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Self-Consistent Binding Energies and Densities of Protons and
Neutrons in "Be and "C
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Binding energies, root-mean-square radii, and deformations of the protons and neutrons are calculated
for the prolate and the oblate energy minima in "Be and ' C, utilizing the Hartree-Fock approach. The
nucleons interact via the Volkov and the Coulomb force. The energies are corrected for the c.m. motion.
The mass and the charge distribution are surprisingly di8erent: The theoretical charge deformation in MBe
is Pc=0.62 go(expt) = &0.7&0.1$, while the calculated mass deformation has the value psr=0. 41. A
division of the total binding energy into a proton and a neutron part yields for ' Be twice as large a con-
tribution for the protons as for the neutrons. This puzzle can be understood by means of Wigner's SU4 model.

'I the last few years several Hartree-Fock (HF)
' ~ calculations' 7 have been performed on light nuclei.
In only a few of these publications~ has the isospin-
violating Coulomb force been taken into account.
Furthermore, most authors utilized the proton-neutron
symmetry of the force to reduce the HF problem by a
factor of 2, so they were only able to calculate for self-
conjugate nuclei. The few HF treatments of other nuclei
are done in such a restricted space that the protons and
neutrons can not show a diGerent behavior. The calcula-
tion by Volkov' is limited to variation of the oscillator
parameter in the symmetry axis and in the perpendic-
ular plane. The results, which are reported by Ripka',
have been obtained by an effective nonsaturating force
and under the restriction to the sd shell.

We want to show here with the example of the
mirror nuclei "Be and ' C that a HF calculation allow-
ing a sufficiently large space as a basis can yield different
values for the deformations and for the mean square
radii E, , of the proton and the neutron distributions in
the same nucleus. The Hamiltonian has the form
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We subtract the kinetic energy of the whole nucleus
to extract the c.m. motion. We chose the Volkov force'

with
V(i,k) = (0 4+0 6P. ,)V(.r;s),

V(r) =St exp( —r'/p t)+ Ssexp( re—s ),
Sl = —83.34 MeV, py ——i.6 F,
S2= i44.86 MeV, p2

——0.82 F,

(2)

for the interaction between the nucleons. This force was
adapted to give approximately the singlet and triplet
scattering length and to 6t the binding energies and the
rms radii R, , of He and "O.We utilize as the basis the
oscillator functions up to the 1V=2e+l=3 shell or the
Nilsson functions calculated on this basis, including
S=&2 mixing. The %=3 shell has to be included to
describe correctly the deformation in the p shell because
the quadrupole operator connects the p shell with the
/=3 wave functions. The force is independent of the
spins of the interacting particles, and it is naturally also
invariant under time reversal. Assuming that the states
connected by the spin Rip operator Oz and the time-
reversal operator T=O&0z are equally occupied, one is
able to lower the order of the matrices involved by a
factor of 2 or 4.

e,
~
r„~,A,Z,u) = (—)-:-'~ r„~,A,—Z,a),

e,
~
r.,~,A,Z,u) = (—)'~ r„w,—A,Z,Z). (3)

The good quantum numbers are the isospin projection
z„ the parity x, the angular momentum projection A
onto the symjnetry axis, and the spin projection Z. The
quantum number k labels the different Nilsson states
for the same good quantum numbers.

Figures i and 2 show the results for the minimum of
the binding energy at a positive deformation in the
nuclei ' Be and ' C. The data for the relative minimum
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at a negative deformation are compared with them in
Table I.' ' The value shown in Figs. 1 and 2 are mean
values for the whole rotational band. The average
angular momentum in both nuclei is J~=2.29 for the
positive deformation and J&——2.17 for the negative
deformation. If one takes the momentum of inertia of
the ground-state rotational band in "Be,then this means
a lowering of the total energy for the band heads by
Ey—80=4.2 MeV for the prolate deformation and
Eg—Eo——3.8 MeV for the oblate nuclei. These corrected
values are listed in Table I for the minima. Contrary
to Volkov's results, this calculation yields the prolate
deformation as the ground state. The radiative capture
'Be(Ts,y)"Be feeds with 65% the ground state" in "Be
and not at all the 0+ state at 6.18 MeV, which corre-
sponds probably to the oblate state. A similar behavior
is shown by the reaction 'Be(d,p)' Be, which produces
the 0+ and the 2+ states in the ground-state band" but
fails to yield the 0+ state at 6.18 MeV. This indicates
that "Be has the same deformation as 'Be, which is
probably prolate because it is in the neighborhood of
'Be. The comparison of the experimental binding
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FIG. 1. The 6gure shows in the lower part the total binding
energy of "Befor the prolate minimum dependent on the oscillator
length. The distribution of the total energy to the protons and
neutrons is also displayed. The middle part gives the deformation
in the usual de6nition (Ref. 12) for the charge and the mass
distribution. The rms radii are displayed in the upper part. The
curves are mean values for the ground-state rotational band.
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TABLE I. Data of the prolate and oblate energy minima in
"Beand "C.Theoretical and experimental values are listed for the
prolate (P &0} and oblate (P (0) energy minima in "Be and "C.
8 is the theoretical and B(expt) is the experimental total binding
energy. B„and 8 show how the energy is distributed between
the protons and the neutrons. All the energies are corrected to
the band head by utilizing the experimental moment of the inertia
of 'Be and the mean value of the total angular momentum
squared (J'). Ro is the theoretical rms radius for the charge,
Rc (expt) is the experimental value extracted from electron
scattering data (see Refs. g and 9) on neighbouring nuclei, and
RM is the rms radius of the mass density. The remaining rows list
the quadrupole moments Qf. , QM and the deformations pz, pM
which yield the same quadrupole moments for a homogeneous
distribution. The mean value of the angular momentum in the
rotational band is calculated by the equation J (J+1)=(J').
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Fig. 2

FIG. 2. The binding energy, the deformation, and the rms radius
are displayed for the prolate energy minimum in ' C depending on
the oscillator length. The details are the same as in Fig. 1.
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Fro. 3. The charge and the mass
distribution are exhibited for the
prolate energy minimum in ' Be. The
four curves display the charge distri-
bution along the symmetry axis po(s)
and in the x-y plane po(s) and the
mass density along the same axes pM (s)
and pM(s:). Both densities are norrnal-
ized to unity.
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energies with the theoretical values of Table I shows
that the Volkov force underbinds the nuclei. Indeed,
Volkov has already found that his force gives the
correct energy only for 4e nuclei and that the (4N+2)
nuclei are too weakly bound. Nevertheless, the mean
square radius and the deformation in "Beare described
in good agreement with the experimental results. The
deformation was calculated from the lifetime measure-
ment of Warburton et al."by the formula"

B(E2 2+ —& 0+) =-s'L(3Z/4rr)Rtf'7'p'(1+0 4p)' (4)

The distribution of the total binding energy between
the protons and the neutrons can be easily understood
if one considers the SU4 state of maximum spatial
symmetry L4427. One finds 13 spatially symmetric
and eight antisymrnetric pairs. In ' Be, they are divided
up into seven even and six odd pairs for the neutrons
and six even and two odd for the protons. If one takes
into"account that the even pairs are strongly bound
but that the force between the odd pairs is repulsive,
then one can understand why the contribution of the

"E.K. Warburton, Phys. Rev. 148, 1072 (1966).
~ A. Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 70,

33 (1965).

neutrons to the total binding energy is so small although
"Behas only four protons and six neutrons.

Two smaller effects are superimposed on this main
eGect: First is the Couloinb repulsion of the protons.
This can be seen by considering the proton-neutron
symmetry between "Be and "C in Table I. Second,
one can observe that the deformation sects the binding
energies. One has only to realize that four particles of
the same charge prefer the prolate shape as in 'Be and
that six particles of the same charge prefer the oblate
shape as in "C.This effect changes the binding energy
from 2 to 5 MeV.

Figure 3 shows the charge distributions pc(z), po(x),
and the mass distributions psr(z), psr(x) for the prolate
"Be along the symmetry axis and along an axis in the
x-y plane. Both densities are normalized to unity. The
larger binding energy for the protons is indicated by
the higher density in the center of the nucleus. This
explains also the smaller mean square radius of the
charge for tsBe (8)0) in Table I, although the protons
have a larger deformation than the mass distribution.

ACKNOWLEDGMENT

The authors wish to thank Professor H. Marschall
for interesting discussions.


