our material be small enough
so as to allow an interpretation where the velocity of sound will
not be greater than the velocity of light.

~ W. C. Hernandez, Phys. Rev. 158, 1359 (1967).

r»2m. The inverse g&" is also analytic everywhere
except at points where

detg„v grrg98(gpegtt get ) (6)

The Grst factor g„„has the form

(1—r'/R') '—b'X(r 8) (7)

will take the form

where X(r,0) is a bounded function. Hence g„, is never
zero for sl~ientty small b The se.cond factor gss is

zero only at the origin r=0. The third factor can be
expressed as

—r' s' '0{[a(1—r '/R') '"—-'(1—r'/R') '"l'
+b'I'(r, 0)}, (8)

where F(r,8) is a bounded function. Hence for slg-
cient ty small b this factor is zero only on the z axis (8=0)
which includes the origin r=0. If one so desired,

X(r,0) and I'(r, 8) could he calculated for the example
of Eqs. (S) and. the exact limit on b obtained. Fox this
example it turns out that the singularity along the 2' axis
is a coordinate effect only. We prove this in Appendix
A by transforming to another coordinate system which
removes the singularity. It follows that for sufficiently
small b our interior solution describes a "smooth"
geometry. Since the metric is analytic in the parameter
b at b=0 we know that the calculation. of the stress-

energy tensor by direct substitution into the Einstein
equations
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where t„I' is the Schwarzschild stress-energy tensor.
Furthermore, for small enough b the functions l„& will

be Gnite. Since t„I" satisfies the requirements imposed
earlier then for sufficiently small b we have T„I"satisfying
the requirements also.

For the ordinary Schwarzschild interior solution
there is a restriction 2ri(8m/9 which insures finite
pressure at the origin. In our interior solutions there are
analogous restrictions imposed on the parameters ns,

r&, and b. These can be obtained by calculating the T„&

explicitly, but we shall not do this.

III. PROPERTIES

In general, our constructed solution will describe a
rotating, axially symmetric body whose surface has the
topology of a 2-sphere and composed of material which
possess some solidlike (shear sustaining) properties. For
very small b it will closely resemble the Schwarzschild
interior solution which simply describes a static uniform
density sphere with isotropic pressures.

Vv = g'~
—gg'go~/g« (12)

Evaluating this for the surface of the body (r=ri) we get

7gg ri'+b' cos——'8,

egg= (ri'+b') sin'8

+2mrib sing8/(ri —2mri+b2 cos28) . (13)

Thus the circumference of the body at the equator
(8=~m) is given by

2m'(yi +b y'i/(ri 2m))—
The polar circumference Q = const) is given by

(ri +b cos 8)'i'd8(2'(ri +b )' 2 (15)

Thus the equatorial circumference is larger as one might
desire intuitively for a rotating body, but remember
that the boundary choice was arbitrary. One should
also note that the measurements we described are those
that would be made by an observer on the surface of the
body who is at rest with respect to a distant observer.
A moving observer would obtain different values for
these measurements because of relativistic contraction
and Machian effects. For example, one can show that
these effects single out a preferred observer revolving

~L. I andau and E. Iifshitz, The Classica/ Theory of Iijelds
(Addison-Wesley Publishing Co., Inc., Reading, Mass. , 195$),
Sec. 10—4.

A. Shaye

The element of spatial distance dt defined in terms of
the three space coordinate elements is given by'

dP =y@dh'dx',
where

around the body at the equator who will measure the
smallest equatorial circumference.

B. Mass Density and Angular Velocity

Consider the eigenvalue equations

T."V(')"=~'V(')". (16)

Q'Rg'+Q(Ri' Rg&) Ri—&= 0, —

QGg'+G, '+p= 0, (19)

where R is the Ricci tensor. Now the coordinates g
and t are defined as parameters along the paths of mo-
tions. They are uniquely de6ned by requiring that at
spatial infinity the line element reduces to the Qat-

space form expressed in the familiar spherical coordin-
ates. It then follows that 0 is simply the angular velocity
of the material as seen by a distant observer.

A particular interior solution which would be ob-
viously highly desirable wouM be one for which 0 is a
constant. It is easily verihed that 0= const is necessary
and sufficient for Born-type rigid motion. However, the
discussion of such a solution is rather difBcult and is
currently being studied by the author. So at present, as a
simplification we shall look for a rigidly rotating source
up to second order in b only (but to all order in the mass
m). Let e and —e7 represent, respectively, the g„„and
g«components of the Schwarzschild interior metric.
Then to second order in b we find that E~& is dependent
only on the unknown function C and is given by

Rg, bm e sin'8[C——"+2 (y' —u') C'+ (2y'/r) Cg
—(2bm sin'8/r') C+0(b'), (20)

where the primes indicate di6erentiation with respect to
the variable r. Note that the terms of order b' vanish.
The other components of the Ricci tensor have the form

R„„=,R„„+0(b'), (21)

where the subscript s' indicates the Schwarzschild value.
The terms of order b vanish in these components and
we shall not need to calculate explicitly the terms of

The four eigenvalues are the three principal stresses
and the negative of the energy density. In general, a
calculation of the Einstein tensor 6„„for a Inetric of
the form of Eq. (4) will give as nonzero components
G„,G,g, Ggg, Ggg, Gg„G„.From Eq. (9) these are also the
nonzero components of T„„.Because many cross terms
are zero, the solutions of Eqs. (16) are simple. However,
we shall limit our discussion to the timelike eigenvector
equation

G,~V(4)"——S~pV«) ~,

where we have substituted for T„& by use of Eq. (9).
Here p is the energy density and V(4)" a multiple of the
material 4-velocity U&. It is obvious that a form V(4)"
=Qbg"+8&" will work. Substituting this into Eq. (17) and
simplifying, we get
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order b'. Assuming 0 is of order b and substituting
Eqs. (20) and (21) into Eq. (18) we 6nally get to second
order in b

e LC"+ 2 (y' —n') C'+ (2y'/r) Cj (2/—r') C
—82.(3p+e)C= (87rQ/bm)(p+e)r2. (22)

We have made use of the field equations for the
Schwarzschild solution, G&' ——Sm e and, G„"=,Gg'

=,Gq&= p. The mass density Q=3/87rR2 is a constant,
and the pressure p is a well-known function of r.
Thus C(r) must satisfy the differential equation above
and also the boundary conditions at the surface,
C(rt)=1, C'(rt)= —1/r t We have not been able to
solve this equation. However, a solution does exist as
we prove in Appendix B.Thus, at least to second order
in b, a rigidly rotating source does exist.

Before discussing Eq. (22) further let us look at Eq.
(19). Substituting our expression for R„„ into this
equation gives

(23)p= e+o(b2)

C= (5r'/2rts) —(3r /2r&'), (25)

with 0 given by'
n= —ssb/rt2. (26)

In the Newtonian limit we must have b2(&1 (actually b'

is of order m). ' Thus in the Newtonian limit our source
is a uniform density sphere with consequently a mo-

ment of inertia I=-5mr&'. It follows that the angular
momentum is given by

L= IQ= —mh, (27)

in agreement with the value' as determined by the
asymptotic expansion of the Kerr exterior solution. Any
other choice of C(r) (which naturally would not be a
solution of the differential equation) leads to a nonuni-

form rotation. For example,

C= (6r4//rt2) —(Sr'/rt') (28)

9Notice that the constant 0 is itself determined just as we
expect it should be on purely physical grounds. In Appendix 8
we see that 0 is also determined in the solution of the original
equation LEq. (21)j.

where terms 6rst order in b vanish. The fact that 0 has
terms of first order in b and p has not terms of 6rst order
in b is not surprising. If we let Q~ —P and b ~ b-
then the Kerr metric is unchanged. Thus letting b —+ —b

changes only the direction of rotation of the body. So in

general we have 0(—b)= —Q(b) and p(—b)=p(b).
Returning to Eq. (22), we shall look for a solution

when we retain terms to zeroth order in m only (New-
tonian limit). Equation (22) becomes

C"—(2/r') C= (87rne/bm) r'

Requiring that the solution be regular at the origin and

satisfy the boundary conditions at r=rj, we easily get

IV. MACH EFFECTS

Any induced rotation in local inertial frames caused
by mass possessing angular momentum is generally
viewed as a Machian effect. ' We shall identify and
discuss this effect in both the Kerr (exterior) metric
and our interior metric.

A. Kerr Metric

Consider a stationary observer at some point on the
s axis (r=rQ, 8=0) who is "rotating" in such a manner
such that he feels no centrifugal forces. He can set up,
at least locally, a "cylindrical" type coordinate system
with himself as the origin with a metric of the form

ds'= (1+a)ds'+ (1+b) dp'g p'(1+C)dry'

+2Q&&p2(1+d)dPdr (1+e)—dr', (30)

where a, b, c, d, and e are analytic functions which vanish
at the origin. Here r is the observer's proper time, but
@ is still the unique tt de6ned earlier. Thus the g= const
lines may be rotating with respect to the observer at
some angular velocity or& so we have included the neces-
sary g~, term in the Inetric. By comparing the Kerr
metric of Eq. (1) with the metric of Eq. (30) at the
point r = ro, 0=0 we have

L1—2mre/(rQ'+ b') j'"dt =d1-.

Expanding the Kerr metric component g~~ around the
point r=ro, 0=0 and comparing its lowest-order term
with the lowest-order term of gQQ in Eq. (30), we get

p'= 02(rQ2+b')+higher-order terms. (32)

Finally we expand the Kerr ge~drbdt term at the point
r=rQ, 0=0, substitute in Eqs. (31) and (32), and com-
pare it, to lowest order with the g«ddt term of Eq.'(30).
This gives

2mreb 2mre ) '12

t =+—
(r 2+b2)2 r 2+b2)

(33)

Thus the observer on the s axis sees the g= const lines
rotating with an angular frequency co& with respect to
his "inertial frame. ""It easily follows that a distant
observer sees the inertial frames on the s axis rotating
with an angular frequency

co„=—2mr Qb/(re'+ b') '. (34)

"D.Brill and J. Cohen, Phys. Rev. 143, 1011 (1966).
"This is not truly an inertial frame since the observer will

feel a gravitational force in the s direction.

yields a rotation rate

0= (10b/r t2) —(15b/r t')r. (29)

But this still gives a net angular momentum of L= —mb.
Finally one might notice that the C(r) of Eq. (25) is
identical to the C(r) of Eq. (5). This just means the
solution given by Eqs. (5) is rotating rigidly in its
Eemtomium BmA.
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Notice that when rp= ~ or b=O then co„=O, as is
desirable. Suppose next that a possible source of the
Kerr metric were a doughnut or ring-shaped object
which has been suggested as a possibility. "Then the
Kerr metric describes the vacuum region all along the
s axis. But notice that for rp=0, b/0 we have co„=0.We
interpret this as saying that some of the material in the

ring is rotating in one direction and some in the opposite
direction such that the net Machian effect at the center
is zero. It follows that rigidly rotating rings of mass
could not serve as sources of the Kerr metric. A closer
investigation of the magnitude of the Mach effect might
lead to a proof that any kind of rotating ring is not
allowed as a source of the Kerr metric.

Ql~= 0. (37)

As in the case of the ring source this indicates that the

body is rotating with positive angular velocities at some

points and negative angular velocities at others such

that the total angular momentum is finite, but the net
induced rotation in the inertial frame at the center of

the body is zero. This interpretation is proven by the
fact that this C(r) does yield such a differential rotation
in the Newtonian limit as given by Eq. (29).

As a 6nal point of interest we show that the weak-

Q.eld Mach e6ects as presented here are consistent with

the results of Thirring. " We consider the weak. -field,

case with C(r) given by Eq. (25). As mentioned before

this corresponds to a uniform-density sphere rotating
uniformly with an angular velocity Q= Sb/2rro. The-
Thirring result says that a thin spherical shell of mass 3f,
radius E, and angular velocity ~, contributes an induced
rotation within the shell of

op'= o),4M/3R.

por exampl. e, see E. T. Newman and A. I. Janis, J. Math.
I'hys. 6, 9&5 (&96S).

~' H. Thirring, Z, Physik 19, 33 (1918);22, 29 (1921).

B. Interior Solution

The calculation of the induced rotations in the inertial
frames on the s axis for the interior metric is done in

exactly the same manner as for the exterior metric. We
shall simply state the result

op„= —2bmC(rp)/L1+b'&(yo))Lyo'+b'B(yo)3 (35)

If we choose the C(r) of Eq. (5) and evaluate op„at
ro=O we g

co„=—(2m/rr) (Sb/2rr') . (36)

The Newtonian result of Eq. (26) indicates that b/rro

is a measure of the angular velocity of the body while

m/rr is a measure of the strength of the gravitational

field. Thus it would appear that a large rotation rate for

a body with a strong gravitational field would produce

correspondingly large rotation rates in the inertial

frames within the body. If we choose the C(r) given by
Eq. (28) and, evaluate op„at rp ——0, we get

Integrating the effects due to the "many" shells of our
rotating sphere we have

S—b) 4
~

—(4n r'p) dr =
E rr l3r

)
rl3

(39)

which agrees with our result Eq. (36). Using the dif-
ferential rotation velocity given by Eq. (29) and per-
forming the integration we get zero Machian effect at
the center which agrees with our result of Eq. (37).

x=p cosC,

y= p sinC,

a= k,r,
p'= &i' »n'0, p& kj

T= k2])

C =P+{2bm/kr'L1+b&P(rp)])t.

The constants kl k2 and ks are dehned ln terms of the
metric components of Eq. (4) by (gpp)

&&& (—g ) 1/2

(g.r)' evaluated at a point (0=(), y=yp~0) along the
s axis. Then by direct substitution one can show that
the metric of Eq. (4) becomes the quasi-Cartesian form:

ds'= dx'+dy'+ds'+ODx'+y'+ s')'n]dx&dx.
~ (A2)

with r=rp, 0=0 as the origin. It is analytic, has a non-
vanishing det (g„,) at the origin and hence has an
analytic inverse at the origin. The point 0=0, r=O re-
quires special consideration because in this case Eqs.
(A1) give sing=p/)'r& which is no longer analytic. If
we choose the functions A, 8, C, Ii, and k such that they
behave like

A(y)~r, B(r)~y4 C(y)~y& p(y)~y p(r)~y (A3)

for small r, then the metric of Eq. (6) can immediately be
expanded about the origin as

ds' =dr'+ r'de'+ r' sin'ed' ' dr'+O(r') dx&dx" —(A4)

where
m2b( /Cr') „ot,

r= Pop(1 —yro/Q~)r~o —&~gt. (A5)

This is analytic with nonvanishing determinant at the
origin. Thus we see the reason for the particular choice
of functions of Eq. (5).Note that the metric of Eq. (A4)
says that a particle at the center of the body feels no
forces, which we know is necessary on physical ground, s.

APPENDIX A: NONSINGVLAR COORDINATES
ON S AXIS

In order to show that the singularities along the s axis
of the metric of Eq. (4) are coordinate effects only, we
shall exhibit another coordinate system which makes
both the metric and its inverse analytic at any point on
the s axis. Consider the new coordinates (x,y,s) given
by the following set of transformations:
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APPENDIX 3: EXISTENCE OF SOLUTIONS
FOR EQ. (21)

Our Eq. (22) can be expressed in the form

C"()+P ()C'()+P ()C()=IRAQ() (81)

enables us to extend the range over which we know these
solutions are valid to the interval 0&r&r~. The special
solution of the nonhomogeneous equation can be found
by the method of variation of parameters. '~ Assuming a
special solution of the form

where r has the range, 0&r(r&, and C(r) has the
boundary conditions C(ri) = 1, C'(ri) =—1/ri. The
coefFicients Pi, Ps, and Q are analytic everywhere in
the interval except for I'2 at the point r=0; but the
function

is analytic at r= 0, and so r= 0 is a regllar singular
Poirtt. '4

Consider the homogeneous equation

C,=vzCz jvaCti)

Eqs. (4.40) of Ross give

" QQ(t) Cts(t) dt

W(t)

"~IQ(t)C~(t)«

W(t)

(89)

(810)

(811)

C"(r)+P (r)C'(r)+P (r)C(r) =0.
Expand the function C in powers of r as

(83) where W(t) is the Wronskian

W(t) = Cg(t) Cti'(t) —Cg'(t) Cti(t) . (812)

n=O
c re+re

Thus the general solution of Eq. (81) is given by

C= AC~+BCti+QC„ (813)

where A and 8 are constants and 0 has been factored
out of C,. The solution C~ is obviously singular at r =0.
An investigation of C, reveals that it is not singular
at r=0. Hence, choosing 8=0, we have a solution which
is regular at the origin and hence valid over the required
closed interval 0&r&r~. The other two constants 2
and 0 are to be determined by the boundary equations

Next expand the known functions I'~ and I'2 in power
of r also and substitute all this into Eq. (83). Equation
(83) can then be simplified to

rm+g'irm+1+Itsrm+2+. . . —0 (85)

where each E; must be zero. The equation ED=0 is
called the indicial equation and in this example has the
form AC~(ri)+1)C, (ri) = 1, (814)

(86)(rrt —2) (rl+1)=0,
AC~'(r&)+INC. '(ri) = —1/ri. (81&)

D= Cg(ri) C,'(ri) —Cg'(ri) C.(ri) (816)

with solutions m=2, —$. A well-known theorem in
differential equations" says that the Eq. (83) has two This pair of equations have a solution if the determinant

independent solutions given by

Cg=r' g c r", cp/0

Ctt ——r ' P c„*r"+kC~lnr, co*/0,
n=o

where k is a constant and where the solution is valid over
some deleted interval 0&r&r0. Another theorem"

"For example, see S. L. Ross, Differential Equations (Blaisdell
Publishing Co., Inc. , New York, 1964), p. 190."See Ref. 14, p. 196.

"For example, see W. Kaplan, Ordkrtary Dgererth'o/ Eglatiows
(Addison-Wesley Publishing Co., Inc., Reading, Mass. , 1958),
p. 115.

is nonzero. By use of Eqs. (89)—(811) it is easy to
transform the right-hand side of Eq. (816) so that it
becomes

D= vii(ri) W(ri) .
Since the Kronskian 8" of the two independent solu-
tions C& and C& is never zero, one must simply choose
the integration constant of Eq. (811) so that vti(ri) NO
in order to guarantee that D is nonzero. Note (1) that
the angular velocity 0 is determined uniquely and (2)
that the solution C(r) has the required r' behavior for
small r as discussed in Appendix A.

"See Ref. 14, p. 120.


