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It is still possible that the formalism will lead to
physically absurd results and may therefore be rejected
on that account. Since the particle masses are dynamical
variables, one might question whether, with inter-
actions present, the particle masses are separately con-
served. In the analogous nonrelativistic case, the separate
particle energies are not conserved but only the total
energy. We shall see that the particle Inasses are in-

dividually conserved if the functional M is of the form
of Eq. (18). To be more precise, we shall show that if
two particles scatter according to Eqs. (19) and (20)
and the interaction term becomes negligible as ~1 and v.2

aPProach & ~, then Ptv( —~ )=Pt'(+ ~ ) and Ps'( —~ )
=p&'(+~). To see that this is true, one need only
notice that, given the trajectory of particle 2, the
trajectory of particle 1 is determined by equations
identical in form to the single-particle covariant

Hamiltonian equations with

i)f (»)Pr) = (Pt')'"+ 1(»,pt)» Ps)drs (21)

But these equations lead to the conservation of M(x&,p&)

which, as v —+ &~, approaches its free-particle form
M=(pr')'". Of course, in the interaction region, pts
is no longer equal to 3f1 .This fact is not peculiar, being
true even for the case of a single particle in an electro-
magnetic field. One interesting consequence of these
equations is that the variable 7& is not given by

drt= L(dxr)'j'"

except in the asymptotic regions. It is thus not equiva-
lent to the geometrically de6ned proper time.

PH YS ICAL REVIEW VOLUME 167, NUMBER 5 25 MARCH 1968

Generation and Detection of Dynamic Newtonian Gravitational*
Fields at 1660 cps

J. A. SzwsKv

Department of Physics and Astronomy, University of 3Arytand, College Parh, Maryland

(Received 18 August 1967)

The very-near-zone dynamic Newtonian gravitational fields of an acoustically stressed cylinder are
measured as a function of distance and azimuthal angle. The high frequency of 1660 cps is a new regime for
gravitational technology, since previously measured gravitational interactions were static, as in the Caven-
dish experiment, or at tidal cycles per day. Results are in agreement with theory.

INTRODUCTION

A PPARATUS responsive to the Riemann tensor
was developed'2 for the purpose of searching for

gravitational radiation. Because it was necessary to
calibrate this apparatus in the laboratory, a new local
source of dynamic Newtonian gravitational fields was
built. ' The source, or generator, consists of a volume in
which large acoustic stresses are maintained by electro-
magnetic means. In this paper the differential equation
of the generator is stated, solved, and from its solution,
the gravitational potential function g is obtained. The
interaction of p with another larger volume, the gravi-
tational radiation detector, is then considered and the
resulting equation of motion of the detector is solved
for various spatial condgurations with respect to the
generator. All calculations are written in the language
of Newton. The generator apparatus is then described
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and the experimental results are given and compared to
theoretical predictions.

I. CALCULATION OF THE GRAVITATIONAL
POTENTIAL OF THE GENERATOR

The dynamic Newtonian 6eld generator is a 300-lb,
8-in. -diam, 5-ft-long solid aluminum cylinder. It is
suspended by wire in a milled groove about its center
in a vacuum chamber. In order to induce motion in it
with respect to its center of mass, 2-in. -square pads of
piezoelectric barium titanate crystals are epoxied to the
surface of the bar. These transducers are polarized such

that when an alternating electric field is applied to them
in a direction normal to the surface that is bonded, they
oscillate in a direction parallel to the bar axis. When a
large ac voltage is applied to the transducers (2000 V
peak-to-peak) at the fundamental longitudinal resonant

frequency of the high-Q generator cylinder, high dy-
namic strains (10 4) are produced in the bar.

The acoustic wave equation for the motion of an

elastic bar with damping, in the approximation that
each plane cross section of the bar remains plane during
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the motion and that the stress over it is uniform, is

p —F +r—=0,
dt2 dz'2 dt

bar = (d$/ds'), p. (For most of this experiment,
ep

——0.5X10-4.)
The gravitational potential, ItI, from the generator is

given by the expression

((s', t) =A t sin(s.s'/2l)e'"', (2)

where 2l=the length of the bar, co=2m times the
frequency of oscillation of the bar with respect to its
center of mass, A~ ——amplitude of the bar oscillations
=(2l/7I. )ep ep=strain measured at the center of the

where p= density of the bar, I'= Young's modulus of
the bar, r= dissipative constant, $= displacement of a
point in the bar in the z' direction, z'=coordinate
measured parallel to the longitudinal bar axis, and
z'=0 corresponds to the center of the bar.

The solution of this differential equation for our
particular problem is

t (x.',t)dV
y(x, t) =G

D(x.,x.')

where G= constant of gravitation, x = Geld point
coordinate, x '=source point coordinate, t' t in the
near zone of the generator, and D(x,x ')=distance
between x and x '.

This expression is applied to the case of the vibrating
cylindrical bar. When the bar is vibrating in its longi-
tudinal mode, its mass remains approximately the same
while its volume varies, and, hence, the density of the
bar as well as its length boundaries are time-dependent.

y(x„,t) =G
time-dependent limitsttpLj &(x z t)+terms of 0(ep) and higher] dVz

D(x,x ')

(8&(x ', t))
e(s', t)=

l l
=strain in the generator at x,'=s' and at time t,

ax.' &,.=..

po= time-independent density of the generator.

The potential function It for a cylindrically symmetric
generator, obtained by expanding (4) and. using various
Bessel function identities, is, for s&l, r'= x'+y', where
r=radial distance measured from the z axis of sym-

metry,

y (r,s&t, t)

Gpp

2' p
Jk(pttg) Jp(&/r)e

—akzLeakl e akI]dl4—
0 o.k'

" 2m.pk
+ Jt(tttik) Jp(nkr)Ate'a'pe k'+e "']e akzdk. (5)

p 1+l'p'

The first term on the right in Eq. (5) is the gravitational
static potential due simply to the mass of the generator.
The second term on the right, however, is the dynamic
gravitational potential due to the motion of this cylinder
with respect to its center of mass. i=a dimensionless
dummy variable, p = radius of the generator = 10.16 cm,
l= p length of the generator= 77 cm, and n= ~/2l =0.02
cm '.

$(r,s&l, t) was computed on the IBM 7090 computer
at the Vniversity of Maryland and the Geld pattern
shown in Fig. 1 was obtained, where the lines are the
equipotentials.

II. CALCULATION OF THE STRAIN INDUCED IN
THE DETECTOR BECAUSE OF ITS POSI-

TION IN THE DYNAMIC FIELD OF
THE GENERATOR

The detector of the dynamic Newtonian Geld is a
1~~-ton aluminum cylinder. '' In order to describe the
motion of the detector in the dynamic Geld of the
generator, we must write down its equation of motion
with the gravitational force as the driving term. Figure
2 shows the generator and detector coordinate systems.
In order to facilitate the calculation of this problem in
cylindrical coordinates, the longitudinal axes of the
generator and the detector were always parallel. Here,
in Sec. II, the unprimed coordinates refer to the
generator system and the primed coordinates to the
detector system. The origin of each coordinate system
is coincident with the geometric center of its correspond-
ing bar. The center-to-center distance between the
generator and the detector is d and the transverse dis-
placement of the bar axes is E.=d sin8.

The differential equation for the motion of the detec-
tor along its z' axis is

( d' d' d )+ro—lk'(x' y' s")
dtk ds" dt's

to 4'(x',y', s', t'), -(6)
dz
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where the subscript D refers to detector parameters. In
order to find P'( x', y', 's, i) we must find p(x, y, s, i) and
substitute as follows:

x=d sin8+x',
s=d cos8+s',

3'=3' ~

The total gravitational potential of the excited
generator is written as the sum of a static and dynamic
potential, the latter having the coe%cient e'"'. This can
be expressed in the detector coordinate system by the
expression

P'(x', y', s', L') =Ps '(x',y', s')+P '(x',y', s')e'"'. (7)

Similarly, we can write for the displacement $' in the
detector

&'(x',y', s', L') = (si,'(x',y', s')+ &n, '(x', y', z') e'"n",

where $si' is the displacement due to the static com-
ponent of the field and Pnr„' is the displacement due to
the dynamic component of the field. ps&' is merely the
total shift of one bar relative to a hxed point in space
due to the static held of the other bar. This would occur
regardless of the motion of either bar with respect to
its center of mass. Since we are interested only in the
motion of the detector with respect to its center of mass,
we will only investigate the dynamic equation.

Assume that the force on a z'=const plane of the
detector resulting from the dynamic gravitational held
of the generator is the average force on that plane.

where (r')'=(x')'+(y')'. Calculating the displacement
in the detector from the differential equation describing
its motion, we obtain for the general case of detector
and generator parallel, but not necessarily coaxial,

8(k)41.Qg)nk

e rr'(n'k' jar'/41. ')
. ( "'It

X (e '~+e ~~) sinl ldk, (9)
&2L,)

2p~ 2&go.k2

&(k)= — Gpp Jr (yak)A r
F~ (1+k')

Jp(irk') Jr(nkvd)
X (~kl+e ail)e akd— —

Y
GENERATOR

COORDINATE SYSTEM

X~e DETECTOR

COORDINATE SYSTEM

z'

where pD= pe=2. 7 g/cm' for aluminum, I n= Young's
modulus of the detector= 7X10" dyn/cm2, QD

——figure
of merit of the detector~10', I.=~~ length of the
detector~i~77 cm, no~n~0 02 cm ', . v = 30 cm

Average force=
area of plane

radius @&(s&r &)

dA', (8)
dz Fxe. 2. Generator and detector coordinate systems.
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FIG. 3. Coaxial strain X in detector versus d, the distance
between detector and generator centers for a strain of 0.5&(10—4

in the generator. X is expressed as a multiple of 10 "e'«
Xcosg(0.02 cm ')s'j, where s' is defined in Fig. 2.

=radius of the detector, k=a dimensionless dummy
variable, coD=h=10' sec ' for this experiment, 6Dy

'-

(z',E,t) = strain in the det ctero= $d( »„n'( Es)/d use'"',

d=d coso.
The equation for eDy„' was calculated on the IBM

7090 computer and the curves of Figs. 3 and 4 were
obtained.
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III. DEVELOPMENT AND DESCRIPTION OF
THE APPARATUS

The natural resonant frequency of the generator was
measured to be 1659.45 cps at 70'F. The detector has a
natural resonance of 1657.52 cps at the same tempera-
ture. The resonant frequency of these rods varies
inversely as their temperature. Because the generator
mass is roughly ~'~ that of the detector, the generator
is the logical choice to be temperature controlled in
order to match the resonant frequencies of the two rods.

The average strain in the generator during most of
the experiment was 0.5)&10 4 but it was taken as high
as 10 '. These values are well below the yield point of
the bar. The generator is supported about its center by
3/32-in. -diam piano wire. It is stabilized longitudinally

by a piano-wire clamp that presses against the top of the
bar at the center. The support is an energy sink but,
hopefully, the least lossy practical one.

Figure 5 is a block diagram of the generator. The
piezoelectric transducers used to drive the generator are
barium titanate with silvered surfaces that are provided
with electrical leads. They are 2 in. )& 2 in. g 0.2 in. and
are molded to 6t snugly to the bar. When an ac voltage
is applied to the silvered surfaces of the transducers,
an ac electric 6eld exists perpendicular to the 2-in. —

square surfaces. Because the transducers are piezo-
electric, they oscillate along their length which is
parallel to the bar axis. The vacuum in the generator
chamber is maintained at diffusion pump pressures
(less than 1 p) in order to eliminate glow discharge
resulting from the large ac voltages of 700 V rms applied
to the transducer leads. Two driving transducers are
employed in the experiment. They are bonded to the
generator bar, near the center, and diametrically
opposite one another in order to eliminate any motion
of the bar in a bending mode. The frequency of the
electrical signal on the transducers and hence of the
excitation of transducers and bar is the frequency of the
fundamental longitudinal resonant mode of the bar.

The limiting factor on the strains that are produced
in the generator is the epoxy bond between the driving
transducers and the bar. It is best to use a freely Qowing

epoxy because, when the transducer is pressed onto the
bar, the possibility of air pockets getting trapped under
the crystal is minimized. The best bond available at the
time of the execution of the experiment was Eastman
910 with surface activator. It hardens in approximately
10 sec and withstands strains of 0.5&(10 4 at 1600 cps
continuously for months.

Small quartz piezoelectric strain gauges are bonded
to the generator near its center in order to monitor the
strain.

The generator is operated in vacuum because of the
large intensity acoustic noise it would make in air. The
vacuum chamber is brass, cylindrically shaped, and
contains high-pressure electrical ettings to connect to
the drive and pickup transducers and the heating coil.
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Because of the high Q of the detector, its response
function is sharply peaked at its fundamental resonant
frequency, the bandwidth being of the order of 0.01 cps.
It would be a nearly impossible task to simply cut the
generator to the exact length such that its fundamental
resonance is within 0.01 cps of the detector and, even
if the generator is cut to the precise length required, any
slight change in room temperature would unbalance the
equality of the resonant frequencies. It therefore be-
comes necessary to temperature control the generator
automatically via a servo system and heating coil in
order to ensure that the generator fundamental resonant
frequency is always within the bandwidth of the detec-
tor resonant frequency. The experimentally determined
coeScient of resonant frequency change as a function
of temperature for the generator bar is (1/f)df/dT
= —272&&10 6/'C. A temperature bias is established
by decreasing the generator's length such that it will
always have to be heated well above room temperature
in order for its resonant frequency to equal that of the
detector. Then, by carefully controlling the current in a
heating coil wrapped around the center of the generator,
its temperature is cycled as slowly as possible about the
temperature corresponding to the resonant frequency
of the detector. The power dissipated in the generator
due to its internal motion when it is driven at a strain
of 0.5&(10 4 at 1660 cps is 0.42 W. The continuously
dissipated power raises the bar temperature 0.17'C,
which is a negligible temperature increase compared to
the temperature variations of the bar induced by the
current in the heating coil. The heating coil, an ordinary
1000-%, 21-0 element, is enclosed in ceramic washers
which are, in turn, bonded to the bar with a cement that
cures to a rubbery consistency and withstands high
temperatures and large dynamic strains.

In order that the gravitational interaction between
the generator and the detector can be measured, it is
necessary that all other interactions be smaller. Other
interactions that are eliminated are acoustic, electro-
magnetic, and vibrational. The detector responds to a

kT of energy over its relaxation time of 30 sec. The
driving power for the generator consists of at least
100 W of electromagnetic energy at the detector fre-
quency. Extreme precautions are therefore required to
avoid acoustic and electromagnetic leakage. Over 25
orders of power attenuation are, in fact, achieved.

The acoustic interaction between generator and
detector is reduced primarily by mounting the bars in
separate vacuum chambers. However, the entire gener-
ator vacuum system vibrates at the frequency of
oscillation of the bar. This results from the radial
vibration of the bar, which accompanies the longitudinal
oscillations, being transmitted via the piano-wire
support to the generator vacuum chamber. The vibra-
tion of the vacuum tank is decoupled from the floor of
the lab by a Alter stack consisting of alternate layers of
felt, steel, and rubber. Alternating the density of the
support material reQects the vibration at the interfaces
between layers while heavy masses such as steel act as
a momentum sink for the vibration. The detector is
also suspended on a similar 6lter stack of rubber and
steel in its vacuum chamber. The ringing of the gener-
ator vacuum chamber is still transmitted acoustically
via the air to the detector system. In order to diminish
the transmission, the entire generator vacuum chamber
as well as the Alter stack is enclosed in a plywood box
lined with acoustic tile and ulled with Dilite. More
important, however, are the following improvements
on the acoustic isolation of the detector: a concentric
quartz coaxial transmission line between the bar and
the matching electronics, a shielded rubber 0 ring to
dampen vibration between the vacuum tank and the
coax, and the enclosing of much of the detector elec-
tronics in anachoic boxes. Finally, a sonic shield of wood
and acoustic tile is placed between the generator and
the detector and the generator is placed in an 8-ft)(8-ft
&12-ft room whose walls are lined with acoustic tile.
These latter changes, particularly the improvements on
the detector, reduce the acoustic interaction between
the two systems to an acceptable level.
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The acoustic sensitivity of the detector to a loud-
speaker emitting noise of clearly audible intensity at
its resonant frequency actually proved useful. By
driving the loudspeaker with the crystal oscillator and
slowly varying the frequency of the driving signal, the
response peaks of the detector can be located. Since the
detector consists of two closely coupled high-Q sections
(the bar and the tuned LC circuit), there are two large-
amplitude peaks at slightly diGerent frequencies in the
detector response characteristics. The gravitational
interaction can be detected driving the generator at
either frequency. The amplitude of the response at both
peaks is identical if the detector is exactly tuned. The
beat period between the two modes of oscillation is
18.50 sec. The loudspeaker actually excites the LC-
circuit section of the detector whereas the dynamic
gravitational Geld excites the bar section of the detector.
As the LC-circuit section is detuned from the bar, one
of the response peaks increases and the other decreases
for excitation of the LC circuit.

The electromagnetic coupling problem involves
coupling via radio frequency (rf) fields and coupling via
the ground conGguration of the generator and the
detector. Elaborate shielding is invoked on the gener-
ator electronics including a steel chest to shield the
arnpli6er and copper screening to shield the acoustic
isolation room. The detector ampli6ers are powered
from batteries in order to isolate them from the line
voltage and both the detector and generator systems
are operated ungrounded.

IV. RESULTS AND CONCLUSIONS

The raw data from the detector system are in mV.
For each data point corresponding to a specific con-
figuration of the generator and detector, two sets of
voltages are taken and averaged. One set is taken with
the generator frequency tuned to the detector fre-

quency, and the other set corresponds to the generator
frequency detuned from the detector frequency. The
dynamic gravitational-field —induced strain in the
detector is proportional to the square root of the
differences of the squares of the average voltages. Runs
at d&90 in. showed no acoustic or electromagnetic
leakage. A "run" consists of four data points cor-
responding to a detector and generator con6guration;
(1) coaxial and the distance between centers is 172 cm,
(2) coaxial and the distance between centers is 184 cm,
(3) 20 cm between axes and d= 172 cm, and (4) 30 cm
between axes and d= 172 cm. Each data point requires
6h of running time during which 360 voltage values
(one per minute) are recorded from the detector. Ten
runs were completed for the curves of Figs. 6 and 7.
Some data points were taken at other than the above
four con6gurations in order to check the general trend
of the curves.

The circles on the curves of Figs. 6 and 7 represent
the averages for the data points taken at a specific
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spatial configuration of the generator and detector. The
error bars represent the standard deviation of the mean
value of 10 runs and indicate the range of values in
which there is a 68% chance that some new mean value
of 10 additional runs would be included.

In order to calculate the proportionality constant
between the voltages punched out on paper tape from
the detector and the actual strain. in the detector, a
lengthy calculation involving the detector parameters
must be done. It includes the characteristics of the bar,
the sensing crystals, the LC circuit, the preampli6er
and the amplifier. This calculation was done by J.Weber
and will be published separately. The result of Weber's
calculation is to determine the actual induced power
increase in the detector when the bars are coaxial and
172 cm center-to-center and the strain in the generator
is 0.5X 10 '. The induced power increase is proportional
to the square of the induced strain.

Weber measured the system temperature of the de-
tector and obtained 267.0'K&5% for the condition of
no induced signal in the detector. He further calculated
that the mean increase in temperature expected due to
a strain in the generator of 0.5)&10 ' and the detector
and generator 172 cm apart center-to-center is 58.0'K.
This represents a calculated power increase of 21.7%.
From this value it is possible to plot the theoretically
expected % power increase versus bar configurations
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using the formula

LCalculated % power increase at (d,R) = (i,j)j
=L% power increase at (d,E)=(172,0)j

(etheoretical at (zfp) = (172q0)
x/

etheoretical at (d,+)= (S,j)
Here Letheo«„cat at (d,R) = (1.72p0) j/Letheoretical at (d +)
= (s,j)j is obtained from Figs. 3 and 4. This plot is
shown in Figs. 6 and 7 by a solid line. The measured %
power increase curve is drawn as a dashed line. The
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TABLE I. Comparison of measured and calculated power increases.

d7 R
(cm)

172, 0
184, 0
172, 20
172, 30

Average
measured
% power
increase

(21.0+2.1)
(8.3&1.7)

(14.5&2.1)
(7.9+2.6)

Calculated
power

increase

(21.7+2.0)
(7.6+0.7)

(13.2a 1.2)
(6.5+0.6)

deviation

—0.7
+0.7
+1.3
+1.4

experimental values averaged over the 10 runs compare
very favorably with theory as seen in Table I.

The above comparison between measured % power-
increase values and calculated % power-increase values
shows that the calculated % power increase decreases
slightly faster with distance than the measured% power
increase. One explanation for this result is that there
could be a small amount of leakage between generator
and detector of a nongravitational nature. If the leakage
is approximately equal in absolute magnitude for all
runs, it will produce a bigger error in % power increase
for the small-signal runs than for the large-signal runs.

V. SUMMARY

The gravitational induction field communications
experiment described in this paper represents the Grst
laboratory-achieved generation and detection of dy-
namic Newtonian 6elds in the kilocycle frequency
range. Although the theory of this experiment is well
known, its execution in the laboratory is extremely
dificult. The experiment also fulfills its primary moti-
vation, which is to calibrate a detector of gravitational
radiation. The laboratory results conform very closely
to theoretical predictions.
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