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Equation (14) is derivable from the variational be very interesting if this simple geometrical picture
principle could be used effectively to deduce solutions of the

vacuum 6eld equations other than those discussed in
csch'(Rev) Vv Vv*dv=0. (31) Sec. III.

If one performs the nonanalytic transformation

Imp=0. ',
Rev = ln cosh (P'/2), (32)

the variational principle assumes a form quite similar
to that of Matzner and Misner; namely,

L (
VB'( '+stub'P'( Vcr'( s]dv=0. (33)

This Lagrangian is related to the metric for a timelike
hyperboloid in a Lorentz 3-space with polar angles
P', n'. For a nearly spherically symmetric situation, cr'

and p' are much simpler than n and p (although even
n' and P' are more complicated than h, $, or v). It would

VI. CONCLUSIONS

The reformulation of the axially symmetric gravi-
tational field problem in terms of the 8 equation facili-
tates an intensive investigation of solutions corre-
sponding to uniformly rotating sources. In particular,
it permits a simple derivation of the Kerr metric which
proceeds from the assumption of axial symmetry rather
than the assumption that the metric is algebraically
special.
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For a classical-mechanical system of two particles, the conditions for Lorentz-invariant equations of
motion are expressed in terms of relativistic momentum variables, and are shown to imply that neither
the conventional total kinematic particle momentum nor the conventional total kinematic particle angular
momentum is a constant of the motion unless the accelerations are zero. This is compared with a theorem of
Van Dam and Wigner.

''N a classical-mechanical system of two particles,
~ ~ interactions can be described by relativistically
invariant equations of motion which specify the
accelerations as functions of the positions and velocities
at one time. ' 4 As yet, their properties are mostly
unexplored. Here we show that their constants of the
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motion include neither the conventional total momen-
turn nor the conventional total angular momentum as
dined for free particles or for particles in a field, i.e.,
the kinematic particle momentum and angular momen-
tum. These quantities could have the same values before
and after a collision by being asymptotic limits of
constants of the motion. The constants of the motion
would depend on the interaction. They could be
momentum and angular momentum which correspond
to the generators of space translations and rotations.

Let x' and x be the positions of the particles, and

let v' and v' be their velocities. (These are three-

vectors. ) Let

un ~ vent 1 (vn)sj —lis
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for m=1, 2, with mj and m2 positive numbers. Let
x=x' —x' and v= v' —v'. Consider equations of motion

du "/Ck = f"(u', u', x)

for e= 1, 2. Translation invariance implies that f' and fs

depend on the positions of the particles only as functions
of the relative position x. Rotation invariance implies
that f' and f' rotate as vectors when u' u' and x are
rotated.

The conditions for Lorentz invariance are

(—1)nx f"'18f"2/Bun'1+//, 2(un f )n[( u)n+22/2'] —'/2

Nn[( u)n2+ 2/22]
—1/2fn„

+*[(u"')'+21 '7 '"~"l~f"./»1
[(un)2+21 2]1/2gfn /gran.

[(un')2+2/2, 2]l/2r)fn /ggn'. 0

for j, k, 1=1, 2, 3 and rI,, e'= 1, 2 with m' diferent from m

(if n = 1 then 22' = 2 and if 22= 2 then n'= 1), ; the repeated
index / implies a sum. These conditions are derived from
the usual Lorentz transformation of space-time coordi-
nates and from the requirement that for an in6nitesimal
Lorentz transformation the change of du"/dt is the same
as the change of f" as a function of u', u', and x.'2' We
use these conditions to obtain the following.

Theorem 1:The conventional total kinematic particle
momentum u'+u' is not a constant of the motion unless
both f' and f' are zero. '

Proof: Suppose u'+u' is a constant of the motion.
Then f'+f'=0. Let e be any three-vector orthogonal
to x. Multiplying the conditions for Lorentz invariance
by e;, summing for j=1,2, 3, and adding the result
for m=1, 2 yield

[(ul)2+ri 2]-1/2[(ul. fl)e (ul. e)fl]
+[(u')'+2/22'] '/'[(u' f')e —(u'e)f']= 0

ol

{[(ul)2+2/2 2]-l/2ul [(u2)2+2/2 2]—1/2u2) y (ey fl) 0

which means that e&&f' is collinear with the relative
velocity

v —vl v2 —[(ul)2+2/2 2]—1/2ul [(u2)2+2/2 2]-1/2us

If f' is not zero, then e is orthogonal to v, which means
that x and v are collinear, and fr is orthogonal to v.

Theorem Z: The conventional total kinematic particle
angular momentum x'&(u'+xs&&us is not a constant of
the motion unless both f' and fs are zero. '

Proof: Suppose x'&&u'+xs&&us is a constant of the
motion. Then x')&f'+x')&f2=0. Let e be any three-
vector orthogonal to x. Multiplying the conditions for
Lorentz invariance by e, eI, & x"&, summing for j,k, l
= 1, 2, 3, using v"=u"[(u")2+m '] '/' and adding the
results for e= 1, 2 yieM the mth component of

(v' f')eXx'+(v' f')e)& x'
—(e ~ vl) fr+xi —(e vs) fsgxs=().

Taking the scalar product of this with e, we get

(e v)x')&f'e=0.

If f' is not zero, then e v is zero, which means that x
and v are collinear.

These techniques were used previously to show that
2/slv'+msv' is not a constant of the motion unless the
accelerations are zero. '

Van Dam and Wigner~ prove a similar theorem that
states that there is no interaction if the conventional
total kinematic particle momentum and the total parti-
cle kinetic energy are constants of the motion and the
particles are free asymptotically. Their proof is for two,
three, or four particles. It does not use equations of
motion. We do not assume that the total kinetic energy
is a constant of the motion. Since we do not use an
asymptotic condition, our result holds for bound sys-
tems as well as for collisions. Van Dam and Wigner~
obtain constants of the motion by adding interaction
terms to the conventional. kinematic particle momentum
and angular momentum. For this they use their equa-
tions of motion, which are manifestly invariant but
involve positions and velocities at more than one time.
They And that the interaction term of the momentum
vanishes asymptotically.

5 We assume that fI and f2 are functions which are diGerentiable
enough for the Lorentz-invariance conditions to be meaningful.
We do not consider singular functions which are zero for almost
all values of u' u' and x. Thus, if f' and f' are nonzero only when
the relative position x is collinear with the relative velocity v, we
say that f' and f' are zero.
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