
P H YSI CAL R EV I EW VOLUM E 166, NUM BER 4 20 FEBRUARY 1968

VERS: A Monte Carlo Simulation of Intranuclear Cascades*

K. Crraw, Z. FaAENE, t G. FarEnLANnzn, J. R. GnovER, J. M. MrLLER, Awn Y. SHnrasroro

Brookhaven National Laboratory, Upton, ¹mYork
and

Columbia University, ¹mYork, ¹eFork

(Received 16 August 1967)

The model dependence of the Monte Carlo simulation of intranuclear cascades generated by nucleons up
to 380 MeV incident on complex nuclei has been investigated. DiBerences in the details of the Monte
Carlo procedure between this work and previous intranuclear-cascade calculations are discussed. The speci6c
effects that were investigated are those attendant upon the introduction of refraction of cascade particles
when going through regions of varying potential energy, and upon the change in the nuclear density distri-
bution from that of a uniform-density sphere to one with a diffuse surface similar to that consistent with
electron-scattering experiments. Among the calculated quantities discussed are reaction cross sections, ex-
citation energies of cascade products, spallation cross sections, energy and angular distributions of emitted
particles, and linear and angular momentum transfers. The introduction of the dHfuse-surface-density dis-
tribution improves agreement with available experimental data. At incident energies below ~200 MeV and
for medium and heavy nuclei, best agreement with experimental data is obtained when refraction and reRec-
tion are neglected. Possible reasons for this result are discussed.

I. INTRODUCTION
' 'T has often proved convenient to approximate the
- - interaction of high-energy ()100 MeV) nucleons
with complex nuclei as a sequence of two-body inter-
',ctions between the incident particles and individual
nucleons in the nucleus. In the spirit of this approxima-
tion, the interactions of the struck nucleons with the
xemaining target nucleons have then also been con-
sidered as a sequence of two-body interactions, the
entire initial interaction thus being treated as an in-
tranuclear cascade of fast nucleons which can be
calculated in detail. The properties of such calculated
cascades were first investigated by Goldberger' through
the use of the Monte Carlo technique and a two-
dimensional model of the nucleus, with the assumption
that the characteristics of the nucleon-nucleon collision
within nuclear matter are the same as those in free
space except for the effect of the Pauli exclusion
principle. Several similar investigations of this problem
followed; the most detailed of these were the ones of
Metropolis et al.' and of Bertini. ' Both of these were
carried out with electronic computers, included a large
number of events, and used a three-dimensional model.
Other such calculations have been reported from the
I.os Alamos' and Orsay laboratories. '

%hile the results of the calculation by Metropolis
et al. show good agreement with some experimental
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results, that calculation contains two approximations
(partly dictated by computer limitations) which are
at least dubious and the effects of which should be
investigated. These are (a) the use of a uniform-density
nucleus with a sharp boundary and (b) the neglect of
the refraction and reflection of cascade nucleons due
to spatial nonuniformity of the nuclear potential. The
advent of fast computers with larger fast memories
than were previously available makes practicable the
use of less drastic approximations, and in the recent
calculations by Bertini4 the e6ects of changing from a
uniform to a nonuniform radial density distribution
were investigated.

The principal features in the calculations reported
here are (a) the use of nuclear density and potential-
energy distributions with diffuse boundaries, (b) the
inclusion of refraction and thus possible reQections of
nucleons at the nuclear surface and at assumed bound-
aries between regions of different potential energy, (c)
an attempt to follow the spatial and temporal develop-
ment of each cascade, (d) investigations of the effects of
various model assumptions and parameter choices. This
paper is concerned only with the energy range in which
pion production and subsequent interactions are un-
important (&380 MeV). Our calculation, which we
have called vzoAs, was carried out using an IBM /094
computer. FORTRAN 66 programs of vEGAs are available
for use with the CDC 6600 also.

In this calculation the history of each cascade particle
is stored on magnetic tape. The following information
is recorded; the cascade number; the identity of the
particle (proton or neutron); whether or not it left the
nucleus, its mass, momentum, and energy; its Q.nal
position, (in x, y, s coordinates) and corresponding
direction cosines; and the time and position of each of
its interactions with other particles. Various editing
routines may be used to derive, from the data available
on tape for a given set of cascades, such information as:
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energy and angular distributions of outgoing particles;
mass, charge, excitation energy, momentum, and
angular momentum of residual nuclei; and correlations
between these quantities.

In Sec. II we describe the nuclear models that were
investigated. In Sec. III the program of the calculations
is discussed insofar as it differs from other published
calculations. Section IV is devoted to comparisons of
some of the results of calculations made with the
di8erent nuclear models described in Sec. II and to
comparisons with experimental data. Some conclusions
from these comparisons are discussed in Sec. V.

p(r) = pp
=po(c+'~ r)/~—
=0

if r&c——,'6,
if c—-,'A(r & c+,'6, (1)-
if r) c+zA,

G. NUCLEAR MODELS

Three alternative models for the nuclear density dis-
tribution were considered: (a) a constant-density
nucleus of radius r=rpA'" with rp 1.3X 10 "——crn (the
model used by Metropolis ef al.s); (b) a trapezoidal
density distribution

and the "skin thickness" was chosen as

+=3)($0—&3 cm ~

(c) a step-function density distribution which is de-
picted in Fig. 1 and described below in detail.

The momentum distribution of the nucleons in the
nucleus was assumed to be that of a degenerate Fermi
gas with the Fermi energy given by

Ep, =(h'/. 2m) (37rsp;)'ls,

where the subscript i stands for either protons or
neutrons, m is the nucleon mass, and p; is the density
of protons and neutrons, respectively. In the models
with trapezoidal and step-function density distribu-
tions, the Fermi energy at any point in the nucleus was
computed from the corresponding density. The negative
of the potential energy at any given point was taken
as the Fermi energy plus the average of the binding
energies of the most loosely bound neutron and proton.

The nuclear charge distribution as measured by
Hofstadter' may be represented either by the tra-
pezoidal distribution of Eq. (1) or by the Fermi
distribution

where c, the radius at which the density has fallen oG

to —,
' the density at the center of the nucleus, is given by

c=rpA'ls rp=1.07X10—"cm

p(r) =pp/f1+exp(» —c)/~j,

with c=1.07A'I')&10 "cm and

r0.1 r0.9=4.4a= 2.4XR "cm,

(3)
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FzG. 1. Four models of nuclear density distribution for Cu~.
(a) Uniform density used in Ref. 3; (b) Fermi distribution of
R,ef. 7; (c) trapezoidal distribution of Eci. (1); (d) step-function
distrjbgtjon /ascribe/ jn t;ext:,

where ro. ~ and ro 9 are the radii at which the density has
dropped to 0.1po and 0.9po, respectively. Assuming the
shape of the nuclear-density distribution to be identical
with the shape of the measured charge distribution, we
see that the trapezoidal distribution of Eq. (1) is not
very diferent from the Fermi distribution for

r(rp t=c+sh.
The trapezoidal distribution was our erst attempt to

take into account the effect of the diffuse edge of the
nucleus. It has, however, two disadvantages: (i) It
does not leave any freedom to vary the manner in
which the density approaches zero since the slope is
fixed by the electron scattering data; (ii) if refraction
due to changes in nuclear density is taken into account
in the calculation (see below), continuously changing
densities cause time-consuming computational difBcul-
ties. As to the erst objection, a good representation of
the very disuse outer edge of the nucleus may at erst
not seem to be of great importance in high-energy
nuclear reactions. However, this is not so. It is this
portion of the nucleus that is largely responsible for
the relatively high yield of very short nuclear cascades
such as (P,P), (P,E), (P,PN), (P,2P).' These cases, des
are mainly produced when the incoming particle strikes
the nucleus at a large impact parameter and does not

' R. Hofstadter, Ann. Rev. Nuci. $ci. 7, 295 (1957).
J.R. Grover and A. A. Caretto, Jr., Ann, Rev, Nuci, $ci. 14, 51

(&9m).
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enter the denser regions of the nucleus. If it does mak. e
an interaction in this very diffuse outer edge of the
nucleus, the probability of both interaction partners
escaping from the nucleus without further interaction
is relatively high.

As a consequence, neither the constant-density model
nor the trapezoidal model were extensively used in the
calculations to be reported here. The constant-density
model was used primarily in order to compare the re-
sults of our calculations with previous calculations
which used this model, in particular the work of Metro-
polis et a/. ' In most of our calculations, a step-function
distribution (Fig. 1) was used to approximate the Fermi
distribution fEq. (3)j by seven concentric regions, each
of constant density. The outer radius of the central
region is c—2.50 F (with c=1.07A'~' F), while the
radius of the nucleus is taken to be c+2.50 F. The
outermost region is taken to be 1.25 F thick, the next
four regions are each 0.625 F thick. , and the first step
from the top is again 1.25 F thick. The density P& of
region 1 (the outermost region) is determined by the
condition that it contain the same number of nucleons
as the region outside the sphere of radius r~ in the Fermi
distribution where r'=c+1.25 F. The distance r& is
the inner radius of the region 1 in the step distribution
and corresponds to the radius at which the density of
the Fermi distribution has fallen to 10% of the maxi-
mum value, p(r') =0.1po. In other words the same
number of nucleons are contained outside the sphere
of radius r' (1.07A'~'+=1.25)X10 " cm in both dis-
tributions. The difference in density between the inner-
most region (region 7) and the adjoining region (region
6) is again p&, whereas the density differences between
all intermediate regions, 8, are equal;

~=P2 P&=Pa P2=P4 P3=P~ P4=P6 P5.

The quantity 5 is determined by the condition that
the total number of nucleons in the nucleus be A. The
momentum distribution of the protons and neutrons
in each density region is, as stated before, assumed to
be that of a degenerate Fermi gas. The Fermi energy is
given by Eq. (1) with p; the proton or neutron density,
respectively, for the region in question. The ratio of
proton density to neutron density is assumed to be
Z/(A —Z) in all regions.

As a consequence of the variation of the Fermi energy,
the nuclear potential of the protons and neutrons
differs in the various density regions. Conservation of
energy requires, therefore, that the kinetic energy of the
particles must also change as they cross from one
density region into the adjoining region. All previous
calculations of the intranuclear-cascade process which
have taken into account the change in the kinetic
energy as a result of changing nuclear potential have
done so by changing the kinetic energy of the cascade
particle without changing its direction of motion. In
the present paper we d,iscuss and compare the results Qf

calculations both with and without the change in direc-
tion required by the changing nuclear potential, that is,
with and without the refraction and reQection appro-
priate to a central potential.

To calculate the refraction of a particle, the radial
component of the particle momentum is changed as the
particle enters a different density region, while the
tangential component is unchanged. Thus, assuming the
usual invariance of 2'—p', we have

pz'2= pz2+g'2 —E2 (4)

where p' is the radial component of the momentum of
the particle, E is its total energy, and the primed and
unprimed values correspond to the new and old density
regions, respectively, and where the units are such that
c=1.

The new energy E' is given by

E'=E (V' —V), — (5)

where V and t/' are the values of the nuclear potential
in the old and new regions. To conserve the tangential
component of momentum, the angle of refraction is
given by

sin8 P'

sin8' P
(6)

The critical angle for total reQection e„comes from
Eqs. (4) and (6) under the condition that sin8'=1:

cos8„=(E'—E")'i'/p. (7)

The cascade particles are followed until their total
energy (kinetic plus potential plus mass) drops below
some cutoff energy. The cutoff energy is treated as a
free input parameter and it may have different values
for protons and for neutrons. The cutoff energies in the
calculation. reported here are as follows: (a) for cascade
neutrons, the Fermi energy plus twice the average
binding energy; (b) for cascade protons, either the
Fermi energy plus twice the average binding energy
or the Fermi energy plus the sum of the average binding
energy and the Coulomb barrier, whichever is the larger.
A single average value is used for the binding energies
of both protons and neutrons for a given starting
nucleus (obtained from mass tables as the average of
the binding energies of the last few nucleons in this
nucleus), and the same value is used throughout the
calculation (i.e., independently of how many nucleons
have escaped from the nucleus). The Fermi energies for
the residual nucleons are not changed as nucleons leave
the nucleus. Hence the nuclear potential is assumed not
to change during the cascade stage of the high-energy
nuclear reaction.

Both the residual excitation and~the recoil momentum
of the nucleus at the end of the cascade stage are re-
corded as part of the output data. The residual excita-
tion energy is calculated as in Metropolis et ul. ' and the
recoil momentum is obtained by subtracting tht: ma-
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mentum of all outgoing particles from the momentum
of the bombarding particle. The residual angular mo-
mentum of the nucleus may be calculated in an analo-
gous way.

The eBect of the Coulombic interaction between the
target nucleus and incident and emitted charged par-
ticles is explicitly considered in this calculation in only
one way: The refraction of cascade protons crossing
the nuclear boundary is appropriate to a potential
energy just outside the nuclear boundary which is the
Coulomb potential rather than zero potential as for
neutrons. The Coulomb deQection of protons outside
of the region of nuclear potential need not be considered
explicitly in the Monte Carlo program because this
deflection has no effect upon the form of the distribution
of impact parameters of the incident particle. Other
than the energy and the identity of the incident particle,
the impact parameter is the only quantity of significance
to a cascade, since the internal properties of a calculated
cascade are independent of any rotations of the coordi-
nate system. This remark is, of course, not true for
external properties of the cascade such as the direction
cosines of the emitted particles and therefore also the
recoil properties of product nuclei.

That the Coulomb deQection does not change the
distribution of impact parameters may be seen from
two relations;

b'=b(1 —B/h) "'
W (b)db = 27rbdb/x R2

(8)

(9)

where b and b' are the impact parameters of an incident
particle at in6nity and at the surface of the nucleus
after Coulomb deQection, respectively, h is the kinetic
energy of the incident particle at in6nity, 8 is the
electrostatic potential energy of the system when the
incident particle is at the surface of the nucleus, and
W(b) is the probability density for an impact parameter
b at infinity. Equation (8) comes directly from the con-
servation of angular momentum assuming that there is
not yet any excitation of the target nucleus by the
incident particle. From Eqs. (8) and (9) it follows that

straightfonvard use of transformation matrices which
represent appropriate rotations of the coordinate
systems. The appropriate rotations correspond to
angular deRections of the incident and each of the
emitted particles in the Coulomb Geld of the nucleus.
These corrections were not made in the results to be
reported here because they are nearly always negligible.
For example, if we consider the emission of protons from
a uranium nucleus at an impact parameter equal to
the radius, where the eGect is the largest, the Coulomb
deQections of protons of 25, 50, and 100 MeV are, re-
spectively, 22.8', 6.6', and less than 1'.

III. SOME DETAILS OF THE CALCULATION

Only those aspects of the present calculation that
diGer significantly from previous similar calculations'
will be examined in this section.

5057.4 9069.2
+ + 6.9466mb,

2 E
E~& 40 MeV

239 380 1802.0
+ +27.147 mb, 40&8&~400 MeV

E' E
34.5 mb, 400(E~&800 MeV;

A. Elementary Interaction Cross Sections

DiGerential cross sections for the intranuclear nu-
cleon-nucleon collisions were obtained by interpolation
of the values given in Tables I and II. These tables
give normalized differential cross sections for elastic
scattering, together with the corresponding total cross
sections for neutron-proton collisions (Table I) and for
proton-proton and neutron-neutron collisions (Table II).
Linear interpolations for both energy and angle were
used with the normalized differential cross section
entries. The total cross sections were obtained from the
following expressions which approximate the values
given in Tables I and II.

For p ncollisions, -

W'(b')d b' =$(1 B/8)/vrR2]2~b'—db', (10) while those for p-p and e ncollisions -are
which shows that the probability of a given impact
parameter at the nuclear surface after Coulomb deQec-
tion is still proportional to the impact parameter. ' The
additional factor of (1 B/8) merely means th—at the
maximum impact parameter at ininity that can lead
to a nuclear reaction is R(1—B/h)'I' instead of R and
thus that the reaction cross section can be no larger
than mR'(1 —B/h). It is the latter quantity which is
used when cross sections for various events are estimated
from the present calculation.

The correction of "external" properties of the cas-
cades for Coulombie deQection may be eGected by the

' Equation (8) is correct nonrelativistically. Introduction of its
relativistic equivalent does not change the conclusion.

1174.8 3088.5
+ +5.3107 mb,

2
E~& 40 MeV.

93074 11.148
+22.429 mb, 40(E& 310 iVCeV

jV

887.37
+0.05331E+3.5475 mb,

jV

31.0(E&~ 800 MeV.

The quantity E in the above equations is the kinetic
energy of one of the particles in the laboratory system
incident on the other particle at rest.
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TABLE I. Angular distributions, total elastic cross sections, and total interaction cross sections for neutron-proton collisions. Entries
for the differential cross sections' are values of (dtt, ~/dQ)/tr, &, in the c. m. system. The angle ft, refers to the direction of motion of
the neutron.

~lab
(MeV) (MeV)

cos8ct, m,

1.00 0.99 0.96 0.90 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

& 14
25
40
60
90

135
200
300
400
600
800

& 7.0
12.5
19.9
29.7
44.4
66.3
97.4

144.4
190.2
279.1
364.4

0.099 0.099 0.097 0.095 0.091
0.127 0.125 0.120 O.i 11 0.098
0.162 0.154 0.132 0.113 0.096
0.183 0,163 0.139 0.121 0.096
0.260 0.213 0.137 0.104 0.080
0.179 0.160 0.134 0.111 0.099
0.226 0.180 0.148 0.123 0.104
0.426 0.343 0.235 0.179 0.137
0.626 0.465 0.317 0.222 0.152

0.088 0.085 0.082 0.079
0.088 0.079 0.072 0.068
0.082' 0.073 0.067 0.063
0.076 0.062 0.053 0.0490
0.069 0.062 0.057 0.052
0.089 0.081 0.073 0.066
0.091 0.081 0.074 0.068
0.109 0.089 0.074 0.063
0.116 0.091 0.072 0.061

0.075
0.065
0.060
0.0480
0.0478
0.059
0.062
0.055
0.052

0.073
0.065
0.057
0.0476
0.0445
0.054
0.056
0.0481
0.0447

0.071
0.064
0.055
0.0478
0.0436
0.050
0.052
0.0422
0.0398

0.071
0.064
0.055
0.0486
0.0458
0.0488
0.0493
0.0378
0.0353

0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

TanLE 1 (cotttfnled)

L'lab
(MeV)

~em
(MeV) —O.1 —0.2 —0.3 —0.4 —0.5

costYo.m, =
—0.6 —0.7 —0.8

&el ~'tot—0.9 —0.96 —0.99 —1.00 (mb) (mb)

& 14
25
40
60
90

135
200
300
400
600
800

& 7.0
12.5
19.9
29.7
44.4
66.3
97.4

144.4
190.2
279.1
364.4

0.071
0.065
0.057
0.051
0.051
0.0480
0.0472
0.0348
0.0317

0.071
0.067
0.060
0.055
0.057
0.0494
0.046/
0.0331
0.0293

0.072
0.069
0.063
0.060
0.064
0.052
0.0482
0.0334
0.0284

0.073
0.072
0.068
0.067
0.071
0.057
0.052
0.0365
0.0291

0.075
0.075
0.075
0.074
0.080
0.063
0.058
0.0430
0.0313

0.077
0.079
0.082
0.083
0.090
0.072
0.068
0.052
0.0407

0.079 0.082
0.084 0.090
0.092 0.105
0.096 0.120
0.101 0.121
0.08e 0.108
0.082 0.102
0.067 0.089
0.056 0.078

0.086 0.090 0.094 0.095
0.101 0.107 0.112 0.113
0.123 0.141 0.159 0.187
0.160 0.193 0.216 0.224
0.151 0.196 0.254 0.279
0.143 0.182 0.234 0.331
0.134 0.180 0.252 0.389
0.126 0.170 0.235 0.329
0.109 0.138 0.183 0.268

0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0,080 0.080
381 381
214.5 214.5
130.0 130.0
78.0 78.0
53.5 53.5
41.6 41.6
35.9 35.9
33.5 34.2
25.9 34.3
18.9 34.9

' See Refs. 12-19,

The angles in Table I refer to the direction of motion
of the neutron. For energies greater than 200 MeV in the
c.m. system, in both Tables I and II, the total cross
section becomes appreciably larger than the elastic
cross section, while the tabulated angular distributions
are for elastic scattering only. The angular distribu-
tions, adjusted to the total cross sections, were never-
theless used up to 800 MeV because pion production
was not taken into account.

The neutron-proton total and diGerential cross sec-

tions used in the calculations were smoothed experi-
mental values as far as possible. In regions where data
are scanty or nonexistent, plausible extrapolations or
interpolations were made. Hand-smoothing was carried
out, 6rst as a function of energy, with angles held con-
stant, then as a function of angle, at constant energy.
The proton-proton diGerential cross sections are simi-
larly smoothed experimental values outside the regions
strongly inQuenced by Coulomb scattering. For calculat-
ing intranuclear proton-proton collisions we used only

TA&LE II. Angular distribution, total elastic cross sections, and total interaction cross sections for proton-proton and neutron-neutron
collisions. Entries for the differential cross sections~ are values of 2(da, &/dQ)/e, ~ in the c. m. system.

L lab
(MeV)

&20
40
60
80

100
170
250
310
350
460
560
660
800

(Mey)

&10
19.9
29.8
39.6
49.4
83.2

121.1
149.1
167.5
217.4
261.7
305.2
364.6

1.00 0.96

0.159 0.159
0.201 L 0.195
0.194 0.184
0.216 0.202
0.246 g 0.225
0.299 0.255
0.278 0.231
0.221 0.187
0.190 0.168
0.198 0.192
0.368 0.261
0.72 0.318
092 0 wow

COS8e.m. =
0.9 0.8 0.7 0.6 0.4

0.159 0.159 0.159 0.159 0.159
0.187 0.176 0.169 0.160 0.146
0.171 0.162 0.160 0.157 0.154
0.187 0.174 0.164 0.156 0.148
0.202 0.179 0.164 0.155 0.144
0.210 0.174 0.157 0.146 0.140
0.186 0.160 0.153 0.150 0.150
0.159 0.155 0.155 0.156 0.156
0.159 0.156 0.156 0.156 0.157
0.171 0.163 0.161 0.158 0.157
0.210 0.182 0.165 0.153 0.139
0.264 0.219 0.184 0.156 0.115
0.363 0.265 0.193 0.143 0.076

0.2

0.159
0.143
0.154
0.146
0.138
0.140
0.148
0.158
0.162
0.151
0.128
0.091
0.0475

0.159
0.143
0.154
0.145
0.138
0.140
0.148
0.159
0.162
0.147
0.123
0.082
0.0399

80.6
48.0
36.6
31.6
25.9
24.0
23.1
23.1
23.5
24.9
25.0
22.3

80.6
48.0
36.6
31.6
25.9
24.0
23.1
24.0
28.3
33.6
41.5
47

&el
(mb) (mb)

' See Refs. 12-19.
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the nucleonic part of the scattering cross section. The
differential cross sections inside the regions of appreciable
Coulomb scattering were estimated as follows. At 560
MeV and larger energies, where e6ects of Coulomb
scattering are con6ned to very small angles, the diBer-
ential cross section at and near 0' (180') could be ob-
tained from plausible extrapolations of the data at
larger angles. At 310, 156, and 40 MeV the tabulated
scattering amplitudes of Kerman, McManus, and
Thaler" were used in the angular regions dominated by
Coulomb scattering; smooth curves were drawn through
the calculated points with respect to both energy and
angle, and made to join smoothly also with the experi-
mental data outside the Coulomb scattering region.
This still leaves an awkward gap at 0' between 310 and
560 Mev. Here, the optical theorem o.&,t,

——47' Imf(0)
was used to obtain a lower limit from the total cross
section, since (do./dQ) (0') =

~
f(0) ~'&~ LImf(0) j'. ~ith

this safeguard, the gap was simply bridged with a
smooth curve that looked plausible with respect to
both energy and angle. For angles larger than 10', no
such hiatus occurs. The proton-proton total cross sec-
tions were taken from the compilation of Barashenkov
and Maltsev, " for energies larger than 2 MeV. Values
at ~& 2 MeV were calculated by the method of scattering
lengths. The experimental data used for constructing
Tables I and II and for the total-cross-section formulas
given above were taken from Refs. 12—19.

B. Method Used for Following Cascade Development

An important difference between previous calcula-
tions and the present computer program lies in the
sequence in which the "history" of the particles taking
part in the intranuclear cascade is followed. Previous
calculations followed one particle at a time from its
erst interaction with another cascade particle (or its
entrance into the nucleus in case of the incoming
particle) until either its energy fell below the cutoff
energy or it escaped from the nucleus. First the in-

coming particle was so followed, then each of the par-
ticles with which the incoming particle had interacted,

's A. Kerman, H. McManus, and R. Thaler, Ann. Phys. (N. Y.)
8, 551 (1959).

"V. S. Barashenkov and V. M. Maltsev, Fortschr. Physik 9,
549 (1961).

"W. N. Hess, Rev. Mod. Phys. 30, 368 (1958).
"M. D. Goldberg, V. M. May, and J. R. Stehn, Brookhaven

National Laboratory Report No. BNL-400, 1962 (unpublished).' J. R. Stehn, M. D. Goldberg, B.A. Magurno, and R. Wiener-
Chasman, Brookhaven National Laboratory Report No. BNL-325,
2nd ed. , Suppl. No. 2, 1964 (unpublished)."J.P. Scanlon, G. H. Stafford, J. J. Thresher, P. H. Bowen,
and A. Langsford, Nucl. Phys. 41, 401 (1963}.

~6 J. L. Gammel, in Fast ¹utron Physics, Part II, edited by
J. B. Marion and J. L. Fowler (Interscience Publishers, Inc.,
New York, 1963},p. 2185."J.N. Palmieri, A. M. Cormack, N. F.Ramsey, and R. Wilson,
Ann. Phys. (N. Y.) 5, 299 I',1958).

'8 T. Fujii, G. B. Chadwick, G. B. Collins, P. J. Duke, N. C.
Bien, M. A. R. Kemp, and F.Turkot, Phys. Rev. 128, 1836 (1962)."R. Wilson, The Nucleon-Nucleon Interaction (Enterscience
Publishers, Inc., New York, 1963).

and in this manner the trajectories of all the other
cascade particles were calculated one after the other.

In the present calculation the development of the
intranuclear cascade is followed on a timelike basis:
In a manner discussed in the Appendix, small time in-
tervals 7- are chosen, and in each time interval the
progress of all cascade particles above the cutoff energy
and inside the nucleus is calculated and recorded. Thus
at first only the incoming particle is followed, but after
the erst allowed interaction both the incoming particle
and its collision partner are followed in each time
interval, and with each allowed interaction the number
of particles to be followed in the subsequent interval
increases. The resultant di6erence, then, from the
mechanics of previous calculations is that in the earlier
calculations the site of a collision was determined by
the correlation between a random number and the par-
tial integration of the probability of the cascade particle
to interact at a distance between a and a+du I Eq.
(A3)g, whereas in the present calculation a random
number determines whether the particle makes a colli-
sion in each of the many small but finite segments of
its path.

The basic results of the Monte Carlo calculation are,
of course, independent of the method by which the
cascade particles are followed. The advantage of the
time-sequence calculation method employed in the
present program is that it makes it possible, in principle,
to take into account effects of correlation between two
close cascade particles and to consider local changes in
the nuclear potential and nuclear density due to
previous interactions. However, in the calculations to
be discussed in this paper, these presumably secondary
effects were ignored. The disadvantage of the time-
sequence method as compared to the particle-sequence
method of previous calculations lies in the greater
logical complexity of the computer program.

C. Selection of Collision Partners and Sites

Another phase of the calculation in which the present
program di6ers from previous intranuclear cascade
calculations concerns the choice of the interaction
partner. The choices of collision partners and collision
sites are related and the details of how they were made
in these calculations are discussed in the Appendix.
The two significant points are that the method outlined
in the Appendix is convenient for following the cascade
on a timelike basis as discussed in Sec. IIIB, and that
the collision partner may be randomly selected directly
from the momentum distribution of the target nucleons
in the nucleus rather than from that distribution
weighted by the relative velocity and by the scattering
cross section (relative-velocity dependent) of a pair of
colliding nucleons. The latter point introduces great
convenience either when the scattering cross section
is not a simple function of the relative velocity or when
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the momentum distribution is more complicated than
that for a Ferini gas.

A. Reaction Cross Section

The erst obvious quantity that should be compared.
is the reaction cross section predicted by each of the
models. Some relevant information is presented in
Tables III and IV for the interactions of 328-MeV
protons with As" and of 375-MeV protons with Bi"'
targets, respectively. There it may be seen that the
maximum spread in geometrical cross section among
the various models is much larger than the maximum
spread. in reaction cross section. This relative insensi-
tivity of reaction cross section to model is expected
because the diRuse edge of the TRAP and sTKP models
gives rise to increased. transparencies. The eRect of

TABLE III. Comparison among dif'ferent models:
Interaction of As" with 378-MeV protons.

SQUA
SQUANO
TRAP
TRAPNO
STEP
STEPNO

(mb)

920
920

1130
1130
1540
1540

0 inel

(mb)

800
760

735
907
804

1.011
1.603
1.110
1.538
1.186
1.443

1.045
1.507
1.113
1.463
1.214
1.362

Av.
excitation
energy U

(Mev)

129.9
74.8

105.4
83.4
89.9
70.6

a ny and n~ are the average numbers of cascade protons and neutrons,
respectively, emitted per inelastic cascade.

IV. COMPARISONS AMONG MODELS AND
WITH EXPEMMENTAL DATA

As was described in Sec. II, three diRerent nuclear-
density distributions were investigated in the present
calculation: uniform, trapezoidal, and step. They are

designated as sQUA, TRAP, and, sTEP, respectively.
Further, each of these density distributions was in-
vestigated with and without inclusion of the refraction
caused by a change in potential energy; these two situa-
tions are designated by the addition of no sufFix and by
the addition of the sufIix No, respectively. For example,
sQUA indicates the uniform-density distribution with
refraction and sTEPNo indicates the step-function den-
sity distribution without refraction. Thus, a total of
six diRerent models were investigated. As discussed in
Sec. II, the sTEP model was expected to conform best
to the interaction of high-energy nucleons with com-
plex nuclei.

In this section, the results obtained with these six
models are compared with each other and. with some
experimental data. An attempt is made to pinpoint
those calculated quantities that are primarily sensitive
to the density distribution assumed and those that are
strongly affected by the inclusion or neglect of refrac-
tion. However, as will be seen, it is not always possible
to disentangle these two effects—they often interact
with each other in ways that are dif6cult to rationalize.

TABLE IV. Comparison among diferent models:
Interaction of Si~' with 375-MeV protons.

SQUA
SQUANO
TRAP
TRAPNO
STEP
STEPNO

&geom

(mb)

1869
1869
1935
1935
2460
2460

&inel
(mb)

1701
1632
1606

1725
1556

0.666
1.146
0.702
1.129
0.777
1.095

1.285
1.992
1.340
1.902
1.426
1.804

Av.
excitation
energy U'

(MeV)

175.7
110.4
169.5
126.6
149.6
119.2

a n& and n& are the average numbers of cascade protons and neutrons,
respectively, emitted per inelastic cascade.

TABLE U. Comparison between calculated and experimental
inelastic cross sections for proton interactions.

Incident
Target energy
nucleus (MeV)

Al2' 95

Cu65
160
80

160

AS25

Agl08
Talsl

300
375

60

140

375

Ups

Model

STEP
STEPNO
STEP
STEP
STEPNO
STEP
STEPNO
STEP
STEPNO
STEP
STEPNO
TRAP
TRAPNO
SQUA
SQUANO
STEP
STEP
STEPNO
STEP
STEPNO
SQUANO
STEP
STEPNO
SQUANO
STEP
STEPNO
TRAP
TRAPNO
SQUA
SQUANO
STEP

&calc
(mb)

555&8
448~7
475&8

1036m 26
790~23
888&25
748+23
811~24
687&22
907+21
804~20
818+17
735w16
800&15
760+15

1130~26
1564~26
1443~25
1883~60
1400~52
1315+42
1821~64
1480+57
1504+50
1725~34
1556~35
1606~32
1434~30
1701~32
1632~31
1955~22

&exptb

(mb)

415
400

780

750

635

920

1340

1680

~1500

~1920

a The errors shown are standard deviations.
& The experimental cross sections were taken from curves given by

A. Johansson, U. Svanberg, and O. Sundberg, Arkiv Fysik 19, 527 (1961).
References to the original sources are given in that paper. "Approximate"
signs indicate interpolated values.

refraction on reaction cross section is also as expected:
The inclusion of refraction will always increase the pro-
jected path length of the incident particle through the
nucleus and, for the models with diffuse surfaces, will
increase the probability that the incid. ent particle will
enter a region of greater density. Both of these effects
enhance the probability of an interaction by the inci-
dent particle and thereby decrease the transparency of
the target nucleus.

Comparisons between calculated and measured reac-
tion cross sections are presented in Table V. There it is
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seen that the sTKP model, over a wide region of energies
and target masses, overestimates the magnitude of
reaction cross sections and often gives poorer agreement.
with experimental results than do some of the other
models. 2-

~ STEP
~ TRAP
~ SQUA

[ I I

a STEPNO
- 0 TRAPNG

0 SQUANO

3. Average Number of Emitted Particles

The predictions of the average numbers of nucleons
that are emitted in the cascades generated in each of
the model nuclei are shown in Tables III and IV. There
are two interesting features of these results:

(a) If the effects of refraction are excllded, the aver-
age number of directly emitted particles is larger for
the uniform-density model (sgUANo) than for the
models with diffuse edges (TRAPNo and sTEPNQ).

(b) If refraction is included, the situation is en-

tirely reversed and the model with the most diffuse edge
(sTEP) yields the greatest number of knock-on particles.
The 6rst observation demonstrates the signi6cance of
the relatively large central densities (see Fig. I) that are
found in the nuclear models with disuse edges. The two
observations taken together indicate the subtle inter-
action between the nuclear model used and the e6ects
of refraction, referred to at the beginning of this
section.

C. Average Excitation Energy

The complexity of the elects that accompany either
a change of the nuclear model used or the inclusion of
refraction is underlined by the changes in the average
excitation energy as given in the last columns of Tables
III and IV. The increase in the average excitation
energy attendant upon the inclusion of refraction in
each nuclear model is expected for the same reasons as
were previously given for the concomitant decrease in
transparency. The eBects of density distribution on
excitation energy are not so easily rationalized.

D. Spallation Reactions

One of the principal goals of Monte Carlo cascade
calculations is the correct prediction of spallation-
product yields from a wide variety of reactions. Un-
fortunately, such predictions depend not only on the
cascade calculations but also on the manner in which
the evaporative de-excitation of the cascade products
is treated. In the present instance, the evaporation
calculations were always performed by the Monte Carlo
method described by Dostrovsky, Fraenkel, and Fried-
lander. ~ The computer program was kindly made
available by N. T. Porile.

For a comparison of calculated and experimental data
on a complete mass-yield curve we have chosen the
interaction of As" with 378-Mev protons studied ex-
perimentally by Cumming. st Qualitatively, the shape

~ I. Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev.
116, 683 (1960).

J. B. Cumming, Ph.D. thesis, Columbia University, New
York, 1954 (unpublished), and personal communication.
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of the mass-yield curve, with cross sections extending
over three orders of magnitude (see inset in Fig. 2), is
rather well reproduced by all vEGAs models. To show
the degree of agreement or disagreement more clearly,
ratios of calculated to experimental cross sections are
plotted at each mass number in Fig. 2 for the six models.
The "experimental" results are based on Cumming's
data and include interpolated values for the cross sec-
tions of stable and long-lived products not observed by
him. These interpolated values were obtained from the
relative isobaric yields predicted by the evaporation
calculations mentioned above. Experimental data are
plotted only at those mass numbers where the measured
contribution exceeded 50% of the total value.

Figure 2 shows that, for each of the density distribu-
tions, the predicted cross sections of simple reactions
tend to be decreased, and those of complex spallation
reactions are substantially increased when refraction
ducts are included; this is a direct consequence of the
increased energy deposition. The over-all agreement
between experiment and calculation is poorest for the
sQUA and sQUANo models. The diBerences among the
other four sets of results are probably not suKciently
large to allow a clearcut choice among them, except
possibly for the simplest reactions, where the sTEP and
sTEPNQ models appear to be superior to the TRAP and
TRAPNQ models (see next section) . It is not clear
whether the peak in the o«1./o. „curves near A =55
that is common to all the models except sQUANo repre-
sents a failure of the cascade calculations. It may well
be a result of the manner in which the evaporation was
treated. Preliminary calculations by Hillman" indicate
that the inclusion of evaporation of particles heavier
than He4 in the calculations leads to a shift of the
product spectra to lower masses for initial excitations
above 200 MeV; such an eGect would qualitatively

I M. Hillman (private communication).

FIG. 2. Comparison of calculated and experimental mass-yield
curves obtained in the interaction of As" with 378-MeV protons.
In the main body of the figure, the ratios of calculated to experi-
mental cross sections are shown, for the six models investigated.
The inset shows the actual experimentally determined curve
(Ref. 21).
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FIG. 3. Excitation function for the reaction Him', (p,8e)Po~'.
The solid points are the experimental data of Ref. 23. The open
circles and crosses are calculated with the sTEPNQ and sTEP
models, respectively.

u C. Hrun and M. Lefort, J. Inorg. Nucl. Chem. 26, 1633
(1964), and personal communication.

give rise to a flattening of the o.,~,/o, ,t curves below

A ~60.
Comparisons between calculated and observed" exci-

tation functions for some reactions of protons with
Si'~ are shown in Figs. 3 and 4. The poor agreement
between the experimental results and the calculation
based on the sTEp model again exempli6es the over-
estimation of the opacity of the nucleus at low incident
energies that is evidently inherent in the sTzp model.
For example, at 95 MeV about 300 mb out of the calcu-
lated 400 mb for the production of Po'" (Fig. 3) comes
from the evaporation of eight neutrons from compound
nuclei that are formed in the cascade; the remaining
100 mb, a value that is not far from the observed value,
arises from events in which at least one of the neutrons
is directly ejected in the intranuclear cascade. A
corollary of this difhculty is seen in the excitation func-
tion for the production of Pb' ' that is shown in Fig. 4.
Since the formation of Pb'0' probably requires the
direct ejection of at least one proton because the
relatively large Coulomb barrier inhibits proton emis-
sion during the evaporation step, any model which
underestimates the emission of cascade particles will

underestimate the cross section for formation of Pb'".
The comparison shows that the sTEP model consistently
underestimates the Pb'" cross section, just as it con-
sistently overestimates the Po'" cross section. Cross
sections based upon sTzpNo, which are also shown in
Figs. 3 and 4, show better agreement with experiment
than do those based upon sTEP, but also leave some-
thing to be desired.
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I'xo. 4. Excitation function for the production of Pb 3 by proton
bombardment of Bi~'. The solid points are the experimental data
of Ref. 23. The open circles and crosses are calculated with the
sTEPNQ and STEP models, respectively.

E. "Simple" Reactions

As was mentioned by Metropolis et ul. ,' the large un-
derestimation of the cross sections for simple nuclear
reactions such as (p,pn), etc., was one of the outstanding
failures of the sQUANo model. The suggestion made in
Ref. 3 that this large discrepancy (a factor of 2—3)
would be diminished by the introduction of a diffuse
nuclear surface was borne out by Bertini's' investiga-
tion of a model similar to BTEpwo. It was further found
by Bertini that the introduction of an unrealistically
large radius in the sQUANo model can also remove the
discrepancy. This latter result is not surprising since,
qualitatively, the probability of a (p,pm) reaction rela-
tive to more complex reactions should increase as the
ratio of mean free path (X) to radius (E) increases, and,
since the mean free path varies approximately as E',
this ratio (X/R) varies about as R'.

The effects of the diffuse surface and of refraction on
simple nuclear reactions are illustrated in Table VI,
where cross sections of various types of simple cascades
with As" and Bi"', classified according to ejected
particles and residual excitation energy, are given in
mb for each of the six models investigated. The cross
section, for example, of the (p,pcs) reaction would
approximately be given by the sum of the cross sections
for the (P,PF) (U(10) cascade and those fractions of
the (P,P') (10&U&20) and (P,X) (10&U(20) cross
sections which result in the evaporation of one and only
one neutron or proton, respectively. A comparison of
the appropriate quantities among the various models
is in agreement with the result of Bertini on the effects of
a diffuse surface. Further, it may be seen that the
effects of the diffuse surface survive, although they are
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TABLE VI. Calculated cross sections in mb for particular short cascades.

Q j209 375

Incident
energy

Target (MeV)

378

Type

P,g

P,P'

P,PE

P,2P

P,2E

P,2P

P,2$

Residual
energy
(MeV)

V&10
10&U&20

V&10
10&V&20

V&10
10&V&20

V&10
10&V&20

U &10
10&V&20

U& 10
10&V&20

V&10
10&V&20

U& 10
10&V&20

V&10
10&V&20

V&10
10&U&20

SQUANO

1.5+0.7
4.3~1.1

i.5+0.7
3.4+1.0

TRAPNO

4.2+1.2
2.3&0.9

TRAP

2.3a0.9
5.7&1.5

3.1~1.0
8.3+1.6

2.1+0.8
8.6+1.6

6.4+1.6 5.3+1.4
9.1+1.8 12.8+2.2

16.5+2.2
9.2&1.7

14.7+2.1
12.9+2.0

0.6+0.4
1.5w0. 7

1.3~0.9
3.7~1.5

9.2+1.7
17.1+2.3

5.2+1.3
6.1+1.4

none
0.6+0.4

1.2+0.9
6.2+2.0

26.8&3.2
18.5+2.6

24.5&3.0
8.7&1.8

none
1.1+0.7

2.6&1.3
7.1+2.1

25.3&3.1
10.9~2.0

16.6&2.5
10.9~2.0

0.75&1.5
none

1.9~1.1
5.8&1.9

3.1~1.4
11.2~2.6

5.0+1.8 5.2+1.8
7.5~2.2 11.0&2.7

5.2&1.8
14.8&3,1

18.1+3.4
5.0~1.8

3.1&1.4 23.8+3.9
2.5+i.2 5.8+1.9

12.3~2.8
1.3+0.9

none
none

none
0.6+0.6

none
3.2~1.4

0.6~0.6
none

23.0&3.8 8.7~2.3 34.8~4.7 18.7&3.5
21.2&3.7 10.0~2.5 19.4~3.5 8.4&2.3

STEPNO

7.2~1.9
6.2~1.8

4.6+0.9
6.2~1,8

53.0+5.2
26.7&3.7

42.6+4.7
19.0~3.1

0.5~0.5
1.5&0.9

9.0+2.7
13.1~3.3

8.2~2.6
13.9+3.4

59.0&7.0
20.5a4.&

41.0+5.8
6.6+2.3

0.8+0.8
1.6~1.2

40.1+4.5
17.5+3.0

27.7~3.8
9.3+2.2

1.0a0.7
none

8.2~2.6
9.9~2.8

18.1&3.8
19.7&4.0

33.6~5.3
j.5.6&3.6

22.2~4.3
4.9~2.0

0.8~0.8
3.3+1.0

9.8~2.2 5.7+1.7
13.4~2.6 10.8+2.4

diminished by, the introduction of refraction. The diRer-
ences between the prediction of TRAPNo and sTzPNo
and between TRA.P and sTEP demonstrate the significance
to these reactions of the details of the diRuse surface
and in particular of the very outermost regions of the
surface.

Comparison between measured and calculated24 cross
sections for two (p,pe) reactions are presented in Figs.
5 and 6. In Fig. 5 the excitation function" for the
reaction Au"'(p, pe) Au"' is compared with sTzr and
sTEPNo calculations on the same reaction for another
heavy nucleus, Bi"'. lt is seen that STEPNO, which is
similar to the Bertini calculation, is in good agreement
with the experimental results, while the introduction of
refractive effects (sTzr) causes a large divergence from
experimental results, particularly at the lower bombard-
ing energies. The same conclusion can be drawn from
the comparison of experimental data" on the excitation
function of the reaction Cu" (p,pn)Cu" with sTzr and
STzPNo calculations shown in Fig. 6: again the STzP
model leads to serious underestimates of the (p,pe)
cross section at energies below 200 MeV, whereas
sTEPNo gives good agreement. Furthermore, a com-
parison with the detailed breakdown of o-„,„„into the
contributions from diRerent mechanisms by Grover

~ The contribution to the calculated cross section of nucleon
evaporation from excited cascade products was estimated in the
same way as described for spallation reactions in Sec. IV D.

'5 H. P. Yule and A. Turkevich, Phys. Rev. 118, 1591 (1960).
'|l A. A. Caretto, U. S. Atomic Energy Commission Report No.

NYO-10693 (1964) (unpubhehed).

and Caretto shows that the discrepancy found in sTEP
arises largely from an underestimate of the direct
knock-out reaction (I',I'E cascade with U(10 MeV)
whereas the sTEPNo calculation appears to reproduce
their conclusions very well.

Reference to Table VI shows that cross sections for

(p,pe) reactions calculated with the trapezoidal density
distribution are smaller than those calculated with the
step distribution and thus will not agree as well with
the experimental results. This observation again empha-
sizes the importance to these reactions of the outermost
regions of the nucleus.

F. Energy and Angular Distribution of
Emitted Particles

The emission of high-energy particles is a signature
of the direct processes which occur in high-energy
nuclear reactions and provides the most detailed test for
any models of these reactions. The six models that were
studied in this calculation do not, in general, predict
marked differences for the energy and angular distribu-
tion of the protons emitted from the interactions, for
example, of 375-MeV protons with As" and Bi'". The
main qualitative difference is found in the increased
probability for the emission of protons with energies
greater than 90 MeV at angles greater than about 120'
when refraction is included in the calculation with any
of the density distributions. This enhanced emission of
high-energy nucleons at backward angles is a straight-
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IOO—

FIG. 5. Excitation function for the
production of Au"' by proton bom-
bardment of Au"'. The solid points
are the experimental data of Ref. 25.
The open circles and crosses are calcu-
lated with the sTzmo and STEP
models, respectively, for production of
Bi~8 from Bi~.
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forward consequence of the possibility of reQection of
cascade particles at the nuclear surface.

A comparison between the calculated and the ob-
served'r angular distribution of high-energy ()90
MeV) protons emitted in the inelastic interaction of
310-MeV protons with AgBr is shown in Fig. 7. There
it can be seen that the sTEP model faithfully reproduces
the forward peaking of the protons as well as the rate
of falloff at larger angles. The relatively small. number
of events that were observed in this experiment does
not provide information about high-energy protons
emitted at angles greater than 120' and thus does not
provide criteria for distinguishing among the models.
More detailed measurements of differential cross sec-
tions for emitted protons are clearly desirable.

The situation is significantly diferent when the
kinetic energy of the incident particle is reduced to
below about 200 MeV. In particular, the neglect of
refraction introduces a broad high-energy peak in the
energy spectra in the forward direction. This peak is
greatly diminished upon the introduction of refraction.
Two examples of this effect are given in Figs. 8 and 10.
A comparison between the observed" and calculated
energy spectra of protons emitted at 30' from the inter-
actions of 160-MeV protons with Bi"' is shown in Fig. 8
in which are also plotted the data of Genin et al.29 for
Au"'+154-MeV protons. It is evident that, at 30', the
calculation based. upon the sTzpNo model is in sub-
stantially better agreement with these experimental re-
sults than is that based on the sTEP model. However,
in a recent paper, Brun et al."reported a spectrum of

"J.Friedman (unpublished), as reported in Ref. 3."P. G. Roos, Ph. D. thesis, University of Maryland, College
Park, 1964 (unpublished), and personal communication from
S. Wau."J.Genin; P. Radvanyi, I. Brissaud, and C. Detraz, J. Phys.
Radium 22, 615 (1961).

3 The experimental results reported by Bowen et a/. , in Ref. 33
are given only in arbitrary units. The normalization to mb sr '
MeV ' is based upon information provided by the experimenters
and transmitted to the authors through H. Bertini.

protons emitted at 25' in the interactions of 156-MeV
protons with gold which was essentially Qat at 2 mb
MeV ' sr ' from 30 to 150 MeV. Similar experiments
by Peele" gave results that diGer from both of the other
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Fzo. 6. Excitation function for the production of Cu~ by proton
bombardment of Cu'I'. )(, experimental data from Ref. 26; Q,
(p,pn) cross section calculated with srErNo; ~, (p,pa) cross sec-
tion calculated with STEP; O, knockout contribution calculated
with sTEPNQ g, knockout contribution calculated with STEP.
The solid curve is drawn through the experimental data. The
dashed curve represents the knockout contribution estimated
by Grover and Caretto (Rei. 8) from (p,p') data.

"C.Brun, H. Dubost, B. Gatty, M. Lefort, and X. Tarrago,
Nucl. Phys. 495, 337 (1967).
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sets of data mentioned, but are somewhat closer to
those of Brun et c/. In view of these experimental dis-
agreements it is dificult to use these data as a critical
test of the calculations.

The divergence among experimenters becomes much
less at larger angles. Also, the agreement between
calculated and experimental results improves at larger
angles, as can be seen in Fig. 9 for the 80' spectrum of
protons from Bi"'+160-MeV protons. Here the sTEP
model may give slightly better agreement with experi-
ment than does sTEPNQ, particularly for the high-energy
tail. As was pointed out before, the presence or absence
of a high-energy tail in the proton spectra at large

4.5

angles is a persistent difference between calculations
based upon the sTEP and the sTEPNo models.

The energy spectrum" of the neutrons emitted in the
forward direction in the interaction of Pb"' with 143-
MeV protons" is compared with calculations based
upon the sTEP and the sTEPNo models in Fig. 10. This
comparison shows an impressive disagreement with the
calculations based upon both the sTEP and the sTEPNO

modeis. Interestingly, the shape of the spectrum based
upon the sTzr model agrees with experiment better
than that based upon sTEPNo.

The comparison between experimental' and calcu-
lated results shown in Fig. 11 for the energy spectrum
of protons emitted at 30' in the interaction of 160-MeV

4.0—

$5—
l.5—

3.0—

2.5—

2.0—
b

0.5—

'0

X
X

0

1

50
1

Ioo
ENERGV, MeV

f

150 200

0.5—

0 i I 1

0

x
Oy

x x ~
6 ~

x
l( P~y

I 1 I I 1 ~lo I I l~'I 4I
50 )00 I 50

FIG. 8. Differential cross section for protons emitted at 30' in
the laboratory system in the interaction of 160-MeV protons with
Bi~'. The solid circles are the experimental data of Roos and
Wall (Ref. 28), the open circles and crosses were obtained from
the sTEpwo and sTEp calculations, respectively. The data of Genin
et al. (Ref. 29) for 154-MeV protons on Au'~7 are also shown
(squares). For some representative points, errors (standard devia-
tions in case of the calculated data) are shown.

ep, MeY

FIG. 9. Differential cross sections for protons emitted at 80' in
the laboratory system in the interaction of 160-MeV protons with
Bi I. Symbols have same meaning as in Fig. 8.
"R. Peele (private communication).
'3 P. H. Bowen, G. C. Cox, G. B. Huxtable, J. P. Scanlon, J. J..

Thresher, and A. Langsford, Nucl. Phys. 30, 475 (1962).
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protons with Ni" shows better agreement than that
for Bi.The shape of the experimental spectrum is some-
what better reproduced by the sTEPNO than by the
sTEP model.

In summary, it may be said that the discrepancies
between observed and calculated energy and angular
distributions for incident energy of &150 MeV suggest
an inadequacy in the treatment of directly emitted
particles of the second and later generations: The cal-
culation gives too few of them. This remark is particu-
larly true for calculations based upon the sTEP model
and for high-Z targets.

G. Linear Momentum Transfer

The dependence of the average linear momentum
transfer on the excitation energy of the cascade product
is a quantity that is of interest in the interpretation of
recoil experiments. ~ This relation might be expected to
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Fzc. 11. Differential cross section for protons emitted at 30'
in the interaction of 160-MeV protons with Ni". The solid circles
represent the data of Roos and Wall (Ref. 28); the open circles
and crosses are the results of sTEpNo and sTEp calculations,
respectively.
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FzG. 10. Differential cross sections for neutrons emitted in the
forward direction in the interaction of 143-MeV protons with
Pb~'. The solid circles represent the data of Sowen et al. (Ref. 33)
taken at 0', the operl circles and crosses are the results of sTEPNO
and sTEp calculations, respectively, for the angular interval 0'-8'.

depend in a complex way on target mass number,
bombarding energy, and number of ejected cascade
particles. In actual fact, the vzGAs calculations indicate
that some fairly broad generalizations can be made.

For one thing, the predicted average forward momen-
tum transfer p» as a function of excitation energy E'
is practically independent of the model used. This is
illustrated in Fig. 12, where the ratio of p„ to the inci-
dent momentum p;, is plotted against E* for the sTEP,
sTEPNO, and BQUANO model calculations of As s+378-
MeV protons. The data can be fairly well represented
by a straight line going through p»/p;, =0 at E*=O
and through P„/P;, =1 at E~=E ~ (where E, ~ is
the excitation energy of a compound nucleus). A small
but signi6cant diGerence between the models with and
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without refraction appears at low excitations, where
refraction eRects give rise to increased momentum
transfers.

The last-mentioned eGect is seen clearly in Fig. 13,"
which shows the correlation between p„and E* for
interactions between 380-MeV protons and U"' calcu-
lated with the sTEP model. The data are represented in
two different ways: in terms of p&~/p;„. at given values
of E*/E *, and in term of E*/E,„*at given values
of p„/p;, . The two curves are seen to be very different.
The E /Es.„* data extend to negative values of p~~

(backward recoils) and to p&&/p;, values )1.As p~~/p; .
increases above unity, E~/E * decreases because
these very large forward momentum transfers must be

FIG. 12. Average forward momentum of cascade products as a
function of their excitation energy for the interaction of 378-MeV
protons with As". The momenta are given in units of the incident
momentum. Results are given for three models.

"N. T. Porile, Phys. Rev. 120, 572 (1960)„

M See, e.g. V. P. Crespo, J. M. Alexander, and E. K. Hyde,
Phys. Rev. 131, 1765 (1963);J. B. Cnmming, S. Katcoff, N. T.
Porile& S. Tanaka, and A. Wyttenbach, ibid. 134, B1262 (1964);
N. Sugarman, H. Miinzel, J. A. Panontin, K. Wylgoz M. V.
Ramaniah, G. Lange, and E, Lopez-Menchero, ibid 43, 952.
(1966).
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(Ee(50 MeV) are substantially higher when refraction
is included than when it is not. At higher excitations
the model differences tend to vanish, and the p~/p;„
versus E*/E, * curves tend to be rather Rat. These
trends are found in the gross cascade products but
they also show up in individual cascade products. This
is shown in Fig. 15 for the 2=74 cascade products
formed from 378-MeV proton interactions with As".
Again the distributions around the p, values are very
broad, as shown in Fig. 15.
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FIG. 13. Correlation between forward momentum and excitation
energy of cascade products in the sTEI model simulation of the
interaction of 380-MeV protons with U'3'. Both the average
values of pjj in given excitation energy intervals (closed circles)
and the average values of E* in given intervals oi p~~ (open
squares) are shown. The momenta are given in units of the
incident momentum p; „ the energies in units of the compound
nucleus excitation E, *. Root-mean-square deviations of the
distributions are shown for some points. The line drawn is taken
from Porile (Ref. 35} and applies to 460-MeV-proton interactions
with U~'.

accompanied by large amounts of backward emission of
cascade particles,

Another signiIj. cant point is illustrated in Fig. 13:
The distributions of momentum transfer for a given
excitation-energy interval and of excitation energy for
a given momentum-transfer interval are quite broad,
the rms deviation often being of the same magnitude
as the average value.

The results for p„/p;„, versus E~/E, " are remark-
ably independent of both target mass number and
proton energy. The principal eGect of decreasing proton
energy (in the models with refraction) is found in some-
what larger p„/p;, values at low excitations. This is
shown in Fig. 14, where the p»/p;, curves for 155- and
380-MeV protons on U"' are compared.

Whereas p, &
tends to increase approximately linearly

with E*, almost independently of model, the average
momentum transfer perpendicular to the beam direc-
tion p, varies much less with E~ and shows much greater
refraction dependence. The P, values at low excitations

I.O
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FIG. 14. Comparison of pf f/p;, versus 8*/E, * correlations for
the interactions of 155- and 380-MeV protons with U~'.

H. Angular-Momentum Transfer

The dependence on excitation energy of the angular-
momentum distribution of the cascade products is
another quantity that is of significance to an under-
standing of the details of high-energy nuclear reactions.
As for linear momentum, it is again found that the
computed distributions are rather insensitive to the
density distribution that is used, whereas the inclusion
of refraction tends to increase the angular-momentum
transfer (see Fig. 16).

In Fig. 16 are shown the average angular momenta
of cascade products as a function of their excitation
energies obtained in the STEP and sTEPNQ calculations
for As"+378-MeV protons and in sTzpNO calculations
for As's+160-MeV protons. The large rms deviations
from the mean values reQect both the distribution in
impact parameters and the eGects of the emitted
cascade particles. It is worthy of mention that the
angular-momentum distributions for a particular cas-
cade product (e.g. , As" from As"+378-MeV protons)
are almost indistinguishable from those for the gross
products.

I. Summary

Evidently, the eGects introduced by refraction are, in

general, more pervasive than those introduced by a
change in the nuclear-density distribution. An im-

portant exception to this generalization is found in the
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eGects of density distribution on simple reactions as
illustrated in Table VI. The principal effects of refrac-
tion are an increase in excitation energy deposition and
in linear- and angular-momentum transfer, and a corre-
sponding decrease in the emission of secondary cascade
particles. When compared with experiment, it is seen
that the introduction of refractive eGects increases the
divergence between calculated and experimental values
found, particularly for incident energies below 200
MeV and for high-Z targets. At higher incident energies
and for low- and medium-Z targets, a clearcut decision
between calculations with and without refraction is at
present not possible.

On the whole, the sTEPNO model seems to give the
best agreement with experimental data, although
TRAPNo would probably be just about as good except,
as may be seen in Table VI, for the "simple" reactions.
The sQUA and s&UAxo models are, as expected, clearly
inferior.
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FIG. 15. Average momentum of As 4 cascade products perpen-
dicular to the beam direction, plotted as a function of excitation
energy deposited in the interaction of 3/8-MeV protons with As".
II',esqlgs for four models are compared.

V. DISCUSSION

The fact that calculated and experimental results for
high-Z targets and low incident energies show better
agreement when refraction and reflection of cascade
particles are arbitrarily ignored than when they are
included in the calculations is puzzling, and it would be
desirable to understand the source of this unsatisfactory
situation. Within the genera1 framework of the model,
there are two general classes of explanation. (a) The
potential used is incorrect. (h) The ciassical tres, tment
of refraction and reBection is a poorer approximation
than is complete neglect of the eGect. The latter possi-
bility has been partially investigated by a comparison
between a quantum-mechanical and a classical estima-

I
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1
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FIG. 16. Calculated average angular momenta of residual
nuclei produced in proton interactions with As". The top graph
is for incident protons of 160 MeV, the bottom graph for 3It8-MeV
protons. The maximum angular momenta carried in by the
incident protons at these two energies are 21 and 33 units of A,
respectively.

where 8 is the kinetic energy of the incident particle
at infinity; Ii is the reduced mass of the system; 8+V,
and X are, respectively, the kinetic energy and the
mean free path of a cascade particle at a given point
in the nucleus in the classical calculation; and V,~ and
8 o, are the corresponding depths of the real and im-
aginary parts of the optical potential at the same point
in the nucleus. The particular values for the real and
imaginary parts of the optical potential given in Eqs.
(11) and (12) arises from the condition that the mean
free path and momentum of the particle at each point

36 The transparency in the vEGAs calculation is 1—T&.
~7 G. Harp and J. M. Miller, Columbia University Report No.

CU-1019-49, 1966 {unpublished).
38 E. Auerbach, Brookhaven National Laboratory Report No.

HNL 6662, 1962 (unpuhhshed),

tion of transmission coefhcients36 Tg as a function of
orbital angular momentum of the incident particle;
this investigation was carried out by Harp and Miller. "
The quantum-mechanical calculation was made with
the ABAcUS u program of Auerbach" using optical-
model parameters which were consistent with the corre-
sponding quantities in the vKGAS calculation:

V.p= V„—h'/Sph'

A ~81V„q'I'
w.,=-/

2p, )
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in the nucleus be the same in the classical and quantal
calculations: The complex propagation vector k of the
quanta1 solution should have the magnitude

p= t'2tt(h+ y )/yjtts+s/2y. ($3)

The classical values of the transmission coefficients were
computed analytically from the classical trajectories
and the mean free path in each region. From the results
of this comparison shown in Figs. 17 and 18 for 50-
and 160-MeV protons, respectively, incident on Bi' ', it
is evident that the results of the quantal calculation
fall between those of the classical calculations of trans-
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FIG. 17. Transmission coeKcients (or 1 minus probability of a
transparency) for 50-MeV-proton interactions with Him', plotted
against impact parameter b of proton at the nuclear surface
(Ref. 37). Circles are from a quantal calculation, squares are from
a classical calculation without refraction, triangles are from a
classical calculation with refraction.

mission coefEcients with and without refraction. At the
lower energy the classical calculation with refraction
reproduces the quantal calculation somewhat better
than does that which neglects refraction. Thus the
classical approximation to refraction and reQection is
apparently not the primary source of the divergence
between results from the sTEp model and experimental
observation. This leaves the erst alternative: the use
of an unrealistic potential for the cascade particles.

As discussed in Sec. II, the nuclear potential energy
used in the vEGAs calculation is completely determined
by the assumed nuclear density distribution and is
taken to be independent of the energy of the cascade
particle. There is, however, abundant evidence from
optical-model analyses" of elastic-scattering and cross-
section data that the depth of the potential well dimin-
ishes with increasing particle energy, an eGect that
would bring the srzp and srzrNO calculations closer
together. Accordingly, the consequences of using a
velocity-dependent potential for the refraction and re-
Qection of the cascade particles are under investigation,
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APPENDIX: SELECTION OF COLLISION
PARTNER AND SITES

In this Appendix the method of selection of collision
partner and sites will be discussed in some detail for a
uniform-density nucleus and the straightforward ex-
tension to the varying-density models will then be
outlined.

The Lorentz-invariant probability of interaction be-
tween one beam of identical particles with momentum
yt and density p& and a second beam of particles with mo-
mentum p2 and density p& per unit 4-space is given by~

I I I I &. I

0 I 2 3 4 5 6 7
b (FERMIS }

4
Il~ a

8 9 IO

pro. 18. Same as Fig. j.7, but for 160-MeV
protons incident on Si~'.

,

0 12PlP2&12 )

where e12 is the relative velocity of the two beams with
respect to each other and o-12 is the cross section of
interaction between a particle of beam 1 with momen-
tum p1 and a particle of beam 2 with momentum p2.

Suppose now that the second beam does not consist of
particles of equal momentum but of particles of a con-
tinuous momentum distribution. In this case the
probability of interaction per unit 4-space for a given

+ See, e.g., P. E. Hodgson, The Optical 3fodef of Elastic Scatter
ilg (Oxford University Press, New York, 1963).

4 F. J. Belinfante and C. Mgller, Kgl. Danske Videnskah.
Selskab, Mat. -Fys. Medd. 28, Paper 6 {1954).
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momentum p1 is

BP2
~(p~) =p~ ~»(v~)»~(v~) — du~

BP2

where the integration is performed over the continuous
particle distribution of beam 2. Assume next that beam
1 is the beam of the bombarding particles whereas
beam 2 consists of the nucleons of the bombarded
nucleus. Then the momentum distribution of beam 2
would be the momentum distribution of the nucleons
in a nucleus. Consider now a single bombarding particle
entering the nucleus. The probability per unit path
length of the particle to interact with the nucleons of
the nucleus is

E(pg) 1

p le 1 e1

BP2
0 12&12 — dP2= ~1

BP2
(A2)

where el is the laboratory velocity of the bombarding
particle and Xl is, then, its mean free path. The prob-
ability of the bombarding particle to interact at a
distance between a and a+du is

de (a)-e-aeQda.

Since the dependence of 0» on v» (i.e., energy de-
pendence of the cross section) cannot norma. lly be ex-
pressed in a closed functional form, the evaluation of

Q must in general be done by numerical integration

(A4)

H the nucleon distribution is assumed to be that of a
degenerate Fermi gas, a convenient method of calcula-
tion is to divide the Fermi sphere of momentum into e
parts of equal volume and calculate the mean cross
section 0.» and the mean velocity e» for each subvolume.
If Q is calculated in the rest system of the nucleus, the
momentum distribution in question is the "undis-
torted" Fermi gas distribution for each subvolume
(&p~/&a~)~@~= plw

where

p aQ= Q 0.g2, »2,hp;= —p 0
P1 i~1 +i 1

s = ella 81 Cr12 (A6)

The calculation may now proceed in several ways.
The method previously used is to determine the site of
the next collision by a partial integration of Eq. (A3)
(over variable u) and choose the collision partner by a
partial integration of the normalized equation (A4).
We have already pointed out that this method for deter-
mining the collision site cannot be used if the cascade
is followed on a timelike basis. A method which would
be satisfactory for the purpose is (a) determine whether
a collision has taken place in a given interval a by corn-

Each term of the product on the right side of Eq. (A7)
is formally equivalent to the probability of no collision
between the cascade particle and a beam of particles of
momentum p; and density p occurring in an interval u/N.
In other words, the probability of a collision of the
cascade particle in the interval a may be calculated
by dividing the interval a into n equal parts and
calculating for each interval 8a= a/I the probability of
collision between the cascade particle and a hypo-
thetical nucleon gas having a density p (the total
nucleon density) and nucleon momentum p, . For each
interval a/I, a different momentum p; is chosen out of
the undistorted momentum distribution so that each
momentum y; represents one subvolume p/m of this
distribution. The sequence in which the various mo-
menta p; are chosen is of course completely arbitrary.
We may combine steps (a)-(c) of the calculation in the
following way: The interval a is divided into n equal
parts. A momentum pi is chosen at random out of the
Fermi distribution and each choice of a momentum is
associated with a small step a/e forward of the cascade
particle; a test is then made to see if the collision occurs
in that step by the comparison of a random number to
the quantity

$(ba) =1—exp( —po ba) (AS)

where o- is chosen appropriately by interpolation from
Tables I or II (see Sec. III A). Interpreting our method
in terms of the three steps outlined above we may say
that step (a) Lthe numerical integration of Q, Eq. (AS),
followed by the calculation of the partial integrations
of dX(a), Eq. (A3)] is replaced by an indirect Monte
Carlo integration of. Eq. (A5). Step (b) (choice of
collision site) is performed by dividing the interval a
into e equal parts and checking whether a collision has
taken place in each of them. Finally step (c) (the choice
of a collision partner) is carried out by a rejection tech-
nique whereby a momentum p; is chosen at random and
the probability of interaction with a collision partner
of this momentum is compared with a second random
number.

Our method of choosing the collision site and partner
may seem to be unnecessarily complicated. It has, how-
ever, a number of advantages: The advance of the
cascade particle in small steps ba is particularly con-
venient if the cascade is to be followed on a timelike
basis as will be seen below. The fact that the collision

paring a random number with the partial integration
of Eq. (A3) between zero and a. If this comparison
determines that a collision has taken place, (b) the site
of the collision and (c) the collision partner are chosen
in the usual way. The partial integration of Eq. (A3)
may be written in the following form )using the approxi-
mation of Eq. (A5)]

a
iV(a) = 1—exp( —Qa) = 1—g exp ——pa

~

. (A7)
i 1 n )
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site is chosen by checking for its occurrence in a series
of small intervals ba (for each of which po 8a«1)
rather than checking once in a large interval a, allows
us to use the linear approximation

E(8a) po bu (A9)

for determining both the collision site and the collision
partners, and hence an appreciable saving of computer
time is achieved. " Finally the choice of the collision
partner by a rejection technique allows us to choose its
momentum out of the undistorted nucleon distribution
(i.e., the nucleon distribution as measured in the rest
system of the nucleus) rather than choosing the
momentum out of the distribution as given by the inte-
grand in Eq. (A1) (the so-called distorted momentum
distribution).

So far we have not discussed the size of the interval
u and the number e of momentum samples to be chosen
in this interval. The interval u is the path length over
which a good estimate (on the average) of Q is required.
A good choice for a would therefore be the mean free
path X between two collisions. Since in our calculation
the value of X=Q

' is never calculated explicitly we may
choose a=5. ;

ha= K/rs, (A10)

where K is an estimate of the mean free path of the
particle. The value to be chosen for m will in general
depend on the accuracy required and on the type and
energy of the interacting particles. The higher the
accuracy required and the larger the variation of cross
section with energy, the larger e must be. The actual
choice of e is governed by three diferent considerations:
(a) e must be large enough for the sampling method of
the nuclear momentum distribution to provide a good
estimate of the integral in Eq. (A2). This, however, does
not mean that I must be large enough so that a good
estimate of the integral is obtained between any two
interactions of a given cascade particle. It does mean
that if M complete nuclear cascades are to be followed,
a good estimate of the integral should be obtained over
these M cascades. Hence to some extent a lower value
for e may be compensated by following a larger number
of cascades. (b) Quite apart from the evaluation of the
integral, the intervals 8u must be small enough to retain
the advantages of following the cascade particles on a
timelike basis. These advantages would be lost if large
changes in the positions and directions of the particles
occurred in a single step. (c) Finally, if the linear ap-
proximation in Eq. (A9) is to be used, pa. ba must
always be much smaller than unity.

4'lt should be emphasized that if S(a) is calculated by a
roduct of exponentials as in Eq. (A7) the linear approximation
or each step cannot be used since the errors of all steps add. This

is not the case in our procedure. Here a random number f is
compared with po and since Bu is so chosen that per Su&&1 we
find that for most intervals g) pa bu and no collision takes place.
However, since 1—exp( —p0 du) &p 8u, the same result would
have been obtained if the random number would have been com-
pared with the accurate (i.e., exponential) expression for 1V(Bu).

While it is relatively simple to arrive at a value of e
which would satisfy criteria (b) and (c), it is more
complicated to obtain a priori a value of n which
would satisfy criterion (a). The way e was actually
chosen was to calculate several hundred cascades each
with e= 10, 20, and 30 for a representative nucleus and
bombarding energy. It was found that while increasing
m from v=10 to m=20 did change the results of the
calculation in a nontrivial fashion, the results of m= 20
and m=30 did not diBer outside the statistical Quctua-
tions. It was hence decided to use e= 20.

Once the approximate value of X and e are deter-
mined, the Monte Carlo calculation electively proceeds
as follows: At the beginning of the interval the interac-
tion partner is chosen to be a proton or a neutron ac-
cording to the relative density of protons and neutrons
in the nucleus Lp„=pZ/A; p =p (A—Z)/A j. Next the
momentum p2 of the partner is chosen at random out
of the appropriate (neutron or proton) Fermi sphere.
With the density of the partner particle taken to be
equal to the to3Ia/ nucleon density in the nucleus, the
probability of at least one interaction in the interval
R/e is calculated by Eq. (A9). A random number f is
chosen and if t ~&X(8u), an interaction is assumed to
have occurred. If t )1V(8a), no in. teraction is assumed
to have occurred, and the cascade particle is advanced
by a distance K/e. A new partner is chosen by the same
method as in the previous interval and the process of
determining whether an interaction took. place is
repeated. Suppose now that for a given interval i,
f;&~E;(5a) and an interaction has occurred. The dis-
tance X; from the beginning of the interval to the point
of interaction is then determined by

g;=1—exp[—X;po ],
for which we may take the linear approximation

&'=0'(p~'') '.

(A11)

(A12)

While the distance 5/e would be a good choice for the
interval for any given cascade particle, the actual value
of bu will in general be smaller because the method of
following the cascade particles on a timelike basis
requires that the distances ba; of all the cascade
particles which are followed at a given time should
correspond to the same time interval r. Hence it is
actually not the distances 8a or X/e which are chosen
but a time interval v., and this time interval is common
to all cascade particles in question. The actual distance
b; for particle i which is determined in this way is
b;=P;r, where P; is the velocity of particle i (in units
of c).

The actual choice of the time interval r proceeds as
follows: At the beginning of the cascade the total cross
sections O.„and 0- of the incoming particle with a
stationary proton and a stationary neutron (in the lab
system), respectively, are determined. An approximate
mean free path ) of the incoming particle is then
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calculated

$.= (A/p .„))Zo„+(A—Z)o„j-', (A13)

where p is the total nucleon density. Equation (A13)
gives a suKciently good estimate of the mean free path
for the selection of a time interval, if there are no
resonances in r„or 0„. The time interval v is then
obtained from

where p is the velocity of the incoming particle. A candi-
date for an interaction partner is then selected at
random out of the momentum distribution. The next
step is to determine whether an interaction has taken
place in the path length b= pr in the manner explained
above. If no interaction has taken place, the particle is
advanced by the path length b, a new value v- is calcu-
lated for the next time interval, and a new candidate
for the interaction partner chosen and the process is
repeated until the particle makes an interaction or
escapes from the nucleus. If the Monte Carlo procedure
determines that an interaction has taken place in a
given time interval, the position of the interaction is
determined by Eq. (A12) and the particle is advanced
to this point. The angular distribution is then calculated
by interpolating the values of Tables I or II to the
correct energy, and a scattering angle is chosen by a
rejection technique. Next the energy of the outgoing
particles is determined. If either of the two energies is
below the Fermi energy, the interaction is forbidden
and the momentum of the incoming particle remains
unchanged. A new candidate for interaction partner is,
however, chosen and it is determined whether an inter-
action took place in the remaining time interval with
the new partner. On the other hand, if the energies of
both particles are above the Fermi energy, the inter-
action is allowed, and the momenta of the two outgoing
particles are computed according to the chosen scatter-
ing angle. A candidate for interaction partner is then
chosen for each particle and the possibility of interaction
of either particle in the remaining time interval is de-
termined in the usual fashion. The extension of this
procedure to the simultaneous consideration of many
cascade particles does not present any essential diS-

culties. At the end of each time interval a new candidate
for an interaction partner is chosen and a new time
interval r;=K;(np~) ' is calculated for each particle and
the smallest 7; is then the one that is chosen for the
next time interval

The procedure is somewhat diferent if a nuclear
model with a nonuniform density distribution is under
consideration: The density used in Eqs. (A9) and (A11)
must be appropriate to the position of the cascade
particle and the cascade particles must be refracted
when they go through regions of changing density.
Further, when a particle enters a region of diferent
density in a given time interval v, a check is first made
of whether an interaction has taken place in the part
of the path which lies in the old region. If no interaction
took place, the particle is advanced to the end of the
old region, the momentum of the particle in the new
density region is computed (the particle is refracted),
and the particle is retained at the boundary (or rather
an in6nitesimal distance beyond it in the new region)
for the remainder of the current time interval. "In the
next time interval, the calculation proceeds normally,
with the particle starting out at this point near the
boundary.

For the model with trapezoidal density distribution
the refraction procedure is as follows. During a given
time interval r the particle is advanced in a straight
line with a momentum corresponding to the potential-
well depth at its position at the beginning of the time
interval. At the end of the time interval v- the particle
is refracted in accordance with the diBerence in well

depths at the beginning and at the end of the interval.
If the Monte Carlo procedure determines that an inter-
action has taken place in a given time interval, the pro-
cedure is the same as for a uniform-density model
except, of course, that the new cascade particle must
be refracted in the manner appropriate to the model
that is used.

4' It would, of course, be more correct to choose a new interac-
tion partner in the new region, calculate the probability of interac-
tion in the remaining time of the current interval, and let the
particle advance the appropriate distance in the new region. How-
ever, the error introduced by our procedure is small.


