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A simple practical variational perturbation method based on the approximate calculation of the moments
of the resolvent operator is developed. The method has been applied to the (15)2S state of the helium atom.
The trial wave functions have been expanded in terms of naturally spaced groups of Hylleraas functions up
to 95 terms. The 95 term trial function gives an upper bound of —2.903724305 atomic units to the ground-
state energy. Other numerical results have been compared with the 21st-order perturbation energies of
Midtdal and other previous calculations. It is found that comparable results can be obtained by the present

simple calculation.

1. INTRODUCTION

NUMBER of authors!? have successfully applied

the method of moments to various quantum-
mechanical systems. In this method one calculates the
moments (0| H*|0). Here, H is a physical Hamiltonian,
» takes on integer values, and |0) is a given approximate
ground-state wave function of H. It is well known that,
in general, only a limited number of moments exists.
The success of the method depends on a good choice
of |0).

In Sec. 2, a systematic method of constructing a good
approximate ground-state wave function is given. It is
based on the construction of the moments of the
resolvent operator 1/(H—a). No attempt has been
made to calculate these moments exactly. In Sec. 3, a
variational approach is given, where these moments are
calculated with respect to a finite number of basis
functions of the helium atom. The method is applied to
the ground state of the helium atom in Sec. 4. The basis
used is the well-known set of Hylleraas functions.
Results are given in Table I for trial functions expanded
in terms of naturally spaced groups of Hylleraas func-
tions. Our best result differs from the best nonrela-
tivistic calculations of Pekeris® only in the ninth
significant figure. Direct comparison with the 20-term
expansion calculation of Herzberg? is given in Tables
IT and IIT and Sec. 5. Direct comparison with the 70-
and 95-term expansion, 21st-order perturbation calcu-
lation of Midtdal® is given in Table IV and Sec. 6. The
comparisons showed only minor differences, often in the
ninth figure in the energies.

Our numerical calculation was carried out with a
16-digit double-precision floating-point arithmetic pro-
gram at the Western Data Processing Center by an
IBM system 360 computer. The main part of the calcu-
lation involves the inversion of one matrix. The average
time for a set of calculations with 95 terms is less than
1 min.
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2. RESOLVENT OPERATOR AND METHOD
OF MOMENTS

In the following sections, only the ground state of the
physical system represented by the Hamiltonian H is
considered. The parameter ¢ that appears in the re-
solvent operator 1/(H—a) is chosen to be an upper
bound to the ground-state energy. It should lie closer to
the ground state than the first excited state. Assume
|0) is some known function not orthogonal to the
ground-state wave function of H. One can formally
write down the expansion of |0) in terms of the eigen-
functions of H; we have

=3 @l0)]), 0

o Hn)=E|n). ®)
1 N

xm=(==) lo), ®

ey=Cy*(XN|H|XN),

where Cy is the normalization constant of |XN). It
follows from Egs. (1)-(3) that

= (n|0)
| XN)=3% ————|n). 4)
n=0 (En—a)N
Since Ey<a<E <E;<:-:, and |Eo—a|<|E1—a|

<|Ey—a|<---, we have
}’im CN]XN) - l0>,
and

lim &y — Fy. ©®)

N>
The successive | XN) can be obtained by solving the

inhomogeneous equations
(H—a)|XN)=|XN—-1), (6)

where N=1,2, 3, -+, and |Xo)=|0).
The convergence can be made very fast by choosing
the parameter e so that
|Ev—e|<K|Ei—a|<|Ey—a|<---. (7)
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TaBLE 1. The energies v and ez (in a.u.) for different a and different number of basis functions in the trial function.

=—2.85 a=—2.90

M €U €L €U €L k
3 —2.89122948157 —2.89122950254 —2.89122948176 —2.89122948176 3.64

7 —2.90342460676 —2.90342501008 —2.90342461108 —2.90342461118 3.65
13 —2.90364041122 —2.90364151364 —2.90364043524 —2.90364043555 3.80
22 —2.90371383242 —2.90371618985 —2.90371389995 —2.90371390063 4.10
34 —2.90372086685 —2.90372380940 —2.90372095845 —2.90372095929 4.20
50 —2.90372356239 —2.90372795325 —2.90372370027 —2.90372370153 4.45
70 —2.90372393179 —2.90372945910 —2.90372410501 —2.90372410659 4.62
95 —2.90372408039 —2.90373139058 —2.90372430535 —2.90372430743 4.86

a In this case —2.90 is a lower bound to e, Eq. (17) gives an upper bound (Refs. 7, 8) also. Thus, this eoL is replaced by the iterative solution eo.

Convergence can be further accelerated by the
application of the method of moments.? Sufficient
accuracy can be obtained with a maximum N=2, from
which three moments follow. They are, using Eq. (6)
and the Hermitian property of H,

M= (X2|H—a|X2)=(X2|X1),
he= (X2| (H—a)?| X2)= (X2]|0)= (X1|X1),
he= (X2| (H—a)*| X2)=(X1]0). (8)

The method of moments® then gives the upper bound
for the ground-state energy,

Ew=a+{3a—[(a)*—B1"?}, ©)
Ae—Aihs
a= 5
Ao g
Ahs— g2
T e

A lower bound’ to the ground-state energy also
follows from the three moments

1
1= (0]
H—a

ta= (0] (Hl_
= (0| (Hi

Eor=a+1/{3v—[Gv)*—8]"7},
ts—1tile

10)=(X1]0),

>2IO)=(X1IX1),
a

a>3l 0)=(X2|X1). (10)

We haves

Y= )
te— 142

(11)

tits— 1o
to—1y? )

6 See Sec. 6 of Ref. 2.

7 A lower bound is obtained only when a is an upper bound.

8 Eq. (11) holds only when ¢ is an upper bound. If a is a lower
bound, the sign of the square root must be changed, so that an
upper bound is obtained.

Let a be a rough upper bound, and let us formally
expand the variational wave functions of the method
of moment in terms of the eigenfunctions of H. It
becomes immediately evident that Egs. (9) and (11)
give, respectively, an upper and a lower bound to the
ground-state energy.

Where Eq. (5) gives the exact solution E,, Egs. (9)
and (11) only give approximate solutions. The closer a
is to Eq, the better are the solutions. In this sense, the
results of Egs. (9) and (11) for a given parameter ¢ are
similar to that obtained by a perturbation expansion of
some finite order.

3. VARIATIONAL SOLUTION OF METHOD
OF MOMENTS

In this work, the solutions of Eq. (6) are obtained by
a variational method, using the functionals
F(X'N)=—(X*N|H—a| X*N)+2(X'N|XN—1),
N=1,2,3, --. (12)
| X*N) denotes the trial function to be varied. | XN —1)

is the given stationary solution of the preceding step.

The stationary solution is given by
(H—a)|XN)=|XN—-1), (13)

and
F(XN)=(XN|H—a|XN), N=1,2,3,---. (14)

Apart from a normalization factor, Eq. (14) gives the
expectation value of the energy with respect to the
stationary solution |XN). Thus, the solution of the
inhomogeneous Eq. (13) with a variational function is
equivalent to a variational principle for the energy. The
corresponding iterative solution

limyoe CNz(XN]H[XN)=eo (15)

gives the variational energy e, which is an upper bound
to the ground-state energy E, of Eq. (5).

cw=a-+ia—[ (Gay—B]" 16)
cor=a+1/{37—[(37)—51%) @an

give an upper and a lower bound to e, respectively,
where &, B, 7, and § are obtained by replacing | X2) and
|X1) in Egs. (8) and (10) by |X2) and |X1), re-
spectively.

and
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TaBLE II. Coefficients of the basis functions in the trial function given by Eq. (20).

N=2 Tterative Variational solution
a=—2.85 a=—2.90 solution of Ref. 4

N 1.36763805 1.36686923 1.36686585 1.36686946

X1 0.41712694 0.41705457 0.41705424 0.417070598
X, 0.20807147 0.20834547 0.20834659 0.208366354
X; —0.00506005 —0.00521615 —0.00521674 —0.005234824
X4 0.04883101 0.04906824 0.04906917 0.049090025
Xs —0.15710834 —0.15722820 —0.15722869 —0.157224213
X 0.08216212 0.08234822 0.08234904 0.082327506
X7 —0.12606388 —0.12587023 —0.12586942 —0.125878664
Xs 0.04762219 0.04766263 0.04766279 0.047677478
X, 0.04092988 0.04080728 0.04080676 0.040706923
X0 0.03235878 0.03196670 0.03196515 0.031908952
Xn —0.00940086 —0.00949011 —0.00949045 —0.009497449
X1 0.00050815 0.00051220 0.00051221 0.000512301
X3 —0.00923434 —0.00923318 —0.00923317 —0.009229647
X 0.00070772 0.00070697 0.00070697 0.000706572
X1s —0.00724933 —0.00725712 —0.00725715 —0.007251378
Xis 0.00212429 0.00228608 0.00228674 0.002303423
X7 0.00134178 0.00136561 0.00136570 0.001366454
X1 0.00150531 0.00159031 0.00159066 0.001605489
X1 0.00062089 0.00066703 0.00066722 0.000758737

4. APPLICATION TO HELIUM ATOM

The Hamiltonian of the system under consideration is

H= “%VIZ_%V22—2/1’1’—2/72+1/?’12.

(18)

The Hamiltonian and all the energies are expressed

in atomic units. |0) is chosen to be the hydrogenic wave
function (k3/8m)e~ WDkt [ is regarded as a vari-
ational parameter. The trial wave functions are ex-
panded in terms of the well-known Hylleraas functions.

M
l XtN) — —(1/2)ksz CiNSllmM"’,

=1

(19)

where S=r1+7, i=r1—7s, u=r1s,
1=0,1,2, ---,
m=0,2,4,---,
n=0,1,2, ---,

and M is the total number of terms taken in the vari-
ational calculation.

In this section emphasis is placed on the systematic
behavior of ey and ez with different values of ¢ and
different M. The energies are monotonic functions
of the parameter a (E,<a<ZE;). Only two values,
a=—2.85and —2.90, are listed in Table I. M takes the
values 3, 7, 13, 22, 34, 50, 70, and 95. They correspond
to the expansions with a maximum sum of I+m-+n
equal to 1, 2, 3,4, 5, 6, 7, and 8, respectively.

At a=—2.85, the upper bounds ey and the lower
bounds ez, agree up to the fifth or sixth figure. When
a=—2.90, they agree up to the ninth figure. These
imply that the convergence of this method is satis-
factorily fast (since for a= —2.90, eou= €= €or, for the
first nine figures).

Our best value for the ground-state energy obtained
with a 95-term trial function is —2.903724305. Scherr,
Sander, and Knight® obtained the value —2.90372433
in their 13th-order perturbation calculation with a
somewhat different 100-term expansion. The best
known nonrelativistic value for the ground-state energy
is —2.903724375, obtained by Pekeris with his 1078-
term trial function.® Our 95 Hylleraas terms are used
only for convenience, not for best result; yet the energy
differs only in the ninth figure from the best calcu-
lations known.

5. COMPARISON WITH THE 20 BASIS FUNC-
TIONS VARIATIONAL SOLUTION OF
HART AND HERZBERG

In order to examine the convergence of |XN) with
increasing NV, Tables IT and IIT list the details of the
wave functions | X2) for a=—2.85 and —2.90, as well
as the iterative solution and the energies of the 20 terms
trial function used in Ref. 4.

TasLE III. The energies ev, er, and e (in a.u.) obtained with the 20-term trial function given by Eq. (20).

a=—2.85 a=-—2.90
€U €L 3% €L
—2.90371770802 —2.9037192324 —2.90371775300 —2.90371775344
€ € of Ref. 4
—2.90371775300 —2.9037179
9 C. W. Scherr, F. C. Sanders, and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).
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TaBLE IV. Energies (in a.u.) for the 70- and 95-term trial functions with k=4.
21st-order
a=—2.85 a=-—2.90 perturbation
M €U €L €U €L energies of Ref. 5
70 —2.90372369834 —2.90372574208 —2.90372376288 —2.90372376347 —2.9037237628
—2.90372607174 —2.90372409251

95 —2.90372402909

—2.90372409309 —2.9037240926

By putting £=3.87 as in Ref. 4, we calculated the
normalized functions

szlXN) =N exp—%ks[1+X1Nu+X2Nt2+X3NS
+ X anS* X s+ X onsu~+Xantu
4+ Xsnud+ Xont?u?+ X 1ons2+ X 11583
+X 12N152u4+X 13N’144‘|‘X unuS+X 15152%3
+ X 1685284 X 17vst+ X swstPu~Xontt]. (20)

The coefficients Ny, Xin, Xon, -+, Xy for N=2,
a=—2.85 and —2.90, are listed in the second and the
third columns of Table II, respectively. The fourth
column contains the iterative solutions which are
correct to the seventh digit. These iterative solutions
are obtained at N=38, 12, and 18 for a= —2.90, —2.85,
and —2.75, respectively. The last column lists the
variational solutions of Ref. 4. At a= —2.85, ¢ and €L,
differ in the seventh figure. The corresponding co-
efficients for the wave function differ from the iterative
solution in the fourth or fifth figures. At = —2.90, e
and ez, differ in the 11th figure, where the correspond-
ing coefficients for the wave function differ from the
iterative solution in the sixth or seventh figures. The
eov agrees with the iterative value ¢ up to the 12th
figure. Our ¢ differs from the calculation of Ref. 4 in
the eighth figure; the corresponding coefficients of the
wave functions differ in the fifth or sixth figures. Inas-
much as they have detected an uncertainty in their
energy calculation of 1 part in 107, the agreements be-
tween our calculations are satisfactory.

6. COMPARISON WITH THE 21ST-ORDER
PERTURBATION ENERGIES OF MIDTDAL

Our 70- and 95-term variational functions are
identical to that used by Midtdal in his 21st-order
perturbation calculation. However, the energies listed

in Table I have been minimized with respect to k. The
energies listed in Table IV are obtained by setting k=4
as in Midtdal’s calculation.

Our best upper bounds differ only in the 12th and the
11th figures from the corresponding values of Ref. 5.

7. CONCLUSION

It is not our purpose to carry out any higher-dimen-
sional calculations, although there is no essential
difficulty. Since approximate solutions of Eq. (5)
without resorting to a finite-order expansion are possi-
ble, we have contented ourselves with a maximum
expansion of 95 terms.

It is, however, very clear from Secs. 4-6 that this
method is indeed as effective as it is simple. The calcu-
lation involves the inversion of just one matrix.

The fast convergence of this method is clear from
Sec. 2. For most quantum-mechanical systems, it is not
hard to find a parameter e such that the condition of
Eq. (7) is satisfied. A first try of ¢ can be obtained from
a rough variational calculation, i.e., the value —2.85
(or even —2.75) used in Secs. 4-6. The upper bound
obtained by this method, with convenient roundoff, can
be taken as the parameter ¢ for a second try, i.e., the
value —2.90 used in Secs. 4-6. The accuracy of the
calculation is assured by the degree of agreement
between e and eoz.
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