
BARYON INHOMOGENEITY IN EARLY UNIVERSE

M'&10 3fo. In fact, the situation is worse than this:
The mass of an eventual condensation is M(M'AB/1V,
or 3f(10 Mo. We therefore come to the conclusion
that the time available is too short for the formation of
baryon inhomogeneities, and that if inhomogeneities
are the explanation of large-scale aggregations of
matter, then they are an integral part of the universe
from the beginning of its expansion.

The case for density Quctuations is certainly no
better. For a galactic mass of %=10"Mo, we have
from (45), p«10 ' g™(since M'))M), and the

instability hypothesis leads to the improbable conclu-
sion that the foundations of galactic structure are laid
down in the radiation era. If we accept the primordial-
structure hypothesis and assume that density inhomo-
geneities exist from the earliest moments, we are still in

difhculty because small amplitude fluctuations are not
ampli6ed, 30 and the density inhomogeneity is of the
order 10' times greater than the required compositional
inhomogeneity.

"Nor are they dissipated. Any dissipation mechanism (such as
Misner's (Ref. 4)g in the lepton or hadron eras causes only the
very shortwavelengths of ) (ct to decay.
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The 6eld equations governing the gravitational Geld of a uniformly rotating axially symmetric source are
reformulated in terms of a simple variational principle. The new formalism affords a concise unified
derivation of the solutions discovered by Weyl and Papapetrou, and permits a simple derivation of the Kerr
metric in terms of prolate spheroidal coordinates. More complex solutions are identi6ed by applying pertur-
bation theory.

I. INTRODUCTION

~~~F considerable current interest is the problem of
finding the gravitational field of a uniformly ro-

tating body. Although a possible exterior field has been
found by Kerr, who investigated algebraically special
metrics, attempts to generalize the Kerr solution of the
vacuum field equations have not been marked by suc-
cess. ' In the present paper the problem is reformulated
in terms of a complex function 8 independent of
azimuth, which must be chosen in accordance with the
variational principle

v8 v8*
de= 0,

(ReÃ)'

where dv is the three-dimensional Euclidean volume
element. When such a complex 8 function is found, a
corresponding axially symmetric solution of Einstein's
vacuum field equations may be constructed.

This formulation of the axially symmetric gravita-
tional 6eld problem has a number of nice features.
Neither the variational principle nor the corresponding
field equation

(ReB)V'8= V8 v8
makes reference to a particular coordinate system.

'R. P. Kerr, Phys. Rev. I-etters 11, 237 (1963). A detailed
discussion has been given by F. J. Ernst, in Proceedings of the
Relativity Seminar of the Illinois Institute of Technology
(unpublished).

According to one's desires, one may work with the equa-
tions in an abstract manner, or express them in terms of
cylindrical, prolate spheroidal, or any other coordinates.
Furthermore, the 6eld equation is homogeneous quad-
ratic, and it serves as an excellent vehicle for the appli-
cation of perturbation theory. Finally, all the known
axially symmetric solutions can be expressed simply in
terms of the 8 function.

II. DERIVATION OP THE 8 EQUATION

Following Papapetrou we express the line element in
the form

ds'= f I[e'&(dz'+d p')+ p'~'j f(dt co~)' —(3)—
where f, co, and 7 are functions of z and p only. ' The
complete set of field equations may be derived either
using traditional tensor methods or the currently
fashionable methods of exterior calculus. However, we
are presently interested in the equations governing f
and co only, and these may be obtained from the Lagran-
gian density

spf 'Vf Vf+—'p 'f'. -
Varying the functions f and co we obtain the field
equations

fVsf=v f.Vf p'f4vcu Vco—,

V. (p 'f'Vcr) =0.
' A. Papapetrou, Ann. Physik 12, 309 (1953).
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In both equations the three-dimensional divergence
operator is to be understood. On the other hand, if 8
is a unit vector in the azimuthal direction and p is any
reasonable function independent of azimuth, one has the
identity

v (p
—'RX vq) =0. (6)

Equation (5) may be regarded as the integrability
condition for the existence of the function q defined by

p 'f'V~=BXvy.

Since this relation is equivalent to

f V&p — p '6X VM
&

the identity (6) implies the field equation

v (f 'vy) =0

course, the well-known 6elds studied by Weyl3 in 1917
(m=0) and by Papapetrou' in 1953 (n=-,'m). Unfor-
tunately, whenever n/0 (mode. ) one must exclude the
monopole contribution from f if the space is to become
Qat at infinity. Thus, the latter solutions do not seem
to possess great physical significance.

As has been emphasized by Zipoy, there is merit in
separating Eq. (16) in prolate spheroidal coordinates
rather than cylindrical coordinates. 4 If we set

p (x2 1)1/2(1 y2) 1/2

S Xg p

the Laplacian operator assumes the form

1 l9 8 8 8—(x'—1)—+—(1—y')—. (18)
x —p 8$8$8$ Bp

1 Li BB 8A BB
(x'—1) + (1—y')

s p — t9$8$ 8$ 8$
(9) VA VB=

for the new potential /p. When Eq. (4) is expressed in
terms of the function /p and compared with Fq. (8) It is also worthwhile to note that
one sees that the complex function

(19)

&= (~—1)/(~+1),
one obtains the differential equation

(10)

satisfies the simple homogeneous quadratic differential
equation (2).

There are a number of simple mc, difications of the
8 equation which are also of use. For example, if one
substitutes

in the event that one wishes to write various abstract
equations in terms of prolate spheroidal coordinates.

From the form of expression (18) it is clear that the
solution iJ/ of Eq. (16) can be expressed as a linear
superposition

&=Z «Qi(x)&i(y)

($$*—1)V2$ =2]*V$ V$, (11) of Legendre functions. In the case of pure 1=0we have

which is derivable from the variational principle

V) VP
de=0.

(H*—1)'
(12)

Furthermore, it is sometimes convenient to write either
8 or P in exponential form. In this case one has the
following results:

8=e"; V'p = i tan(imp) V/i Vp, ,

f=e" V'v=cot'h(Rev)Vv Vv.

(13)

(14)

$= —e'~ cothg. (15)

The real function P then satisfies the Laplace equation

V+= 0. (16)

Consequently we can express iJ/ in terms of a "multipole
expansion. " The solutions found in this way are, of

III. KNOWN EXACT SOLUTIONS OF
THE 8 EQUATION

It is obvious from Eq. (11) that if f is a solution, then
so is e' (, where /// is any real constant. In the case of a
constant-phase solution, we may introduce a new
potential P such that

fx 1)—
4 = —lnI

~

or
4+1j (21)

It may be verified that this case corresponds to the
Schwarzschild field. Choosing the unit of length to be
m, we may indentify the Schwarzschild radial coordinate
r=x+1 and the angular coordinate cos8=y.

An attractive feature of prolate spheroidal coordi-
nates is that both of the operators (18) and (19) are
symmetric under the interchange of x and y. Conse-
quently, if $(x,y) is a solution of Eq. (11), then so is
$(y,x). When this transformation is applied to the
Schwarzschild solution (21), we arrive at a new solution
corresponding to $=y. If one then looks for a linear
combination of the solutions $=x and &=y with the
property that it also satisfies Eq. (11), one arrives at
the following solution:

(=x cosX+iy sin), . (22)

The parameter P may assume any real value.
The solution (22) is completely equivalent to the

metric discovered by Kerr while he was searching for
algebraically special metrics. To facilitate comparison

3 H. Weyl, Ann. Physik 54, 117 (1917).' D. Zipoy, J. Math. Phys. 7, 1137 (1966).
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we introduce tan) =a and sec) = ns, noting that distances
are measured in units of (m' —a')'". When the entire
metric is constructed, one obtains

ds2= (r'+a' cos28)l dg2+
r'+a' 2mr—)

+ (r'+a') sin28dy2 —dt'

2mr
+- (dt+ a sin20dg) 2, (23)r'+ a' cos28

where the coordinates are de6ned by

r=x(m' —a')'"+m, cos8=y. (24)

The result may be cast into Papapetrou's canonical
form (3) by the transformation

p= (r'+a' —2mr)"' sine

s= (r—m) cos9. (25)

To achieve the form published by Kerr, it is only neces-
sary to introduce the coordinates

2mr
u=t+

l
1— dr,

r2+a2

adr
(26)r'+a' 2mr—

IV. PERTURBATION SOLUTIONS

which we have written in a somewhat symbolic fashion,
can readily be shown to constitute a solution of Eq.
(27). The Kerr metric corresponds to the case in which
all n&= 0. Thus, if perturbation theory is a reliable guide,
it would seem that the Kerr metric constitutes a
particularly trivial special case within a class of much
more complicated solutions.

Currently we are studying the convergence of the
perturbation series in an attempt to develop a more con-
vincing proof of the existence of corresponding exact
solutions. In addition, we are trying to determine what
characteristics of a uniformly rotating source give rise
to contributions of the type l&1.

V. COMPARISON WITH EARLIER
FORMULATIONS

The fundamental distinction between the present
approach and previous formulations of the axially
symmetric field problem is that ours is the first canonical
description which employs a field 8 not expressible in
terms of the metric tensor g„„bya point transformation. '
The extreme importance of this complex field 8 is
indicated by the simplicity of all known solutions, when

they are expressed in terms of this formalism. Thus, for
pragmatic reasons we are very reluctant to employ
nonanalytic functions of 8 as the basic 6eld variables.

The formulation of the axially symmetric 6eld prob-
lem published by Matzner and Misner' differs radically
in point of view. In the first place their 6eld variables
Q. and P are obtained from the metric tensor g„„bya point
transformation; viz. ,

The 8 equation, either in the form (2) or in the
modified form (11), provides a suitable basis for a
perturbation treatment of the 6eld equations. In the
zeroth order we assume $=x. The imaginary first-order
correction satis6es the linear partial differential equation

g«
———p(cosu coshP+ sinhP) = f, —

g~~ ——p(cosn coshP —sinhP),

g~&= p sinn coshP = fM.

(29)

l9 8)i 8 Bfi 8/2—(x'—1) +—(1—y')—=4x —2&2,
Bx 8$ Bp Bp 8$

from which a Laplace equation

V2(82(i/Bx2) =0

(27)

Ll VP l

2—cosh2P
l
Vn[2jdv=0 (30)

Although this transformation leads to a simple vari-
ational principle,

can be deduced. Thus we conclude that

g2] =' i - Q (*)~ (y).
5=2

Qt(x)dx=(2t+1) '(Qt+2 —Qt i).

Bx

The two integrations may be performed by using the
identity

the appearance of p in the transformation makes e and

P assume complicated forms for a problem involving

nearly spherical symmetry,
Nevertheless, the Matzner-Misner formulation is

attractive in that their Lagrangian is related to the
metric for a spacelike hyperboloid in a Lorentz 3-space.
Such a picturesque description is likely to be much more
fruitful when reformulated in terms of the 8 6eld as
follows:

The result,

co ((i=2 Z ~il (28)

5 We are using the term "point transformation" in the sense
explained by H. Goldstein, Classical 'JJtIechanics (Addison-Wesley
Publishing Co., Inc. , Reading, Mass. , 1950), p. 238.

'R. A. M@tzocr g,nd C. W. Misner, Phys. Rev. 154, 1229
(1967).
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Equation (14) is derivable from the variational be very interesting if this simple geometrical picture
principle could be used effectively to deduce solutions of the

vacuum 6eld equations other than those discussed in
csch'(Rev) Vv Vv*dv=0. (31) Sec. III.

If one performs the nonanalytic transformation

Imp=0. ',
Rev = ln cosh (P'/2), (32)

the variational principle assumes a form quite similar
to that of Matzner and Misner; namely,

L (
VB'( '+stub'P'( Vcr'( s]dv=0. (33)

This Lagrangian is related to the metric for a timelike
hyperboloid in a Lorentz 3-space with polar angles
P', n'. For a nearly spherically symmetric situation, cr'

and p' are much simpler than n and p (although even
n' and P' are more complicated than h, $, or v). It would

VI. CONCLUSIONS

The reformulation of the axially symmetric gravi-
tational field problem in terms of the 8 equation facili-
tates an intensive investigation of solutions corre-
sponding to uniformly rotating sources. In particular,
it permits a simple derivation of the Kerr metric which
proceeds from the assumption of axial symmetry rather
than the assumption that the metric is algebraically
special.
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For a classical-mechanical system of two particles, the conditions for Lorentz-invariant equations of
motion are expressed in terms of relativistic momentum variables, and are shown to imply that neither
the conventional total kinematic particle momentum nor the conventional total kinematic particle angular
momentum is a constant of the motion unless the accelerations are zero. This is compared with a theorem of
Van Dam and Wigner.

''N a classical-mechanical system of two particles,
~ ~ interactions can be described by relativistically
invariant equations of motion which specify the
accelerations as functions of the positions and velocities
at one time. ' 4 As yet, their properties are mostly
unexplored. Here we show that their constants of the

*Supported in part by the U. S. Air Force 0%ce of Scientific
Research Contract No. AF-AFOSR-664-64.

t Present address.
$ Alfred P. Sloan Research Fellow. Supported in part by the

U. S. Atomic Energy Commission under Contract No. AT(30-1)-
3829.

I D. G. Currie, Phys. Rev. 142, 817 (1966).
~ R. N. Hill, J. Math. Phys. 8, 201 (1967).
3 D. G. Cuxrie {to be published).
4 D. G. Currie and T. F. Jordan, 1967 Summer Institute for

Theoretical Physics, University of Colorado (to be published).

motion include neither the conventional total momen-
turn nor the conventional total angular momentum as
dined for free particles or for particles in a field, i.e.,
the kinematic particle momentum and angular momen-
tum. These quantities could have the same values before
and after a collision by being asymptotic limits of
constants of the motion. The constants of the motion
would depend on the interaction. They could be
momentum and angular momentum which correspond
to the generators of space translations and rotations.

Let x' and x be the positions of the particles, and

let v' and v' be their velocities. (These are three-

vectors. ) Let

un ~ vent 1 (vn)sj —lis


