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The Ritz variational approximation is used to calculate the energy of the ground state of He, Li, and
H in the presence of a uniform external electric Geld. The interaction energies are expressed as power
series in the electric-Geld intensity. From the coe%cients of these expansions, the polarizabilities 0. and the
hyperpolarizabilities p are obtained. In this study the hyperpolarizabilities are computed with Hylleraas-type
wave functions consisting of '?8, 96, 102, and 150 terms. The convergence of o. and y are satisfactory for
He and Li+, but not for H . For H it is suggested that in order to obtain proper convergence one would
need to include more terms in the wave function than would be tractable for our computer. Thus, a different
type of function should be used for this ion. The 150-term wave functions gave 169, 1.383, and 0.1925
atomic units (a.u. ) for the polarizabilities of H, He, and Li, respectively. This 150-term function also
gave 1.74)& 10, 42.8, and 0.244 a.u. for the hyperpolarizabilities of these same atoms. It is suggested from a
study of the convergence of n and y as more terms are included in the wave function, of the accuracy of
the computed n's, and of the free atom energies that the computed y results are correct to within a few
percent or better for He and Li+, but that the p computed for H is unreliable. The only available measure-
ment of y, for these ions, gave 51.6+7.9 a.u. for the helium atom.

I. INTRODUCTION

w HEN an S-state atom, such as helium, is placed
in a static external electric field F, its electronic

charge distribution is distorted. Assuming the applied
field to be uniform, this distortion is described by the
induced moment p which, to a first approximation, is
proportional to the first power of the field, i.e.,

p=u F.

Here p and I' are vectors and e is a second-rank tensor,
generally called the polarizability. The polarizability
has been the subject of many early and recent
investigations. '

* Work supported by the U. S. Air Force Of6ce of ScientiGc Re-
search, Grant No. AF-AFSOR-191-67.

' A. Dalgarno, Advan. Phys. 11, 281 (1962).
K. S. Pitzer, in Advances irl, Chemical Physics, edited by I.

Prigogine (Interscience Publishers, Inc. , New York, 1959), Vol. 2,
p. 59.

' R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951);
102, 731 (1956); 107, 1565 (1957); 115, 1198 (1959); 127' 1220
(1962); 130, 1423 (1963); 132, 1637 (1963).

'P. W. LanghoK and R. P. Hurst, Phys. Rev. 139, A1415
(1965).

H, however, the field strength is increased, the charge
distribution undergoes further distortion and this linear
relation is no longer adequate as higher-order terms
contribute signi6cantly to p. Thus, Eq. (1.1) must be
modified to give

p=e F+-', y:F'+-'y:F'+

Here the third- and fourth-order tensors g and y have
been called by Buckingham and Orr' the 6rst, and
second hyperpolarizabilities, respectively. On very gen-
eral geometrical arguments one can show for S-state
atoms that the g term is zero so that y, the second
hyperpolarizability, gives the lowest-order nonlinear
contributions to p. Equation (1.2) can, of course, be
extended to include even higher-order terms; however,
with presently available experimental methods these
higher-order terms would be exceedingly dificult to
detect. Thus, since y is the only hyperpolarizability we
shall consider here, for simplicity, we shall refer to y as
the hyperpolarizability throughout this paper.

'A. D. Buckingham and B. J, Orr, Quart. Rev. (London)
21, 195 (1967).
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so that the polarizability term is second order and the

y term is fourth order in the energy with respect to the
field.

These relations can be placed in clear perspective if
we regard Eq. (1.3) to be simply a power series of the
total energy in the field. Then, including all terms up to
fourth order in the field, we have, adopting Cartesian
tensor notations, ' ~

E=E' p,F; —,'n, ,F,—F;—(1/3.)—P,,t,F;F,FI,
—(1/4!)y;; I,tF;F,FgF t. (1.4)

Here the usual convention of repeated indices implies
summation, E' is the field-free energy, p; is the perman-
ent dipole moment, 0.;; is the second-rank polarizability
tensor, P;;& is the third-rank first hyperpolarizability
tensor, and p;;I,& is the fourth-rank second hyperpolari-
zability tensor. For spherically symmetric systems, all
of these tensors must be isotropic. v Then, since there is
no isotropic tensor of first order other than zero and since
a scalar multiple of the Levi-Civita density' is the only
nonzero tensor of third order, these odd power terms
vanish. Further, since the only isotropic tensor of
second order is a scalar multiple of 8;;, the substitution
tensor, we have

(1.5)

Finally, one can show that any component of the iso-
tropic tensor p;;~~ is zero unless i, j, k, and l occur in
pairs, and that the most general isotropic tensor of
fourth order can be written

71111 72112+ r1212++1122 ~+2g ~

Thus, using these results, Eq. (1.4) reduces to

(1.6b)

AE= E Ee —-'nF' —(1/24)y—F4——— , (1.7a)

where
P2 —P.P.

F'= (F'F') (FA)

(1.7b)

(1.7c)

Alternatively, the energy of interaction AE associated
with the induction of the moment can be expressed as

gE= —r2n:Fe ——,'y'. F3—(1/24) q.F', (1.3)

shown, results from arguments which are entirely geo-
metrical in nature.

Recently, calculations of p for helium have been made
from an uncoupled Hartree-Fock approximation'; how-
ever, it has been suggested by Drake and Cohen" that
the uncoupled Hartree-Pock approximation cannot
yield reliable hyperpolarizabilities. The only other
theoretical result for helium is that of Boyle, Bucking-
ham, Disch, and Dunmar" (BBDD) who also give an
experimental value. The BBDD experimental value,
which was obtained from the birefringence induced in
helium gas by an electric field, is larger than their calcu-
lated value by a factor of 1.5, although their experi-
mental result seems to agree with the uncoupled
Hartree-Pock number. ' Thus, it seems quite clear that
additional e6ort will be required to obtain a reliable y
for He.

The purpose of this paper is to present accurate varia-
tional calculations of the hyperpolarizability of H—,He,
and Li+. These calculations are made with Hylleraas-
type variational wave functions and include up to 150
terms. In Sec. II we present the theory of the method,
Sec. III gives the formulation of the problem, and in
Sec. IV the results are presented. Finally, Sec. V is a
summary and discussion of results.

IE. THEORY OF METHOD

In previous calculations of hyperpolarizabilities from
Hartree-Fock perturbation theory, ' it is shown that if
the Fock orbitals are known to mth order the energy can
be determined to the 2rr+1 order. This result is entirely
analogous to the 2m+1 theorem of many-electron theory
in that if the many-electron perturbation wave func-
tions are known to eth order the many-electron energy
can be obtained to the 2rr+1 order. '2 In the present
work, however, these calculations are made from the
variational technique without direct recourse to pertur-
bation theory. Thus, the purpose of this section is to
present an alternative variational form of the 2rr+1
theorem of perturbation theory in that we show that if
the variational wave function is accurate to the eth
order in some expansion parameter ) then the energy is
determined to order 2rt+1

First we assume the Hamiltonian has the usual form
for perturbation problems, namely,

and
+1111 +2222 +3333 ~ (1.7d)

H=H'+AH' (2.1)

Then, we see there is only one independent component
in 0.;, and one in y,;1,~. These conclusions are, as we have

'A. D. Buckingham and M. J. Stephen, Trans. Faraday Soc.
53, 884 (1957).

'H. JeA'reys, Cartesian Tensors (Cambridge University Press,
London, 1952), p. 66.

H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Co., Inc. , Reading, Mass, , 1950), p. 129.

and that the usual expansions of E and P in powers of

'P. W. LanghoB, J. D. Lyons, and R. P. Hurst, Phys. Rev.
148, 18 (1966)."C. W. F. Drake and M. Cohen, Bull. Am. Phys. Soc. 12, 701
(1967).

» L. L. Boyle, A. D. Buckingham, R. L. Disch, and D. A.
Dunmar, J. Chem. Phys. 45, 1318 (1966).

"A. Balt,arno and A. L. Stewart, Proc. Roy. Soc. (London)
A238, 269 (1956).
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) can be made, i.e.,

E=g X'E'
i 0

(2.2a)
8E(2n+1) =0, (2.13)

parameters and has the proper symmetry so as to repre-
sent f' T.hus, if we require the variation

0=2 lid'
i 0

Further, to simplify the notation, we shall let

(2.2b)

and
1'(n2) —$0+llpl+ll2$2+. . .+gmpm (2 3a)

E(n2) = &0+&&i+&2&2+. . .+Zmpm. (2.3b)

Here 0' and 1t' are the ith-order energies and wave
functions, respectively.

On constructing the Schrodinger equation from Eqs.
(2.1) and (2.2), we have

(2.4a)
or

[ '+l '— ( +)je( )=(- V"'
+&0Pn+i)Z2n+i+O(Z2n+2) (2 4b)

Then, if we multiply (2.4b) by P* and integrate over
all space, we have

(P ~H jXH' —E(2n+1) ~P(2n))=O(X'"+'). (2.5)

Also, from Eq. (2.4b), we obtain

(Rifi'gX'lp+ X'lp+ yX"lt" IH yXFI' E(2n+1)—
)( ~y(2n))=OP, 2n+2), (2.6)

so that on adding Eqs. (2.5) and (2.6) we obtain

Q(n) ~H'+&H' E(2n+1) ~$—(2n))=0(X'"+'). (2.7)

Equation (2.7) can be written

Q (n) t
H'+AH' —E(2n+1) t P(n))

+ g (n)
~

HP+yHi —E(2n/1)
~

yn+iPn+i+yn+21t n+2

+.. .+$2ny2n) —O() 2n+2) (2 g)

In the same manner as (2.4) is obtained, one can show

LH'+ AH' —E(2n+ 1)]P(n) =O(X"+') (2.9)

so that Eq. (2.8) can be written

Q (n) (H'+) H' E(2n+1)
~
P(n)—)=O(X'n+') (2.10)

Finally, we have the desired result

III. FORMULATION

The variational wave function chosen for this problem
is based on the functional form 6rst proposed by
Hylleraas. "The Hylleraas function, originally intended
to describe the free-atom ground state of helium, has
the form

where
P(s, t,u) = iflP(Ks, Kt,Ku), (3.1a)

we obtain approximations to the perturbation energies
0' up to and including order 2n+1 and approximations
to P to order n.

One can show that the present technique is equiv-
alent, in principle, to the variation-perturbation
method. " The present method, however, has the ad-
vantage that one needs only to solve a, single secular
equation for the lowest eigenvalue. On the other hand,
to use the variation-perturbation method, one must
first obtain 00 and P; then solve ea.ch of the increasingly
complex perturbation equations to obtain P', P, .
Finally, additional expressions must be evaluated to
obtain the energies e"+', e"+', , e'"+'. Of the two
methods, it seems the present method is much more
straightforward and its use results in a substantial sav-
ing in computer time. By either method the same Aste-

grals usus' be evaluated.
The primary disadvantage of the present method, for

the application considered here, as compared with the
variation-perturbation approach, lies in the fact that for
the present method one must make the calculations
carrying a large number of significant 6gures. This is be-
cause one must solve rather large secular equations and
because the size of the fourth-order energy term is
usually fairly small when compared with e . On the other
hand, if it is already necessary to employ double preci-
sion arithmetic (16 significant figures for the IBM 7044)
to obtain reliable results from the variation-perturba-
tion technique, as is the case here, this disadvantage is
not particularly signi6cant. It is of interest to note that
the present method has given highly accurate results for
the dipole polarizability of the ground state and several
excited states of two electron ions. "

Q(n)
~
HpyXH'~P(n))

E(2n+1) = —+O(y2n+2) (2.11)
&4(n)IW(n))

From the variational theorem we have

E(2n+1))Wp, (2.12)

Qp(S t u) —e
—(1/2) n Q &Siiumit2ni,

S= f1+&2

I= ry2 q

t=ry —r2.

(3.1b)

(3.1c)

(3.1d)

(3.1e)
where 8'0 is the true lowest eigenvalue. In applying the
result given as Eq. (2.11), one constructs a wave func-
tion P(n) as a linear combination of trial. functions.
Each trial function contains a number of adjustable

"J. O. Hirschfelder, VV. B. Brown, and S. T. Epstein, in
Advances in Quantum Chemistry, edited by Per-Olov I,owdin
(Academic Press Inc. , New York, 1964), Vol. 1, p. 256.

14 Kwong T. Chung and R. P. Hurst, Phys. Re@. 152, 35 (1966)."E. A. Hylleraas, Z. Physik, 54, 347 {1930).
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/;

mz

nt,

TABLE I. Powers of /;, m;, and n; for the 78-term
wave function Lsee Eq. (3.4b) j.

0 0 0 0 0 0 1 T 1 T 2 2 3
0 0 1 1 2 3 0 0 1 2 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0 0

where

~.,mn — x.m( i'lp 2 4 g 2)xndr, (3.6a)

I,, "= x; (q/ri+q/rs 1/r»—)xpdr, (3.6b)

K is a scaling factor and the a; are the linear variation
coefficients.

Earlier studies' have shown that a form for the wave
function accurate to the first power in the field is

p mn . . x.m(z +z )xndr, (3.6c)

~=&'+(z+ 8 '"+( z)~—"& (3.2) (3.6d)

Here Ps, (l&&i('), and il&&s(" have the same form as Eqs.
(3.1b) except 4&s(') includes odd powers of t to maintain
the proper spatial symmetry. Then a reasonable means
of extending Eq. (3.2) to the second power in the 6eld is
to include a general quadratic function in s& and z2.

Thus the final form chosen is

~=~"'+( +")~ '"+( ")~ "-'+( + )'~ "'
+(zi zs)2y2(2)+(zls zss)i1&s(2) (3 3)

Explicitly, then, the wave function chosen has the form

Here, x,"' are deaned according to Eqs. (3.4b) and (3.4c)
and q is the nuclear charge. Details of how these inte-
grals are evaluated are given elsewhere. '"

TAax.z III. Powers of /;, m.;, and n„ for the 102-term
wave function (see Eq. (3.4b) j.

/; 0 0 0 0 0 0 1 I 1 1 1 2 2 2 2 3 3
m; 0 0 1 1 2 2 0 0 1 1 2 0 0 1 2 0
n; 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0

where
P= (t&(Ks,KF,Ku, Kzi, Kzs),

y(s t u z z ) =Q e
—&tssif'umits~ '

Xf&i+f&i(zl+zs)+&i(zl zs)t+di(z&+zs)

(3.4a)
Finally, the secular equation $i.e., Eq. (3.5)) is solved

for the lowest eigenvalue for zero electric 6eld and vari-
ous finite 6elds. Then, n and y are obtained from the
interaction energy according to Eq. (1.3). Further de-
tails of this process are given in Sec. IV.

+e,(zi—zs)'+ f;(zis —zs')t] (3 4b)

TAM, K II. Powers of /;, m;, and n; for the 96-term
wave function I see Eq. (3.4b)g.

/;
mi
ni

0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3
0 0 1 1 2 2 0 0 1 1 2 0 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0

ol
N

(t(s, t,u, zi, zs) = g (a~X,(&+6;X,'+c;X,s

+d,x +e,x,4+f;x,'), (3.4c)

where a;, b&;, c;, d;, e;, and f, are linear variation coeK-
cients, s, u, and f are defined in Eq. (3.1), and K is a
scaling parameter.

As seen from Eq. (3.4b), the total number of terms in

f is 61V. In Tables I—IV are listed the values of 1;, 4&4, ,
and e; for the 78-, 96-, j.02-, and 150-term functions.

Proceeding in the usual way" one obtains the follow-

ing 6X by 6E secular determinant:

~
K21id mn Klm. ++p„mn Q1&',t' mra

~

, .O (35)..

' H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-E/ectron Atoms (Academic Press Inc., New York, 1957),
p. 149.

IV. RESULTS

Inasmuch as n and y are defined for zero field, the
scaling factor E is determined in each case such that E
is chosen to give the minimum energy for Ii =0. These
results for the optimum values of E are presented in
Table V.

Since the contribution of the field-dependent terms of
the energy expansion, Eq. (1.7a), is ordinarily very
small, it is found necessary to make the calculations
using large external fields, i.e., 10 '—10 ' a.u. Kith
fields of this size, on careful study of the interaction
energies, it is found that the sixth-order term of Kq.
(1.7a) partially contributes. Consequently, (s, y, and i are
determined from the interaction energies, E—Eo, for
three finite values of the field. In particular, (s, y, and f
are evaluated from the simultaneous solution of the

TAar. z IV. Powers of /;, m;, and n; for the TSO-term
wave function Lsee Eq. (3.4b) j.

000000001 1 111112222223333
m; 0011223300112230011230012
n; 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0

"M. N. Grasso, M.A. thesis, State University of New York
at BufFalo, 1968 (unpublished),
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TABLE V. Optimized scaling factors for 1'S state of
two-electron systems Lsee Eq. (3.1a)j.

N.

13
16
17
25

1.3583
1.5820
1.5584
1.5996

He

3.8107
4.1122
4.1022
4.1639

Li+

6.1784
6.5139
6.5842
6.5360

a N is the number of terms in the zero-order wave function.

resulting linear equations of the following form;

An additional indication as to the probable accuracy
of the computed hyperpolarizabilities is obtainable from
a study of the accuracy of the polarizabilities. For this
reason, in Table X are summarized the present as well
as recent calculations and experimental values of the
dipole polarizabilities a for the H, He, and I i+ ions.

Finally, in Table XI are summarized previous experi-
mental and theoretical hyperpolarizabilities, p, as well

TABLE VII. The energies, polarizabilities, and hyperpolarizabilities
for the 1'S state for Li+.

TABLE VI. The energies, polarizabilities, and hyperpolarizabilities
for the 1'S state of helium.

p
(a.u. ) Ep (a.u.)

aE
(10 'a.u. ) u (a.u. ) y (a.u.)

(~—I2!)~' (7—!4!)F' (f—l6')F' .(4 &)

It is well to note that the coefficient f is not determined
accurately as the wave function does not contain all the
proper symmetries required to supply this sixth-order
term. In Tables VI-VIII are summarized the free-atom
energies Eo, the interaction energies hE for various
fields F, and 0., and y for the He, Li+, and H systems.

One reasonable suggestion as to the probable accuracy
of o. and y is obtainable from a comparison of the com-

p
N (a.u. ) Ep (a,u.)

13 0.00 —7.27986248926
0.05
0.10
0.15

16 0.00 —7.27988553213
0.05
0.10
0.15

17 0.00 —7.27989659621
0.05
0.10
0.15

25 0.00 —7.27990905860
0.05
0.10
0.15

hE
(10 ' a.u.) a (a.u.) y (a.u. )

0.24058060 0.19241 0.2400
0.96307567
2.16976369

0.24062507 0.19245 0.2419
0.96325971
2.17020242

0.24062310 0.19245 0.2419
0.96325169
2.17018389

0.24063008 0.19245 0.2327
0.96328215
2.17026290

13 0.00 —2.903671775196
0.01
0.02
0.03

16 0.00 —2.903704339255
0.01
0.02
0.03

17 0.00 —2.903712596223
0.01
0,02
0.03

25 0.00 —2.903721055126
0.01
0.02
0.03

0.69129011 1.3822 41.86
2.76726217
6.23427496

0.69163581 1.3829 42,48
2.76867680
6,23758015

0.69163931 1.3829 42.52
2.76869296
6.23762548

0.69169314 1.3830 42.81
2.76982321
6.23820267

as the most reliable values of y obtained in the present
study.

V. SUMMARY AND CONCLUSIONS

No de6nitive conclusions can be made as to the accu-
racy of the hyperpolarizabilities computed in the present
work. Nevertheless, the convergence studies given in
Tables VI—VIII, the accuracy study of the zero-order
energies given in Table IX, and the study of the corn-

TABLE VIII. The energies, polarizabilities, and hyperpolariza-
bilities for the 1'S state for H .

puted isolated atom energies Eo, Such a comparison is
made in Table IX. One will note that in place of the
customary experimental results for Eo we have included
the very accurate calculations of Pekeris. For these ions,
the Pekeris results are the most accurate calculations
that have yet appeared and are widely believed to be
more accurate than the available experimental values.
No attempt is made to review all of the many calcula-
tions made for Eo for these systems, as this is done else-
where. "However, the calculations of Eo of Chung and
Hurst' are included as these authors used a similar ap-
proach to obtain n. (See Table X.)

"E.A. Hylleraas, in Ad'vances in Quantum Chemistry, edited
by Per-Olov Lowdin (Academic Press Inc., New York, 1964),
Vol. 1, p. 1.

F
N (a.u). Ep (a.u.)

hJ' ~ (10-
(10 ' a.u). n (a.u. ) a.u. )

13 0.000 —0.5273117425868
0.001 0.842622772 167.19 0.1581
0.002 3.456213882
0.003 8.137925928

16 0.000 —0.5273845254993
0.001 0.846590953 167.97 0.1596
0.002 3.473041036
0.003 8.180665141

17 0.000 —0.5273907661071
0.001 0.848741110 168.37 0.1629
0.002 3.483798789
0.003 8.215866995

25 0.000 —0.5273957740522
0.001 0.853580571 169.24 0.1736
0.002 3.510963959
0.003 8.321144603
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TABLE IX. Comparison of the field-free energies for
the 2'S states for He, Li+, and H .

TABr.E XI. Comparison of the calculated and experimental
hyperpolarizabilities of He, Li, and H (in atomic units).

Ion

H
He
Li+

E, (a.u. )
(Pekeris&)

—0.527751006—2.90372435—7.27991339

E0 (a,u.)
(Chung and Hurst )

—0.52773389—2.90370799—7.27988397

Ep (a.u.)
(Present work')

—0.52739577—2.90372106—7.27990586

puted dipole polarizabilities as given in Table X clearly
suggest certain trends. These trends are now discussed.

First of all, the convergence tests as more terms are
included in P make it very probable that if the y results
are in error, they err by being too small. This is sug-
gested by the fact that in every case inclusion of sub-
stantially more terms in P has increased n and y. (In
some cases o, and y are increased an insigni6cant
amount. ) For the case of H, all indications suggest that
the computed p is unreliable and may be much too small.
This is suggested by the observations that for H the
convergence of o, and y listed in Table VIII is unsatis-
factory, the zero-order energy is quite poor, and the

TAar, E X. Comparison of the calculated and experimental
polarizabilities of He, Li, and H (in atomic units).

Uncoupled Hartree-Fock
calculationa

Coupled Hartree-Fock
calculationb

Variational method'

Experimental or best

previous calculation

Present results

H

205.9
212d

202'

169.2

He

1.486

1.322

1.384

1.384'

1.383

Ll

0.205

0.189

0.1925

0.1907m

0,1925

+ M. Yoshimine and R. P. Hurst, Phys. Rev. 135, A612 (1964).
b H. D. Cohen, J. Chem. Phys. 43, 3558 (1965).
& K. T. Chung and R. P. Hurst, Phys. Rev. 152, 35 (1966) (accurate

calculation) .
d C. Schwartz, Phys. Rev. 123, 1700 (1961) (accurate calculation).
e S. Geltman, Astrophys. J. 136, 935 (1962) (accurate calculation).
&A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London) 73, 455

(1960) (extrapolated from refractive index).
g K. Bockasten, Arkiv Fysik 10, 567 (1956) (spectroscopic determina-

tion).

a Bo is the field-free energy. These results correspond to 444 terms in
Po for H and Li+ and 1078 terms in Po for He. C. L. Pekeris, Phys. Rev.
115, 1216 (1959); 126, 143 (1962); 126, 1470 (1962).

b The zero-order wave function contains 23 terms. K. T. Chung and R.
P. Hurst, Phys. Rev. 152, 35 (1966).

e The zero-order wave function contains 25 terms.

Uncoupled Hartree-Fock
calculation'

Perturbation theoryb

Experimental result

Present results

He

0.8157X10' 51.55

~ ~ ~ 34,1

~ ~ ~ 51.6m 7.9
0 17359X10' 42.81

Li+

0.2852

0.2427

P. W. Langhoff, J. D. Lyons, and R. P. Hurst, Phys. Rev. 148, 18
(1966).

b L. L. Boyle, A. D. Buckingham, R. L. Disch and D. A. Dunmur, J
Chem. Phys. 45, 1318 (1966).

dipole polarizability a is shown in Table X to be about
20'Po too small.

In this connection, a calculation of n for H by
Schwartz" indicates that the convergence is sufficiently
slow that the present type of function is inadequate to
obtain a reliable y for this ion. In particular, if one in-
cluded enough terms in f to insure convergence of n
and p, one would exceed the core memory of our corn-
puter. Finally, though p for H is quite certain to be
unreliable, it is still much larger than any previous cal-
culation, so it is probably still the best result available.

The picture for He and Li+ ions appears to be rather
more encouraging. The convergence of n and y of Table
VI for He appears to be adequate: For Li+, the con-
vergence is even more satisfactory. Similarly, the free-
atom energies are accurate to several units in the
seventh place and the n's for the ions listed in Table X
are in excellent agreement with the most accurate pre-
vious calculations and with experimental results. Thus,
for these two ions one can reasonably expect the error
in the computed y's to be at most a few percent. It is
of interest to note that the y obtained here for helium
lies just slightly below the rather large confidence limits
of the only available experimental result. "
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