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Calculated Spectrum of Inverse-Compton-Scattered Photons
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We consider an electron of a given energy moving in a monoenergetic, isotropic radiation 6eld. The
energy spectrum of the photons that are scattered by the electron has been calculated both exactly and
in a greatly simplied approximate form suitable for astrophysical calculations. The approximation may
be derived either by expanding the exact solution in a small parameter and keeping only the leading terms
or by employing a simplifying physical approximation at the beginning of the calculation. The approximate
spectrum is similar to one previously derived by Ginzburg and Syrovatskii, the principal difference being
that the present one does not break down if As&qE) (m.c')', where ha&q is the initial photon energy and E the
electron energy. We indicate the astrophysical applications of our approximate spectrum by calculating the
spectrum of photons scattered by electrons with an inverse-power-law energy distribution.

I. INTRODUCTION
" 'N recent years the process referred to as inverse

- Compton scattering has had a revival of interest
among astrophysicists. It was introduced in 1947 by
Follin' as a mechanism for the loss of energy of cosmic-
ray electrons and was investigated by Feenberg and
Primakoff' and by Donahue' in this context. Since that
time it has been employed in many treatments~ of
cosmic-ray electrons, and the process was investigated
in some detail by the present author in an earlier paper. '

It was Grst suggested as a source of energetic photons
by Savedoff' and by Felten and Morrison" and has
since received considerable attention" "from this point
of view. Most of the calculations of photon spectra to
date have been based on a rather simple approximation.
It has been noted that the average energy transferred
to a photon in a Compton collision is proportional to
the initial energy of the photon and the square of the
electron energy. This dependence on the square of the
electron energy is reminiscent of the synchrotron
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process, and for this reason the radiated photon spectra
for a single-electron energy is approximated by a 8-
function spike at the average radiated energy. This
spectrum is then folded into the distribution of electron
energies to produce the resultant photon spectrum.
Although this method is known to give satisfactory
results for synchrotron spectra, it is now known' that
the inverse Compton spectra are suKciently different to
raise some doubts as to its applicability in this area.
However, it can be shown" that in the case of inverse
power law distributions of electron energies, the method
is applicable to both cases in spite of their differences.

In the present paper, we derive exact formulas for
the scattered-photon energy distribution for the case of
an electron of energy y=Ejrrtc' moving through a
region of space filled with a unit density of photons
distributed isotropically with initial energy rr &

=A&o&/sttc'.

Ke shall also derive several approximate formulas and
discuss their validity in the light of the exact formulas.
Similar calculations have been recently published by
Baylis et al.22; however, we 6nd that our results disagree
with theirs in several respects. In particular, we disagree
with their conclusion that a particular approximate
spectrum is of as wide a validity as they claim. On the
contrary, we derive correction terms that become
signi6cant when certain conditions of validity 6rst
stated by Ginsburg and Syrovatskii" are violated.

In Sec. II, we derive an approximate spectrum based
on a simplifying physical assumption. The breakdown
of this approximation will also be discussed from a
physical point of view. In Sec. III, the scattered spec-
trum will be calculated exactly and compared (as well
as possible) with the approximate spectrum. We will

see that the exact form is often not very useful for
computation, and the reason for this will be discussed.
In Sec. IV, we shall exhibit a method of expanding the
exact formula in the small parameter that causes the
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trouble. This not only provides a method for computing
the exact spectrum, but also provides a systematic way
of rederiving our approximate formula along with some
correction terms. In Sec. V, we will disucss some
astrophysical implications of these results.

II. APPROXIMATE SPECTRUM

n'(eg') d(cos8g') = d(co st')
e

2y'(1 —8 cose,')'

If P=1, half of the photons have polar angles within
the range 0(0q'& tt~~2', where eqt2'= 1/y. In other words,
as the electron becomes more and more energetic, the
incoming photons appear to be more and more like a
monodirectional beam, with 0~'= 0.

The approximation to be made is now obvious; we
shall consider the electron to be energetic enough so that
we may take 8~'=0. A glance at Fig. 1 shows that in
this case, X'=8', and since the scattering cross section
is independent of the azimuth P', we really have only
one angle left to worry about.

In this section, we shall derive an approximate spec-
trum by making a simplifying physical assumption
concerning angles. Figure 1 illustrates the angles in-
volved in a scattering problem as seen in the rest frame
of the electron (K. R. frame) All. quantities as measured
in this frame wiB be primed, and energies of the photon
before and after collision (n& and u, respectively), as
well as the electron energy 7, are understood to be in
units of the electron rest energy mc'. The polar angles
8&' and 8' are measured with respect to the electron
velocity g=v/e (strictly with respect to minus g;
n~ g= —n~P costt). The scattering takes place through a
polar angle X' and an azimuthal angle P', where the
n&'P plane is chosen as the Q'= 0 plane.

The presence of so many angles along with the con-
straining relations between them complicates the prob-
lem, as we shall see later. It would greatly simplify
things if we could eliminate some of them. To this end,
let us examine the angular distribution of the incoming
photons in the K. R. frame.

For photons, isotropic and monoenergetic with energy
0.~ in the lab frame, the angular distribution in the E. R.
frame is given by

The Klein-Nishina cross section for Compton scattering
is given by

r 2(1+,y 2)
0( 'n, &n', y')=-

2[1+n~'(1—y') j'
n~"(1-y')'

X 1+—. . . ~(u'-f(n~' y')), (3)
(1+y")[1+ni'(1—y') j

and

y'—=cos&', ro—=e'/mc',

f(ni', y') =us'/[1+n&'(1-y')].

The number of collisions per unit time t is just e'co.,
and since dN/dt=y 'dN/dt', we have, after integrating
over Q',

d41V n r(Pc 1+y"
dtdn1 dn dy 2nl p [1+ul (1 y )j

nq '(1—y )'
X( 1+—

(1+y")[1+ '(1-y')q)

Xng'8(n' —f(ng', y'))S(ng', ng/2y, u,2y) . (4)

Since dn'dn&'dy'= [1+n&'(1 y')]'dn'dy'—df, we may
integrate over f immediately to obtain

d'X mr c —O2n"(1—y')'—
(1+y")+

Q dy 2Q12+2 1—n'(1 —y')

X S;ny/2y, ng2y . (5)
1—n'(1 —y') 1—n'(1 —y')

We may relate n' to the Anal lab-frame energy n by
the Doppler-shift formula n'=n/y(1 Py'). If we intro-—
duce the variable p= (1—Py'), we have

d'iV (n/V)'
7J 2'g+ 2+

dtdudrt 2y'nP(1 n/y)— (1-n/v)-

7rfp cd

S(g; g, ,g,)
X , (6)

The energy distribution of the photons in the E. R.
frame before collision is given by

n (ul )dul (nl /2'jul )S{ul ul/2'r ul2+)dn1 (2)

for y))1, where S(x; a,b) is the characteristic function
of the interval u, b, i.e.,

S(x; a,b) =1 for a&x&b
=0 for x(a b(x.

FIG. 1. Angles involved in the scattering process
as viewed in the~electron rest frame.

where we have assumed that 1—y'= g, and where
gq=n/2n~y'(1 —n/y) and rt2 ——2n/n~(1 —u/y). The inte-
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gral may be readily performed to give

(a/V)'
q—2 lng ——

(1-ale)n- ~

tion is entirely from the region &=1—Py'=1/2y', and
here we would expect a significant error. This will be

(7
borne out by the results of Sec. IV.

III. EXACT CALCULATION

where the upper and lower limits U and L depend on
what part (if any) of the interval gi, 1tp lies within the
limits 1/2y' and 2.

For ui/4y'&u&ui, we have 1ti&1/2y' and 1/2y'
&rtp&2. We then have, neglecting terms of order 1/y'
or less when compared to unity,

d'N 7rr p'c (4y'u

dtdu 2p ai k ui

For ui&u&4uiy'/(1+4uiy), we have rtp&2 and 1/2y'
&g»&2, and

d'S' 2m' 0'c
2g" 1ng"+(1+2g") (1—g")

dhde e»y~

(4 1Vg")'+- „(1-a"), (9)
2 (1+4uiyg")

where q"=u/4uiy'(1 u/y)—and 1/4y'(q"&1.
In the above equations, we see that the maximum

value that u/y can have is (u/y), „=4uiy/(1+4uiy) (1.
If 4uiy«1, then u/y«1, and we have q"=u/4uiy'.
The last term in the square brackets may be dropped,
and we are left with the approximate spectrum of Ginz-

burg and Syrovatskii. '0

Expression (9) is valid, however, no matter how large
4n»p may become. However, we must not assume that
this approximation is uniformly valid. In fact, it turns
out that it is not a good approximation for a/ai= 1/4y'.

To see the reason for this, let us consider what would

happen if we took our assumption that 0»'=0 seriously
and transformed our photon energy distribution, ex-
pression (2), back to the lab frame with no scattering
at all. We would obtain a spectrum given by

n(u) da = (u/uiP)$(a, ui/4y', ui) da

We can see from this that the approximation alone tends
to populate the region of the spectrum from ai/4p' to
n» with eo scattering at all and that this region will be
exaggerated for small-angle scattering as well. In other
words, because of the large sensitivity of the Doppler-
shift formula to slight changes in 8' for small 0', neglect
of these small deviations of 0' from zero introduces
considerable error for small-angle scattering.

Small-angle scattering would be, of course, angles of
the order of 1/y or smaller, or for y'&1 —1/2y'. Since
for most values of a/ai there is a contribution from a
considerable range of y' other than the region 1&y'& 1
—1/2y', this error will be negligible. However, for the
very bottom of the spectrum a/ai= 1/4y', the contribu-

In this section, we shall calculate in closed form the
scattered-photon spectrum for the case of an electron
of energy p moving through a region of space filled with
a unit density of isotropically distributed, monoenergetic
photons of energy 0,». As in the last section, we will
first transform the incident photon distribution to the
E. R. frame and formulate the problem in this frame.
The 6nal energy will then be expressed in its lab-frame
value n, and we will integrate over all available angles,
holding 0,», y, and 0, Axed.

In the E. R. frame the incident photon distribution
has the form

ai'BLui'y(1 —8x') —uij
n (ui, x )dai dQ = dai'dQ', (11)

a14m-y(1 —8x')

where x'=—cos8' and dQ' is the element of solid angle
2prdx'. Expression (11) may be obtained by noting that
n(ai, x)duidQ is a density and hence transforms like an
energy. If we divide by the energy n», we obtain an
invariant, and hence

(1/ai)n (ai,x)duidQ = (1/ui') n'(ai', x')dai'dQ'

'n (a1 x )dal dQ (a1/ui)n(ui x)duldQ ~

Expressing n» and x in terms of n»' and x' completes
the derivation. The cross section is given by expression
(3'):

o (a1',a', y') dQ'(y') da' = «'(1+y")

2)1+a i'(1—y') ]'
ui 2(1—y )2

X 1+
(1+y")L1+ui'(1—y') j

X8(u' —f(ui', y'))dQ'dy'du'. (3')

Since dN/dt=n'co/y, we have

d'N rpPcb(ui'y(1 —8x') —ai)
~(u' f(ai',y))—

dtdx'dy'dp'dui'du' ky'(1 —8x')'

1+y" ui"(1—y')'
X -+, (12)

L1+ai'(1—y') 3' L1+ai'(1—y') j'
where we have used the relation ai/ai'= y(1—px'). Once
again employing the relation dai'= L1+ui'(1 —y')) df,
we may integrate over f immediately. We also note that
since s=—cos8'= cos01' cosx'+sinei' sinx' cosQ', we have

dP'= 2ds'/(1 —x"—y"—s"+2x'y's') '".
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Kith this substitution, we now have

nyn

X&l 8—4~') — (&—4~')+ (&—y'))
l 7

~'(1—y')'
X 1+y"+

v'(1 —P")L1—P"—( /v)(1 —y')7
J—1/2

=—cr2
dhdx'dy'dz'du' V'(1—Px')'

/ (2'v(1 —Bx') ~"(1—y')'
X &i

—431 1+y"+
i1—-'(1—y') D —'(& —y') 3)

X (1—x"—y"—z"+2x'y'z') "'. (13)

Transforming n' to n by using the relation

n'= (2/v(1 —Pz'),
we have

L1—P"-(-/v)(1 —y') 7
pcf 2

dhdndx'dy'dz' V'(1—px') '(1—pz')

where 7=1—(x')' —(y')' —(z')'+2x'y'z', and where we
have made use of

i 8
b(Wx —a)=—b *——.

A A

From this point on, the object is to integrate over
all possible values of x', y', and s', holding n, p, and n&

6xed. For a given set of values for the parameters n,
p, and n&, only a certain volume of x', y', s' space
(possibly zero) will be compatible kinematically with
this particular choice. This requirement is expressed
by the condition that the jacobian of the transformation
from Q' to z' be real, or that J)0. Inspection of the form
of J shows that the requirements that ix'i, iy'i, and
iz'i be &1 is automatically fulfilled by keeping J)0,
unless all three variables are simultaneously out of
bounds in such a way that (x'y'z'))0. Therefore this
requirement need be consciously enforced on only one
of the three variables.

It is immaterial which order we choose in integrating
the three variables, and we arbitrarily choose the order
x', y', s'. The first integration is trivial because of the
8 function, and we obtain

d'S n (~/v) '(1—y')'
1+y"+- (O'J) "', (15)

dhd dy'«' v' 'L1—P"-( l»(1-y')7(1 —p") (1—P")L1-P"—( /v)(1 —y')7

where
P'~= (P'+ "+2P«') (y2 —y') (y' —yi),

y2=yo+~& yi=yo —~y

yo= (4+Pz ) (/)+ o/y 1+Pz )/P(P + 4 +2poz ) 1

P(1—z")"'L/ 'P'+2/ o(1—/) (1—Pz') —( —1+Pz')'7"'

/ (P'+ 3'+ 2poz')

(16)

(17)

and p=n/ni, o=ai/V.
The integration over y' may be facilitated by the transformation y'=yo+by/, where —1 &2/&1. We then have

crp n

2v4-12(P2+ "+2P«') 1/2 (1-P")
yo'+2y. ~~+~'~' ( /v)(1-y -b~)-+-

(a+by/) (a+by/) 2
(20)(1-~')'"(1-P")

where a=1—Pz' —((2/V)(1 yo), b=(2—b/V

Integration of g from —1 to 1 gives

vrrp'cn

Cp Cp (1—yo) n2$2

,+, + +
432(1 Pzy) (22(1 Pzy) (a2 b2) 1/2 V(1 Pzy) (a2 b2) 3/2 V2(1 Pzy) (a2 b2) 3/2

a'E $p 2$pp 2ppi/'8
+

v4(312(P2+ 32+2Pozy) 1/2 (1 Pzy) 2 (1 Pzy) (a2 b2) 1/2 42(1 Pzy) 43(1 Pzy) (a2 b2) 1/2

(21)

After some manipulation, we have

L(1—~lv)' —1/v'7(1 —Pz')'+L2~/v37(1 —Pz') h'(1 —4 )'—17(1—Pz')'+2m (1—Pz')
0 —b =

(P'+ 32+2Poz') V2(P2+ 32+2Pcz )
(22)
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If we introduce the variable t =1—Pz' and the quantities

Et (P——'+ c'+2e) 2—et' = (1+e)'—(1/y') —2et',

~s= 7'L(1—ep)'- 1/V'j0'+2ep|

the final integration over s' may be performed in a straightforward manner, and after some rearrangement, of
terms, we obtain

O'Cn

L~(t-.)-~0=)j,
dtdu 2y4Purs

where f'~ are the upper and lower limits of the integration in I, and the function Ii is given by

~(t.) =fr(f)+fr(t)+fr(f)+f48),
2(1+uur) ) y' 7'—1 ui u 3y' 1

ft(t-) =&r-'t' —1+ i+— +—+3——
u (y+ur)' —1j u' put y ug u'

1+uut ur —u u i
fs(f) =~a "' f'+—

i
+ +1+—g—7,u' EuL(1—u/7)' —1/y'1 y us&

(23)

(24)

(25)

2v' — (v+ur)'+uur-
f(f)=, „1+

uL(v+ur)' —1I"'- (v+ur)' —1—
(7+ur)' —1-"'

cosh '
2uryt

(26)

2~2 —
(+ u) 2+uut

I (7 u) 2 1»f' 1/2

f4(f') = — - — 1+- sinh '
L(.—)'—11"'— b—)'—1—

for y—0+ 1,

—27' (~--)+-i . &1-(~--)»| "
1—— csin '

uL1- h-u)'i"' 1-(~-u)' & 2'
for y—n&]. . (2/)

We now turn to the question of determining the limits
of integration t ~ These .are determined by the require-
ments that the quantity 5 be real and, in addition, that
Iz'i &1, for we see upon inspection of the expression
(19) that 8 may be real for certain values of z' that
violate this condition. These two requirements are
fulilled if the quantity t lies between the values 1&P,
called the boundary lines, and simultaneously lies
between the values

ty(p)=pj( +1—e e )~L(1+e—ep)' —1/v'3'"} i (2g)

called the boundary curve. It is easy to see that at p= 1
the boundary curve intersects the boundary lines. At
P,=1+(y—1)/ye= 1+(7—1)/ut, the radical in (28)

vanishes, and the boundary curve becomes imaginary.
This clearly represents an absolute upper limit on p.
(The other real branch of the boundary curve for even
larger p can be shown to lie entirely in a region of z') 1.)
The physical significance of this limit is quite simply
seen if we write it as u=ut+(y 1) At t—his l.imit the
scattered photon has picked up alt of the electron kinetic
energy in the collision.

This limit is not usually reached in any situation that
will interest us, since it only occurs when the initial
photon momentum is of the order of or greater than that
of the electron. Figures 2(a), 2(b), and 2(c) illustrate
the three di6erent situations that can exist. It is quite
obvious that the usual situation in astrophysics

Pm

1
I

I

I1-p

P=1 Pc Ps
I

I

I

)

1-P
0

Pm

I

I

PP
I
I if

I I
I I
I I

XZiiiik .
EGION 3

Pm Pc

I I
I

»S
l

REGION 3

REGION 4

REGION 1
REGION 1 I

0 REGION 1

(&) (b) (c)

FIG. 2. Integration boundaries of the variable f' drawn as a function of p=n/ni. (For illustration only; not an accurate plot. )
(a) «P/I&+7(&+P)] (b) P/I&+7(f+P)3«&P (c) P«
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will be that depicted in Fig. 2(a), where for nq&vP/
L1+v(1+P)j the maximum value of p is given by the
point where the lower boundary curve intersects the
upper boundary line; f' (p) =1+P, or..= (1+P)/(1-~+2 /v).
In the relativistic limit, 1—P=1/2v', and we have

p.=4v'/(1+4~)v), or n „=4~,v'/(1+4+, v),
which is just the result derived in Sec. II. The minimum
value of p is always given by

~-= (1 P)l(—1+P2~~/v),

which in the relativistic limit is

pm 1/4v or &m in al/4v

also a result of Sec. II.
The formula given in expressions (23)-(27) are not

very useful in most astrophysical applications, either
for insight, since they are quite complex, or for direct
computation, since they require that terms of the order
of (v/n)' be balanced out to yield a true leading term
of order of v'a&/u. This requires computation to be
carried out to an accuracy of (naacp) % to obtain an
answer that is correct to an accuracy of p%. Since the
quantity no. & can often be quite small, direct application
of expressions (23)-(27) is, in general, not very
satisfactory.

In Sec. IV, we shall discuss various expansions of the
function F(t) which will be useful not only for com-
puting the spectrum to any desired order, but also for
recovering a simple approximation with a wide range of
validity.

IV. EXPANSIONS OF EXACT FORMULA

The chief diKculty in computing directly with our
exact formula is the fact that the quantity ep=n/v is
often quite small and appears as (pp) ', (pp) ' in some
of the terms. This in itself suggests the way out,
namely, an expansion in this or some other small
quantity. The quantity that turns out to be most
useful as an expansion quantity is p= n&/v. This quantity
is small in almost all physical applications and becomes
smaller the more energetic the electron.

The first step in this procedure is to expand the
functions Ey j-~ E2 ~ cosh ' and sinh —' as power
series in the quantities 2pt'/D1+ p)' 1/v'$ and-
2v/Lv'(1 —e)'—13'

The expansion in the first quantity can be easily
shown to be convergent for all allowed values of the
parameters, and the second expansion is convergent so
long as we have the condition

2(1+8)'I' 2+3P

7+9P v(1+P)(7+9P)

xpV2 —5/32v for v))1.

00 n

F(f)= & lt (p) —
Ini' (29)

where the term f /p0= in' —arises as the leading term in
the expansions of cosh ' and sinh '. There are no terms
independent of l, since all we are interested in is the
quantity F(t+)—F(l ), and such terms would make no
contribution. The coeKcient E„(p) is a rather compli-
cated function of e, whose dominant term is of the
order of

E„(p) contains the two denominators which are
functions of e.

D~= (1+p)'—1/v',
D2= (1—pu)' —1/v'

(3o)

These denominators appear in half powers of various
orders (typically P e

~ ) and are the next items on the
list to be expanded in e. Before proceeding, however,
we must 6rst decide how we are to order the quantity
p=n/nq. Recalling the limits on p, 1/4v'& p&4v'/
(1+4n&v), we see the question hinges on the magnitude
of n~v. If n~v&&1, we have 1/4v'&p&4v' and &&&1/v'.
We may then consider p to be of O(1) and expand in
e and. ep as well. On the other hand, if n~y&1, then
p&1/v' and O(p)&p&O(1/p), and the quantity pp

ranges from O(p') to O(1). In this case we must expand
in quite a different manner.

%e shall now consider the case where O, ~y&&1 and
treat pp as O(p). First, noting that

D =(1+ )'+1/v'=(1+1/v+ )(1-1/v+ ),
we may expand the denominator as

where

(—p)"
&-. (1/v'),

p (1 1/vp) p+m
(31)

&-. (1/v')= 2 (P) (9)(1—1/v) "(1+1/v)' (32)

and the n (p) are the expansion coefficients of

(1—x)—"=Q n (p)x&.

The n (p) are given by

a (p) =e(e+1)(e+2).. .(e+p—1)/p!, (33)

This will be true in most cases of interest, and in
those situations where it is not true, the expansion will
still converge as long as

pp(2+P —2(1+P)'~' 0.172—0.146/v2 v))1.
If this condition is violated, we see that ep is not a
small number, and there is no real need for the expan-
sion. In the following, we shall always assume that o.& is
small enough so that this first expansion is fairly rapidly
convergent.

At this point, we have an expression for the function
F(f) of the form
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FQ-)= Z "F (t-).
M=2pl

F . (1/7') =2 ~ &P)~3 +3~(N—20)(1/7')' (32')
F~(l) is a rather complex function of l', but for com-
pleteness we shall give its general form for arbitrary M.
First, however, we note that the expansion of F(l+)—F(l' ) is obtained by simply replacing t'" by t'+"
wherever it appears in F33Q'). In what follows, we shall
use the notation

where p' is the largest integer not greater than 1333.

A completely equivalent expansion exists for D2, so
that our coeKcient E„(e) may be in turn written as a
power series in e of the form

where n„(0) and a (—33)—=0. We may also write write

F„,„(1/y') as

E„(e)=Q E.,,e+".

If we now regroup the terms in powers of e, we may

Z(N) —= (t "
l —")/33 for 33&0,

Z(o) -=l (l,/f-).
%e may now write the general expression for
F~(&+)—F~(&-)=F~:

(%+2)(1+p) Z(—X—1)- F3r 3/, //+3/3(1/p') 2(X+1)(1V+2)
Z(~+2)+(-.).(1/ ) + Z(/V)

p2 (v') "+' — 0' — (2&+3)p

(/V+ 1+Xp) (X+2) I /V+3+(X+ 1)y3) Z(—/V —1)
Z(&+1)+(—p)"

(2/V+3) p' (»+3) (v') +'—

&3r-~,++1/3(1/7') (/V+1)(&+2) (1+&/p) /V(/V+1) (/V+2)
Z(/V —1)+(—p)

~-'—
P (2/Vy 1)(2m+ 3) (2/V+3)

(Z(1—/V) z(—x)i Z(—/V —1)-
Xl +.(1-.) — l+( p)"~(~+-1)(~+2)~

( (~3)3/—1 (~3)3/ ) (72) /I/+1

(X—1)(X)(x+1)($+2) Z(1—X)-
+N 3E //, iV 1/2(1/7 ) (— p)- (v')

(~2) N 1-(35)
(2/V —1)(21V+3)

M F3r N.3/+3/3-(1/v') (/V+ 1) (/V+2)
F =( 1/P) P ( 2) + „,(/V+2) —— Z(X+3)+- Z(/V+1)

N~—2 p3 p2 P

In deriving the above expression, much use has been
made of the recursion relations for the various n„(p)
coeKcients, i.e.,

n1/3(/V) = a3/3(/V+ 1), etc.
(2/V+ 1)(21V+3)

Explicit calculation of the M= —2, —1 terms show

that they are identically zero, so that the leading term
in our expansion is of zero order in ~. Our series may
then be written

able, it is a straightforward matter to program a com-
puter to evaluate our function to any order in e that is
desired.

It is interesting to examine the zero-order term Iio.

2 3
F,=P-'l 2+ + - Z( —1)

(~P)' 2(~P)'

3 1—P-'l 2+ ll
1+- lz(0)

E (~p)'& E

/' 6 1 p'+1)
+e'l 1+-+—+ lz(1)

2v'p'&

3(1+.)
IZ(2)+P 'l Z(3) (36)

p3 & &2p'

F(f'+) F(f )= Z—F~-~
M-0

Note that there are terms with (—p)~ appearing in

F3r, and in the case p=O(1/e), each term in the series
will be O(1), and our expansion breaks down completely.

Although the expression for F3r looks rather formid- If we also assume that p))3, we have l+=1+p, and to
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zero order in o, f =p(1 —P) for p) 1, so that

Z(-1)= (7'/p)L1+~- p(1-~)7,
p

Z(0) = —ln
-v'(1+a)'-

z(1)= 1+~—p(1-~), (37)

Z(2) =!(1+~)'—'"(1-~)'
z(3) = l(1+0)'—lp'(1 —P)'.

Expressions (36), (37), and (23) may be combined to
obtain an approximate spectrum that is valid for
P))o and nr«1.

We may further simplify this approximation by
assuming that the electron is relativistic, P=1, 1—P
=1/2y'. We then have, neglecting terms of order
1/y' as compared to 1,

d'E 2mro'c
L2g»g+(1+2/)(1 —g)+0(1/7')7, (38)

tfgQ Gyp

where q=a/(4otry') Thi.s is just the approximate spec-
trum of Ginzburg and Syrovatskii. ' For p&1,
t+ p(1+——P) and f =1—P. This gives

z(-1)=(v'/p)Lp(1+~) —(1—~)7,
z(0) =»Lpy'(1+0)'7,
Z(1)=p(1+~)—(1—~), (39)

(') = l~p'('+@' —(' —@'7

Once again neglecting terms of order 1/y', we have

O'E pro'c
L(q' —1)(1+2/g') —2 ing'+0(1/y') 7, (40)de 2p nq

where q'=4y'p=4y'n/nr. Note that this is just our
approximate spectrum, expression (8), with additional
correction terms that become important at the bottom
of the spectrum, where n/ur=1/4y'. These correction
terms are expected on the basis of the discussion at the
end of Sec. II.

%e now consider the case where n&p is of order unity
or greater and ep may become of order unity. We first
note that if nil&1, then 1/y'&o, and it would be
inconsistent not to expand in 1/p' as well as in o.

The expansion procedure is very much the same as
before. The denominators Di and Do Lexpression (30)7
may be first expanded in 1/p', and then the term
(1+o)' that comes from Di is expanded in o. The term
(1—op)' arising from Dq, however, is //0/ expanded, and
all factors of p are combined with an e to make terms
of 0(1). The resulting expressions are then grouped
according to the power of o and the power of 1/y' to
give a double power series expansion of F(f) as

PG+) —~(t-)= 2 P, (1/v')""
N, P=O

6p

where
8,„=1 if ns=e

=0 if mme.

Z(3) =
o Lp'(1+0)' —(1—P)'7 where FN, I is given by

P (P P) (P P 1—)(P P—+J—V)—
Px, p —Q rrr/2(P p)o/p o+1/2(+)o/2 (N—+p y)+1(P)2 ( —1) Z(P p 1)——

y=o 2(P+Ar —,P+ ,)(P+~ ,p)-( p)—
(P p+21V+2) P —P-P—p—1 (2N+2P P+1)(21V+2P—P+2)—

z(p —p)+ Z(P—P+1)
(op) '- — (op)' 2(1V+P p+1)op—

1 )o' no/q(N m)n~ —~+i/q(m)( 2op)N —™ 4 o

Z(m —Xy1)
(1 op)2N m=o (1+2JV—2m) (op)'(1 —op)

(8poL2(Ã —m)'+/V —m —27 bpr(1+2K)) ( 1+2' (1+2K—2m)(1V —m)-
+I IZ(m —X)yl Spo

(")(1-") (1—op)' ) -(1—p)' (1—op)

(1+21V)(1+op)
+br Z(m —1V—1), (41)

(1+2Ã —2m) (1—
op)

'

To lowest order in o and 1/7', the boundaries of i are
given by f+——1+P=2, f =p/2y'(1 op), so th—at we
have

Once again we examine the lowest-order term Fo,o.

(1+op)
Fo.o= Z(—1)+—Z(0)— Z(1)

(op)'
Z(1) 2 Z( —1)

z(o)+(")'(1-") "(1-")
Z(1) 2Z(0) 2 ( p)

'
+ + Z(—1). (42)(1- p) -(1- p) (1- p)'-

2 p 4y'(1 —
op)

&o,o= » + +2(1-op) -4V'(1- op) — — p

p
X (1—op) '

4V'(1 —op)-

«p)' 4v'(1 —op) —1 . (43)
2 (1—op)'-
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Combining this with expression (23), we have

d2g
2g" lng" +(1+2g")(1—g")

dhdn nay~
1 (4rr yg")'+- „(1-g") , (44)
2 (1+4nryg")

where now

g"=p/47'(1 —p) = /4 7'(1—/7)
We see that we have recovered our approximate spec-
trum of Sec. II, expression (9).Now, however, it appears
in a complete mathematical setting as the lowest-order
term in a double expansion in e and 1/y', where
n/n, = O(1/.)

We have seen that the assumption that n/nr))1 is
necessary in deriving this formula. We now may ask
what happens to this approximation when we no longer
have n/err ——O(1/c) but return to the region where
ep=0(c). We can see at once from expression (41) that
because of terms containing various powers of ep and
denominators (1—ep) to various powers, a term that
was originally of a given order will now contain con-
tributions of all higher orders in c. For any approxi-
mation to a given order, this does not cause any loss
of accuracy. What does hurt is the presence of terms
containing (sp) ' and (sp) '. This means that any given
order now has contributions from terms that were
previously as much as two orders higher. To maintain
our zero-order approximation, we must now include
those parts of KFp] and t.'Fo~ that contribute to zero
order in e. These terms may be found in a straight-
forward manner, and we find that &F0~ to zero order in
e gives (1/p) L6Z(1)—3Z(2)—2Z(0) j, and e'Fsr gives

(1/p') LZ(1)—3Z(2)+ as Z(3)$.
These terms are the same terms in 1/p and 1/p' that
appeared in expression (36) (negelcting 1/y'). They did
not appear in expression (38), however, since they are
always at least (1/y') smaller than the leading term in
Z(—1), which is 2p'/p. For that reason they should
not be included in our present formula.

We therefore offer expression (44) as an approxi-
mation to the spectrum of inverse-Compton-scattered
photons that is accurate to zero order in s and 1/y' for
values of n such that rrr&u&4urp'/(1+4ury), and for

nrem as large as desired. Expression (44) is not an en-
tirely consistent formula in that it always contains
contributions from higher (and hence negligible) orders,
but is comp/etc in that it always includes all zero-order
contributions.

In the situation where p=O(e), the exact formula
should be expanded once again, this time considering
e/p=O(1). However, if we are interested only in the
lowest-order approximation, a simple inspection of
expression (35) will suflice. Keeping in mind that for
p($,

Z(&) = L(4v'p) —13/&(2v')",
we see that for every value of 3f there are terms of order
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FIG. 3. Comparison of approximate and exact expressions for
scattered spectrum from monoenergetic electrons. Initial photon
energy a&= 10 s. Electron energy is y, and D=maxLapprox/exact—1g. (a) y=2, D=0.54. (b) y=9, D=0.024. (c) 7=18,D=0.0055.

p
' and higher but of no lower order. Therefore expres-

sion (35) to zero order in e and lowest order in 1/y' will
give us our dominant term. This exactly is what we
obtained in expression (40), so we see that this formula
gives the correct approximation to lowest orders in e

and 1/y', no matter what the magnitude of nrem. This
could have been expected from our discussion in Sec. II.

In Fig. 3, we compare the approximate spectrum of
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expressions (40) and (44) with a computer calculation
of expression (35) correct to order c'. We see that the
electron does not have to be extremely relativistic for
the approximate spectrum to give a good representation.

where Li2 is the dilogarithm. If we make the substi-
tution b=2a, we have

4E Pc
V. ASTROPHYSICAL APPLICATIONS

In astrophysics, inverse Compton scattering pro-
vides a mechanism for energy loss of high-energy cosmic-
ray electrons and a source of x and p radiation whenever
energetic electrons and soft photons exist together in a
region of space. The energy-loss effect has been calcu-
exactly by the author in a previous publication. '
However, it would be of interest to see how well our
spectrum, expression (44), serves in giving the correct
energy-loss formula. In keeping with the spirit of our
approximation, we shall assume that expression (44) is
valid for 0&q"&1, even though we know it is quite
invalid for g"&1/4y'. When we consider effects that
depend on the entire spectrum, the region 0&g"& 1/4y'
contributes a part that is 0(1/y') and is hence negligible.

The energy loss is given by

(-",
, &..=:-..',. '=. -'(,'„,-)"

(1+bg")' (1+bg")'
b2g//3 (1 gl I)

+ dg", (45)
2(1+bg")4

where or=(8/3)4rrg and b=4n~y The indi.cated inte-
grals are performed in a straightforward manner to
give, after some rearranging of terms,

dE 3rz c'y

{(2b+ 6+6/b) ln(1+b)
d$ b2

L(11/12)b'+6b'+9b+4j(1+b) '
—2+ 2 Li (—b)}, (46)

F(a) =y{(a+6+3/a) ln(1+2a)

—
t (22/3)a'+24a'+ 18a+ 4j(1+2a)-2

—2—2 Li2(—2a)}. (47)

d'Ã)
(2wro2c)R(n) =

I y
—r ~dy.

dtdn&
(48)

If we note that

(&+P4")'"-
v=5~ 1+~

E pg"

d(nfl
d'jt'= 4Q Qy

(pg")'"(1+pg")"'

where p=an&, we may write expression (48) as

This expression may be directly compared to expressions

(13) and (14) of Ref. 9. It can be seen that the present
result is equal to that previously calculated for (the
monoenergetic-background case) if one sets e= 1/y'= 0
in the exact formula.

In considering inverse Compton scattering as a
source of x and p rays, we are interested in the radiation

from electrons with a wide distribution of energies. In
astrophysics the inverse power law is one of the most

commonly occurring distributions, so we shall consider

the spectrum

where

2FQ (r—1)/2

R(0.) =- F(p, l'),
Q(2+1) /2

( g"«—» t2pg" lng"+ (1+2g")(1—g")+4pg" (1—g")$
F(p, r) = dg

{1+t:pg"/(1+ pg")j"'}'"'(1+pg") '"""

(49)

(50)

It is easy to see that for p =nn&((1, F(p, r) is essentially
independent of p, and we obtain

1 1 2 4
R((x) =2 r+'i +

&r+3 r+1 ry5 (r+3))
&&4ri'r ""n ( +"('=C'n ( +"I2. (51)

This is just the well-known approximate spectrum of

Felten and Morrison, which they obtained by approxi-
mating d'X/dtdn by a 8 function b(n ——,n&y'). It can
be shown" that this spectrum is a good approximation
for a much more general assumption about the form of
d'1V/dtdn than that made by Felten and Morrison.

For p))1, on the other hand, there is no expansion
in powers of p or inverse powers of p that will be valid
for the entire range of the integration in q". However,
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the integral may be broken up into two pieces as 0

-2

-3-

and appropriate expansions made in each range. The
leading terms in p may be extracted, and after a certain
amount of resumming of coefBcients, we obtain the
asymptotic form of F(p, l') for p))1 as

r -4
CL

u 5-
0bO

-6-

0 7

I'=2.O

I =2.5

lnP —c(I')
F I')~

p2F (I"+1)/2

where, unfortunately,

(52)
-8

-9 I I t I I I I

-4 -3 -2 -1 0 1 2 3 4
Log p

E'=3.O

c(I') = +2I'=i p

' x—L2x/(1+x) $'+'
Ch. (53)

Fro. 5. Plot of F(p, P) as a function of p for P =2, 2.5, and 3. The
base of the lograithms is 10.

Inserting (52) in (49), we have for the case n))(rrt) ',

~( )-(c'i )D ( )+ (I')1 '"" (54)

c(I') may be computed by numerical integration and is
plotted in Fig. 4.

In the intermediate region P=1, F(p, i') must be
computed numerically. In Fig. 5, we have plotted F(p, I')
as a function of p for various values of I', and in Fig.

-12 .

-16 .
tLO
O -20-

-24- I'=2.0

10 -28- I'=2.5

T=3.0
-2 0 2 4 6 8 10

Log a
Fro. 6. Plot of R(n) as a function of o. for I'=2, 2.5, and 3. The

base of the logarithms is 10.

10-'

102
0

Fro. 4. Plot of C(P) versus P.

6, we have the complete spectra E(n) for the same values
of F.
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