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Interband Dielectric Prol)erties of Solids in an Electric Field*
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A general expression for the imaginary part of the one-electron interband dielectric function of a solid
in the presence of an electric Geld is derived. The result is valid for all regions of h space and explicitly takes
into account the variation of the dipole matrix element and effective mass throughout the Brillouin zone.
Under certain approximations the finite-electric-Geld dielectric function reduces to the convolution of the
zero-field dielectric function with an Airy function. This result can be used in conjunction with band-
structure calculations which have already been done in order to predict the line shape of the electrore-
Qectance spectra as a function of electric field. The convolution expression reduces further at nondegenerate
critical points, and the forms for the four types of critical points are presented. In certain instances it is
possible to unfold the convolution integral and obtain the zero-Geld dielectric function from either the
Gnite-Geld dielectric constant or the electroreQectance data at isolated critical points.

I. INTRODUCTION

~ 'HE recent development of modulation tech-
niques' ~ in the study of energy bands has suc-

ceeded in providing much needed information for the
starting points of band-structure calculations and has
given further impetus to the study of band structure.
These modulation techniques have involved the appli-
cation of periodic perturbations such as electric Geld, ' '
strain, 4 or heat' to the solid and have used phase
sensitive detection methods to measure the periodic
modulation of the optical properties of solids.

The power of these methods lies in the fact that
modulation techniques enhance the signals at certain
points in the band structure: the critical points or the
van Hove singularities where the relative interband
gradient of the energy vanishes at some point of k space.
By measuring the piezo-optic, thermo-optic, or electro-
optic spectrum, it is possible in principle to obtain the
energy and position in k space of the critical points of
the energy band spectrum.

Knowing the effect of an electric Geld on the band
structure of a solid is a necessary prerequisite for the
interpretation of experimental electro-optic results, not
only to determine the critical points but also to deter-
mine the validity of the one-electron approximation for
interband transitions. Following the initial work of
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Franz' and Keldysh, o many calculations of the eGect
of an electric Geld on the real and imaginary parts of the
dielectric properties have appeared in the literature. '~"
Kith few exceptions, these calculations have been done
in the framework of the weak Geld, effective mass ap-
proximation. In every case, the results have been re-
stricted to regions of k space where the energy bands
are simple functions of k. It is the purpose of this
paper to derive a general formula for the imaginary
part of the interband dielectric constant ss(r0, S) for
a solid in an electric Geld which does not require the
assumption of quadratic energy surfaces about par-
ticular points in k space. The expression derived allows
direct calculation of ss(&o, S) for a solid directly from
the theoretical band structures calculated by pseudo-
potential'~" k p" or other methods" This general
formula is derived in Sec. II.

In Sec. III, it will be shown that for regions of k
space having quadratic energy surfaces there is a very
simple convolution integral relating the Gnite-Geld
dielectric constant to the zero-Geld dielectric constant
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through an Airy function. This convolution integral
form will be shown to be valid for indirect transitions
as well as direct transitions near critical points. Using
the fact that the electric 6eld mixes all of the states in
h space, it will be shown that in principle it is possible
to recover the zero-Beld dielectric function from dif-
ferential electro-optical data. Also, the above-mentioned
convolution integral form for the imaginary part of the
dielectric constant in an electric Geld is used with the
Kramers-Kronig relations to calculate the real part of
the dielectric constant.

Appendix A is a proof used in Sec. II and Appendix 8
is an independent derivation of the results of Sec. III.

A ggeik r—iott (2.1)

II. CONVOLUTION INTEGRAL FORMULATION
OF ELECTRIC-FIELD EFFECT

In this section a convolu, tion integral representing the
effect of an electric field on ~&, the imaginary part of the
dielectric constant, in terms of the zero-Geld parameters
will be derived. The derivation of Callaway, "which is
based on the work. of Argyres" and Kane, "will be fol-
lowed; es(co, 8) will be obtained by calculating the inter-
action of an electromagnetic wave with the crystal. A
similar derivation has also been given by Yacoby, for
both direct and indirect transitions at an Mo edge. '

Ke consider Grst the absorption of light by a solid in
the absence of an electric Geld, using the semiclassical
approximation wkere the perturbation introduced by
the photon is represented by the vector potential

P„(k',r) is given bye

4
zo(k'n', k,n; t) =-(a(k', n'; k,n; t) ('=—(H'g, ;., g,.l'

sin' —',((o„—co„—(a) t
X—,(24)

t(Cd~I M~ —M)

where the matrix element B'k, -, l, , in the dipole
approximation is given by

iehA
H'g, ', g, =(P. (k', r)

~

r. V~&„(k,r)), (2.5)

and her„=E, 4o ~ =E,„.Since P ~ (k', r) and P„(k,r) are
Bloch functions,

r) I VIP„(k,r))=-P„,„(
h

w(k', n'; k,n; t) =
4e2+ 2

-jc P„(k)) bg. g
ns'c'h'

sill s(M~ —Ql„Cd)t—
(2.7)

t(Cd~ ~ —M~ —M)
In the limit of large t

sin~ —og
= —,

'orb�(co),

2
lim
taboo ( 2]

(2.8)

which can be taken as the equation defining P „(k).
The transition rate per unit time from the filled states
P„(k,r) to the empty states P„(k',r) is therefore

The one-electron states of the solid are assumed non- and the total transition rate over the entire solid is ob-
degenerate and represented. by Block functions which tained by summing over all filled and empty states,
satisfy the equation giving

h'
P+ V(r) f„(k,r) =E„(k)f„(k,r), (2.2)2'

where the potential V(r) is periodic in the lattice. k and
n denote the wave vector and band index, respectively,
with k being restricted to the Grst Brillouin zone. The
Bloch fu,nctions are normalized to the volume V as

2xe~A~
w ~

—— Q ~
~ P. „(k)~'b(E„„(k)—Acing, (2.9)

m c h j.~'.~

d'k,
(2n) ' s.z.

(2.10)

where the sum e' ranges over empty bands and n over
filled. bands, and E ~ (k)=E„(k)—E„(k). To obtain
the number of transitions per unit volume per unit time
we write

d'r it„.*(k',x)P„(k,r) = b„.„b„.J, (2 3) where the integral is taken over the first Brillouin zone.
Including the factor of 2 for spin degeneracy gives the
desired rate per unit volume per unit time as

and can serve as a basis for expansion of a function over
the volume.

By time-dependent perturbation theory, the transi-
tion rate from the flied discrete state represented by the
Bloch function P„(k,r) to the empty discrete state

"P. W. Argyres, Phys. Rev. 126, 1386 (1962)."E.Q. Kame, J. Phys. Chem. Solids 12, 181 {1959).

2me'A' 2
'N=

m'c'h '. (2n)'

~ Z0

~'n~.- P...(k) ~'bIE. .(k) —t ]. (2.11)

"L. I. SchiB, Quotum Mechanics (McGraw-Hill Book Co.,
New York, 1955), p. 1958.
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Since the lmaglnaly part of the dielectric constant ls where I (k,r) is cell-periodic, it follows that

Eq. (2.11) gives

sc 2x'c h
fg(C0) = CE—= IV,

co co~A2
(2.12)

8
{p.(k', r) /x(p. (k,r))= i—a;„al.g f

ak.

+ibgq, X„.„(k), (2.20)

8
X. (k) = d'rN„. *(k,r) -u„(k,r) . (2.21)

y 8k

'P+ V(r) —Fx y„,„(k„r)
2m

= W„.(k,)y...(k„r), (2.14)

where the direction of the electric 6eld is chosen to be
the x direction. It is assumed that this direction co-
incides with one of the (infinite) vectors of the reciprocal
lattice. "If this is done, the Brillouin zone can be chosen
so that the symmetry perpendicular to the 6eld is re-
tained, and the eigenfunctions $„,„(kl,r) can be ex-
panded in terms of the Bloch functions of the unper-
turbed Hamiltonian as"

y„, (k„r)=g A„,„(k)P (k,r) (2.15)

with normalization.

y~.- P„.„(k)~&SLZ„„(k)-h j, (2.13)

which is the usual result for e2 in the absence of an elec-
tric Geld."The sums e' and I are over empty and filled
bands, respectively. Equation (2.12) supposes a low
rate of loss of incident energy with distance (small n),
but a rigorous derivation of &2 by means of the current
operator also yields Eq (2.1.3)."

In the presence of an electric field eS=P, Eq. (2.2)
becomes

The operation of the derivative on the Kronecker delta
function has symbolic significance only and is a result
of differentiating Eq. (2.19), where the wave vectors k
form a quasicontinuum but are really discrete. However,
if the volume V is large enough k may be considered
continuous allowing interpretation of the derivative in
the usual manner. The derivative of the Kronecker
delta therefore is equivalent to the negative of the de-
rivative of the function multiplying the Kronecker
delta within the summation operation over the variable
of differentiation. Therefore, Eq. (2.18) becomes

0=+ 8g g b E (k)—W„(kl)—iF A„,„{k)

—iFX „(k)A„,„(k), (2.22)

and the sum over the vector k can be carried out im-
mediately, eliminating the 8 function of k and k .

%e sum over the index e', obtaining independent
equations for the coefficients A „, (k):

0= E„(k) iF Q X„.„(k)—
n'

d're;, ;*(ki',r)g, „(k„r)= b„„.b .bI,I,;. (2.16)

Substitution of Eq. (2.15) into Eq. (2.14) gives the
eqllatloll of tile coeKclents A„, (k):

0=+ {A„,„(k)LE (k) —W„,„(k,)—Fxjg„(k,r)), (2.17)

W„,„(ki) iF— A„,„(k—) . (2.23)
Bk,

The fact that the summation of X„. {k) over the index
e' results in a quantity dependent on n and k like the
energy E (k) suggests the definition of an effective
energy

F„'(k)=Z„(k)—iF g X„,„(k), (2.24)
and taking the inner product of this expression with
P„(k',r) yields

0=/ {A„,„(k))E„(k)—W„„(k )$8 ~ 8 ~

—A„,„(k)FQ„.(k', r) Iseult„(k, r))). (2.18)

It is now necessary to consider the matrix element of
x which appears in Eq. (2.18). Since the Bloch function
can be written in the form

P„{k,r) =e'"'N„(k,r), (2.19)

24 M. Cardona, in Solid State I'hysics t,'AcadeInic Press Inc. ,
New York, to be published).

wlllcll takes lllto accollllt tile lnterband terIIls X„„(k)
as vrell as the intraband polarization of the Bloch func-
tions represented by F8/Bk, . The interb—and terms
represent electron transfer between bands, " which
causes a decay in the wave-function amplitude of an
initially ulled state and an increase in that of an empty
state. Therefore, the second term on the right of Eq.
(2.24) ls coIIlplex. (In fRc't lf tile crystal llas 111vel'sloll
symlnetry, the X „(k) are purely real as is shown in
Appendix A and thus the interband contributions to
the energy are purely imaginary. g Retention of the
quantities X„„(k)means that the normalization con-



ASPNFS, HANDLER, AND BLOSSEY

dition of Eq. (2.16) cannot be satisfied; this difficulty
is avoided by assuming that the electric deld is sufh-
ciently small so that interband tunneling is negligible.

The equation for the coefficients A. , (ki) in the ap-
proximation that the interband tunneling is negligible
is therefore

neglect of the interband tunneling terms has already
been discussed. The fact that the matrix element of x
could be separated at all into interband and intraband
terms depended on the Bloch form of the wave function,
i.e., that the potential V(r) is periodic in the lattice.
This is a characteristic of the one-electron formalism,
which neglects all interactions between electrons and
in particular neglects the Coulomb attraction between
the electron and hole which results in excitons. This
approximation must necessarily limit the application
of the results to cases where the electron-hole inter-
action is small. Finally, nondegenerate perturbation
theory is used so that the formalism may break down
at degeneracy points of bands.

We now proceed through the calculation of the
imaginary part of the dielectric constant using the wave
functions just obtained. The transition rate out of the
state p„,„(k,,r) into the state (i)„,„(k&',r) caused by the
perturbation of Eq. (2.1) is

E (k) —W„,„(k )—iF A„,„(k)=0. (2.25)
Bk

The general solution of this equation is

A. ,„(k)= C„,„(k,)
k~

Xexp — ! W„,„(ki)—E„(k„k,')jdk, ', (2.26)
F

where the coefficient C„, (ki) and the energy W„,„(k,)
can be determined by the normalization condition of
Eq. (2.16) and the choice of the Brillouin zone which
makes the end points in the x direction equivalent. "If
the length of the Brillouin zone in the x direction
then by equivalence we have A „„(k+K,) = A„,„

1
+v'n'ky', vnky; t!

t
l
~ v'n'k j ', vnkg I

2x'pF
W„„(ki)= +E„(k,),

where we define ieA
&'"- »;-»=(4""(k',r) I

—s ~Id-(ki, r)&
(2 28)

' ' '
mc

Eg

E„(k,)=
0

dk, 'E„(k„k,') .
iehA Z

g b„.,„-P„.„(k)A„,„*(k)A„„(k), (2.32)
mc &. hWe note that since E (k) is periodic in the Brillouin

zone there is no need to integrate from the limits in
Eq. (2.28), but in general and P ~ (k) is defined in Eq. (2.6). Taking the limit of

large i according to Eq. (2.8) and summing over all
final (empty) and initial (filled) states denoted by the
wave functions p„.,„(k&',r) and p„,„(ki,r), respectively,
gives the total rate of transitions over the entire volume
V as in Eq. (2.9):

k~+IC~

dk, 'E„(k„k,'),E„(ki)=
E I,

(2.29)

a result which will be used later. The coefficient C„,„(ki)
is determined from the normalization condition: if the
length of the box in the x direction is I., and the length
of the unit cell in this direction is E„so that there are
E cells in the x direction (I,=XR,), then C= X ')' and

2xe'A'
e P„.„(k„k.)c P „*(k„q.)

~2&2h v 'nn'
kg~

XA.. , *(k„k,)A„,.(k„k.)A, , *(k„q.)A.., (k,q.)

1S E,
(k), so Sill S ((v)v'n'ki' (v)vnki M)iX,(2 31)

(i(v)' v'n k'i(v)vnki k))

(2.27)
where kk)„k, = W. , ~ (ki'), etc. , the matrix element is

A„„(k)=

)&exp—
F p

PV„„(k,) E„(ki,k—.')jdk, ') . (2.30)

Equations (2.15), (2.27), (2.28), and (2.30) determine
the wave function of the electron in the presence of an
electric 6eld, from which the imaginary part of the di-
electric constant can be calculated as previously done
with the zero-Geld wave functions.

At this point it may be useful to list the approxima-
tions inherent in the result given by Eq. (2.30). The

X~!W, ..(k,)—W„,„(k,)—k j. (2.33)

Substituting Eq. (2.30) for the coefficients A„, (k) and
Eq. (2.27) for W„,„(ki) gives

2xe2A~ Z

~tot, =— s P„„(ki,k,)c P. . (ki,q,) exp-
yg~g~hE~ vv'nn' F

kg~

2mF
dk. ' E„.„(k„k.') E„.„(k,)+ (v ——v')

E,
2mF

XV (
'—)+E (k.!—kv). (2.3S)

E,



e2((u, 8)=
t@2au2F g.E.

Since the double sum over I and I
' is over the combina- constant in the presence of the field F=e8 is

tion (I —I '), it can be replaced with the equivalent ex-
pression" valid in the limit of large E: 2%8

d'k

Q f(I I'—) -+ Ã Q d&f(g) S *'"'I, (2.35)

which enables the integration over the 8 function to
be performed with the result

e222E, IE,
w~.~=-- ——P exp I, (E—„(k&) h~)—

yg2C2hÃP ten' F
kq

X~ P. .(k„k.)e P..*(I„q.)

dk. 'LE„.„(kg,')—h~) . (2.36)
p

Since K,= 2n/R„ the change from sums to integrals in
k space, followed by multiplication by 2 for spin de-
generacy and dividing by the volume of the box in order
to obtain transitions per unit time per unit volume,
gives

e2A2
m =— dak

m2g2hE g.g,

IE,
&& g exp i—*LE„„(k,)—h&o)

Le'n P

&&.
- P„„(k„k,).- P„.„'(I„q,)

/t, »

X exp — dk. 'LE;.(k„k.')—h ), (2.37)
(2S.)' F

and by Eq. (2.12) the imaginary part of the dielectric

IE
)(g exp i — -$E; (kl) —h&e)

le'n P

)&c P (kl, k,)s P .*(k„q,)

2 k»

X — exp — dk, 'PE ~ (k,k,')—hid) . {2.38)
(2Ir)' Il

Equation (2.38) is completely equivalent to the
result obtained by Callaway" before the evaluation of
his matrix element M„„,except that by combining the
two integrations implicit in (M«

~
we have obtained

~&(co,8) in a slightly diiferent form. This form is neces-
sary to represent the electric-6eld effect on e2 as acon-
volution-type integral in terms of zero-Geld quantities.
It is possible to go back. to Callaway's formulation by
simply v riting the exponent integral between the limits
k, and q, in Eq. (2.38) as a product of two exponent
integrals between the limits 0 and k, and q, and 0, re-
spcctlvcly, assllllllIlg P„i„(k) Is independent of k, ex-
panding the energy about the point k= 0, and retaining
only the l=o term in the sum over /.

The integrations over k, and q, cover the 6rst Bril-
louin zone (B.Z.) in the 6eld direction. Since the B.Z.
width in this direction is E„these integrations can be
taken betaken the limits +-,'E, and may be represented
in (k„q ) space as an integration over a square of side E,
centered at the point (0,0). We next consider the (k„q,)
integration over the square of side E. centered at
(vE„v'E,) which is, omitting irrelevant terms,

(1/2) X»+v&» (1/2) E»+v'E;»

dk, dq, g P„.„(k„k,)g P..„*(k„q,) exp — dkg'$E„. „(k„k,')—hs))
-(1//2) K»+vK» —(ry2) Z»+v X» p ..

(1/2)Z» e»

dk.dq. c P„..(k„k.)s P. . (k„q.) exp — dk, '
-' —(I/2) X» q.+, X.

)&exp — dk
p

jE.
dk.dq, e P„.„(k„k,)S P„.„*(kI,q.) exp (I —I')tE ~ (kl) —M)

p

k»+vX»

exp
k»

k»

Xexp — dk, 'LE„.„(k,k,')—As)), (2.39)
g»

where the periodicity of P„.„(k) in k space has been Eq. (2.38), so the integral over the square of side IC,
used in the second step and Eq. (2.29) in the third. But centered at (IE'„I'E,) in (k„q,) space gives the
Eq. (2.39) is the term I= (I —I ') of the sum over I in t = (I —I ') term in the sum over I. The k„q, integrations
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s to absorb the sum over /therefore be de6ned so as

0

e
pu

db h
'

d l=-uarcs de6nc
the square is centere. If l is even,

~ ~K . For odd l, the square is bi-
=-45';th n ht,sec
URH f h

11 l

es(ai, s)

)&g e P .„(k„k.)e P ~ *(k,q.

-2K„

I

4K„g 2K„-K, y 0

l
-2K„.

exp-
(2s)' Il

dk, '(E ~ (kik, ') hra7— (2.40)

o integration for Eq. 2.39).Fzo f Equivalent regions of in eg~ ~

s a b such thatWe now e nd fine new variables a,

a—s-(k.+C )

E . 2.40) is defined byThe region of integration in Eq. ( .
these variables as

(2.42)

b= —'(k,—q,); dk, dq, = 2dadb. , b —,u. q. ,

S=

E . (2.44) becomes the basic
fh d'1for the imaginary part o e

f 1 t' 6ld.stant in the presence o an e e

2'
so

.' bles once more y de-s we change varia efor weak 6elds, we
dimension:s t of reciprocal energy(2 4g) fining s, o

b

em(co, a) =
~2~2p ~+I B.K.

Xs „P.„( „ka+b)e. „P.„*(„kab—em(a), s) =
4s e'

ms(gs nn' s z
d'k ds

dk.'tE. .(k,k.') —h 7 . (2.45)exp
8 p

62(CO, 8) =
4s.e'

ms&amp nm' s z

&&s ..„(k„k.+b)s P„..*(k„k, b

(2s)

at k '= k,"+a, and if we repre-
(243) bsentt e uh dummy variable u by k, Eq.

)&e P„„(k+sF)e P ~~
* k—sF)

Xcxp dtPE„„(k+tF)—Puu7 . (2.45

re mixes sta es alon its direction in k

-6eM case is t i ial sincection to the zero- e
thfol F=o the integral in t e exp

2s LE„„(k)—hro7

" E „(k„k,+k, )—ho) (2 44))&exp — dk,
p

ds exp(2is(E„„(k).
=&st E„„(k)—h 7, (2.46

ces easily to the
hi h b. "dly.zero-6eld equation and whic can

K . (2.45), giveswhen substituted into q.""'"' ""- '
6ldEq. (2.13), the zero- e ex
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2
d'k(s P. „(k)i'

(2~)'

ds exp(2is[E„.„(k)—ko]

The length of the shortest reciprocal lattice vector Substitution of Eq. (2.50) in Eq. (2.45) and subsequent
in the direction of F will be designated as Ks. This integration over t yields
appears as a periodicity is s, of period hs Ki/F. By
explicitly including this in Eq. (2.46), the Stark steps 4~&

can be obtained. " The integral over s can be par-
titioned into an integral over a fundamental line

~
s~ (KI/2F which is summed. over the centers LKI/F

of these lines. By Eq. (2.29), this leads to X

4me' 2EI
~u(~, 8)= P d'h exp i l[E..(k,) leo—jF y-", s'(F ~„)2E..„(k)), (2.51)

dsc P .„(k+sF)e P„„*(k—sF)X
(2m)' x„p|

Kp/2E where we have assumed that P(k+sF)=P(k). The
integration over t removes odd powers in F. The terms
of even order in F, not included in Eq. (2.51), are of
fourth order or higher and are considered negligible.

X exp z ALE„,„(k+lF) ~j (2 47) In the weak-field approximation these terms are ne-
glected. Since the Airy function (Ai) is defined as"

Since for any function G(k,),"
2Ep — xF 7rp

Q exp i lG(kg) = Q 5 G(k,)+ l', (2.48)
l P gp l' gp

an alternative expression is

00

Ai(x) =— ds expL-', is'+isxl
2x QQ

ds cos(-', s'+xs), (2.52)

4m-2e2E'

"(,e)=
A)2(g2+ )I ss ~ l .Z.

d3k

where the constant of normalization E=7f- so that
lim, 0 ~e~ 'Ai(x/e)=5(x), Eq. (2.51) becomes

4x2e2

KJ /2J'

XC Pn „(k+sF)s P„„*(k—sF)

~F 2
Xbi E; (k,) &co+ l' — — — ds

Kg (2%) gj;g/'is

eg(&o, 8)= P d'h
~
a P ~ (k) i'

m'(o' ~'~ s.z. (2n.)'

E .(k) —Puo)-
(2.53)

hiQ„.„(k)i hQ„.„(l) )
e

Xexp l dlLE, (k+lF) h(gg (2 49) in the weak-field aPProximation, where

which has steplike structure in E„„(k,) with step sepa-
ration mF/Ks Equation (2..49) is useful for large fields;
for small fields Eq. (2.47) is more convenient. In the
latter case the only contribution is from the 1=0 term
because of the large quantity KI/F which causes a
rapidly varying phase of the exponent for //0.

The simplest possible approximation of Eq. (2.45) for
finite fields is to expand the energy and/or the mo-
rnentum in a Taylor series in terms of the field, keeping
only the lowest terms. Even though such an expansion
is nonperiodic, the fact that only the l=0 term in
Eq. (2.47) contributes appreciably suggests that the
Taylor expansions should be a good approximation since
they Gt E and P in the contributing region at small s
and t. The energy may be expanded in terms of the
6eld F as

E „(k+tF)=E .„(k)+l(F ~„)E„.„(k)

- P2 -1/3
hQ„.„(k)= h-

Sph

~=~- -(k)= (F p'„)'E„„(k)
O'F2

1 8 —1

—PE„(k)j, (2.55)
O2 Bkp2

and hQ„„(k)=h8/2"' where h8 is the characteristic
electro-optic energy. "Q „(k) and the mass ii„„(k)have
the same sign and may be either positive or negative.

We note that the reduced niass defined in Eq. (2.55)
is just the interband reduced mass of the pair of states
between which the transition is taking place, calculated
in the direction of the electric Geld. If the band structure
of a solid is known, i.e., if E„.„(k) is known for every k

$2

+—(F v~)'E. .(k)+ (2.50)

"H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun {U.S. Department of
Commerce, National Bureau of Standards, %'ashington, D. C.,
1964), Appl, Math. Series SS, 446 G.
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in the B.Z. and if values for P„'„(k) can be com-
puted and are slowly varying in the Geld direction,
then e2(cv, g) can be calculated directly from Eq. (2.53)
since AQ„(k) can be derived from E„(k) using Eqs.
(2.50) and (2.51). Equation (2.53), in contrast to pre-
vious calculations, ~" is not limited to a region in h
space where the energy surfaces are quadratic, but in-
cludes changes in the curvature of the energy surfaces
explicitly in the form AQ„„(k).It should be remembered
that the difference Dam(&o, 8)= e2({0,8)—e~(~,0) is of
interest experimentally and may be calculated from
the band structure of a solid using Kqs. (2.13) and
(2.53) and subtracting the resulting curves.

To emphasize the similarity between the zero-Geld
and weak-field equations, let us rewrite Kq. (2.13) as

td 62(CO~8) =
1 M —M

da)'ca" e2(au', 0) Ai, (3.1)
IQf Q

where 0 is a constant and is given bp

J-'r'2

(F v,)'E„.„(k),
8p~h 8A3

(3.2)

QI. CONVOLUTION INTEGRAL FORMULATION
NEAR CRITICAL POINTS

In this section, it is our purpose to show that, for
direct transitions near critical points and also for in-
direct transitions, the imaginary part of the dielectric
constant may be expressed in convolution integral form
as

e2(a,0) =g

and Eq. (2.53) as

d'kC ~ (k)
s.z.

1 E„„(k) hca ——
—Ai

{hQ.. {i)) AQ .{k) )

4m'e' 2
C„„(k)= (s P. (k)('.

m'{0' (2s)'
(2.58)

A. Direct Transitions

where p~ is parallel to the direction of the held F.
d &C~ ~(k)&t E~ ~(k) —~7 (2.56) For direct transitions, Kq. (3.1) is a simplification of

Eq. (2.53) near critical points with the assumptions that
the momentum matrix element and hQ„.„(k) are inde-

pendent of k and only transitions between two bands
need be considered. For indirect transitions, we con-
sider only phonon-assisted transitions between a maxi-
mum in the valence band and a minimum in the con-
duction band. Equation (3.1) will then be used to derive
the optical density of states in terms of Gnite-Geld quan-

(2 57) tities and then to calculate the real part of the dielectric
constant using the Kramers-Kronig relations. An inde-
pendent derivation for direct transitions is given in
Appendix 3 which also results in Eq. (3.1).

Comparing Eqs. (2.56) and (2.57), it is seen that the
eGect of the electric held, in the approximations used to
derive Eq. (2.53), is simply to replace the 8 function

by the Airy function with the appropriate prefactor. At
any point k the electric Geld thereby mixes contribu-
tions from other points in the neighborhood of k In the
limit that the field goes to zero, this mixing should
vanish: we note that in this limit F -+ 0, bQ„„(k)—+ 0,
and since

1 (E„„(k)—ha&—
lim Ai~

""
=~PE„,„(k)—y g. (2.59)»-o f (Q( 4 fQ

Equation (2.57) reduces as it must to Eq. (2.56).
Within the given approximations, Eq. (2.53) relates

the band structure of a solid to its interband dielectric
properties, but it is of value to simplify Eq. (2.53)
about certain points in k space, where the relative
gradient of the transition energy vanishes. About these
points, AQ„„(k) is independent of k thus further sim-

plifying the results. The equations for the interband
dielectric properties of a solid in an electric Geld near
critical points are derived and their applications dis-
cussed in the following section.

Near critical points, the transition energy is a quad-
ratic function of k and may be expressed in terms of re-
duced eGective masses as

(k ' ky' k,'
E(k) =E,+-,'h'~ + +-

i@ Py Pz
(3.3)

e2({0,8)=-—
em cu

1 E(k)—h i
d'k—Ai — —

~

. (3A)
f) Qf hQ

Using Eq. (3.3) and assuming the B.Z. boundaries

where E, is the gap energy.
Depending on the signs of the reduced masses there

are four independent types of critical points which may
be deGned as

Mo. p, „p„,p, , positive,

M~.' p„p„positive, p, negative,

3f~. p, ,p„negative, p, positive,

M~ '. p, ,p»y, negative.

Assuming that AQ„.„(k) and P „(k) are independent
of h near critical points and only two bands are in-

volved, we may write Eq. (2.53) as
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~ ~

ne 3tive ln6

ace to n ln eg
~ t duced expllcla no~be'n

' tsma
ec

h four types 0
tive masses m y

f critical point ye equati»s or

ds
IM ' 22(& 8)

gh Q& o !A~f

( P+ )+(E2—Acd)
yAi

(3.9c)

be written ln connd

dfg&y46ge2fe Pf' 2 3/2

I PaI2212*
2 2 A2mm co

1 (+)2I(2.+2„)(a)222,+(E,—har-
-- Ai—

hQfhaf

8
M2. 22(a&, a) =—

—(I'+ 2.)+(E2—kO)-(3.5)

(3.9d)X»
ion + '&'means that

the sign is positive for t e
e for the other tv' edges, e.g, e for t e

f %e de6ne the change o v

1/2

~2jg jg3
(3.10)

(6m= 6s )I= E~ 6y

r &, the result lsthe integration over ~„
e2

f
C P

f
8

foal

P,„P,, f

1 (+)"I(+)",+(E„—kv)—
-Ai

diver gen u

With this in min, we = e
termsin t ebtract identlca

that ere may use

(3.11)

reduces Eqs. (3.9) to

8
Mo. 2:(ru, 8)=

1 2+(E2—60)—
Ai

fh11f ha
(3.12a)

—8
MI'. 22(CV, 8)=-

1 —e+ (E,—ko)-
-Ai

fhaf

dges.

an e
'

n e of variablesand de6ning the change oUsing Eq. (3.8) all e

I +2g alld eg= tg

d/ Ai(/) = 1 (3.8)

rm. Folio@ring this procedure,ct the divergent term. oto extract e rm. o
Eq. (3.7) Inay be rewri

+=—;(3.12b)
26) Qh 2

day'eM2. 22(u), 8)=- — e

1 W+(E2—A22)
-Ai

fhaf AO

J3 Ag dS

2&F2 h 2 +2. 2 fhQf

(I'+e,)+(E,—ku)-i
XAl

AQ +;(3.12c)
2a)2+h 2 Qe,—8 A, ds

MI. 22(ru,

2 AQf

—(I'+22)+ (E2—kO)
QAi

312. 22(Cu, 8)=

1 -e+(E,—A42)-
(3.12d)

AQ

I' (I'+2,)+(E2 A22)—-—
-Ai

fhaf
; (3.9b)

fh f

81{3.C OfITlls on the I'lght-4, and 81

qs. . d (3.12c) are indee eEqs. (3.12b) an
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as ex ected, and all the other terms on
2) field-dependent

'
e of E . (3.1 are

'n E . (2.59), we ave
hi h b 'ttlimit of the above equations w ic may

8
3fg e2(a.u,0)=—(a)—a)g) 'I', ar &a g

Q4) (M —(d&)

1 co' —co

Ai
faf a

M2. e2((o, 8)=
M Np

=0,
—B

N'g. e2(a),0)= (&og
—o&)

'~'

copopg) (3.13a) co' 2+5

rIM (Mg —co )

4I
(3.14c)

8 1 "dE
ar'2+& o QE

B 1 "dE
co'2+5 0 QE

Ai( ) . (3.14d)
faf a07 (Mg

ofK s . ,
' ethatof E s. (3.14), we can easily see t

f E . . d 314) gives the result;f E s. 3.13) an13b) comparison of Eq .CO) (dg j 3.

—8
312. e2(a,0) = ((u—(gg)'~'

~'e2((a, 8) = Ai, (3.15)a'" (',0) Ai
fn

8 1

co' 2+5
8 1

co' 2+4
cv(Mg) (3.13c)

E . 3.10) to include the divergenthere we have used q.
terms in e cth onvolution integral orm o

31 '
li bl

ical with Eq. (3.1).

ell as irect transitions near
show that Eq. . is

direct transitions as well as iree r
critical points.

td — 1/2~.:"( 0)=—,(,—) ),

8
cVO.'62(M, 8)~— des'(a)' —cv 0)

'~'

X —Ai —;(3.14a)
0 0

ll/Ig. '62(M, 8)= d&u'((o, —(o') '~2

1 p
' —

)Ai
f0[ E. 0

(a2.2+6

dE
(3.14b)

Qg~

(3.13d)=0, COP Mg

. Since the sign of 0 is that o pF,~ which
f M d M dfield direction or

lland (3.12c) are actua y wo
'

h 0 egative These
h 111 d

0 ositive and one wit n
ns for 0 are equivaent o

1 1 t d reviously. " It maytransverse Geld effects ca cu a e p . a
at K s. . re ucat . . 2 d ce to the previousq ~ ~

in fact, the same starting poin a
d 3 dn E . (3.12).Aspnes is used in pp
d'in A endix o e'

%ith the change of variable e= co—
(3.12) may also be expressed as

B. Indirect Transitions

ons i.e., honon-assisted transi-I'or indirect transitions, i.e., p o
er the center-of-mass as we as e

thctor must be carne outive wave vec or
d b the inclusion of pho-degree of freedom

'
introduce y e

'

over the center-o -massf- states can benons" The sum over
d inte ral asexpresse as ad properly normalize in egra

(235,3II„3f,)'i'

2' 2h3

r of the electron-is the center-of-mass energy
t' M.=m„+eel, ;, wherefor the ith direction,
dh 1 e6'ectivemasses re-re the electron an o e e

e
' d' t transitions may bep-t .ly. T ~ q

~ dd o of h.
he e uation for iree r

to indirect transitions y e

e her, o gy

re h on and absorption o
in Penchina's' no a io .

refer to the emission aand lower signs re h
'

el . Since indirectphonons o energy

rdm-
b d 11

enerall taken to e rom

k
' '

h fll
and to minima in the con uc

b 1'd }1
es will be taken as posi iv

for the above replacemen oing. Also, or
f th matrix element w ic1assumed that t qhes uareo em

ner denomina ort does not changenow contains an en gy
ver the range of integration. o

E . (3.12 ), thabove procedure and using Eq. . a,
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4x2e'
Is Pi'cV(itoo)

m2
(d oo(oo,0)=(2M~„M,)'t'

onind(~ g)— dE, .„.(E,
2x2h'

part of the dielectric constant in an electric Geld for example, for direct transitions, we have
indirect transition is given by

(3.23)

oo

X (n„o+ ,'+-', )--— E"'dE
o

1 E+E, +Fo&hco.o hcu—
X

t/a/ Ia
(3.17)

dt Ai(t+x) Ai(t+y) = b(x—y),
~ ~

(3.24)

where N(boo) is the density of states for the transition.
Thus if we can calculate oo'o2(&o,0), we have calculated
the optical density of states within a constant of
proportionality.

Using the completeness relation of the Airy function, "

and evaluating the E integral gives the result
1 M —oo)

d V'o(~'a) Ai —

~

. (3.25)
Ja[ o i

co'oo((u, 0)=
doo'((u' —oo,Woo„)'o ind(~ g)—

2
CO naggy ttp

Another result may be derived relating diBerential
oo

I data to zero-field data. Starting with either Kq. (3.22)
or Kq. (3.25) it may be shown that

[oJ a i
where 3F 8

doo 0&
——taboo(oo & 8)
2 BPe'is P/'( r4+ ', a-,')-

2mm'h4 1 (oo a&')—
X Ai~ I, (3.26)

faf ( fl i
X (megmeymezm~*my„ms. )'12. (3.20)

DeGning a change of variables

(3 18) and assuming 0 is a constant, Eq. (3.22) may be in-
verted resulting in

oo (07 0)= (Q/M ) (co—oo Woo o)

=0 (3.21)
o) +o)g+cotto

Thus again we arrive at the desired result by comparing
Eqs. (3.19) and (3.21) which is

(a'oo((v, 8)=
1 (co'—oo)

d(a'oo"oo(co', 0) Aii i
(3.22)kai

and is the same as Eq. (3.15) and Kq. (3.1).
We will now show how the above equation may be

employed to calculate zero-held quantities from Gnite-
Geld quantities.

C. Oytical Density of States from Finite-Field Data

The fact that Eq. (3.1) is applicable to both direct
and indirect transitions in the limit of constant eGective
reduced mass, i.e., constant 0, indicates that it is, to a
certain extent, a general formula. In this light, we will
then proceed to invert Eq. (3.1) and thereby derive
equations that relate Gnite-Geld data to zero-Geld data.
The zero-Geld imaginary part of the dielectric constant
is proportional to the optical density of states; for

Again, as with the direct transitions, we may use
Kq. (2.56) to find the zero-field limit of Eq. (3.19) which
may be expressed as

where don(a&, 8) = o2(a&, 8)—o2(co,0). Since the differential
data has Gnite amplitude about critical points and is
zero elsewhere, we might expect the integration over
all energies in Eq. (3.26) to give more accurate results
than Eq. (3.25). It is possible to integrate Kq. (3.26)
explicitly to evaluate oo2o2(s&, 0). The sum rule '

oooo(oo) doo =~oÃd (3.27)

a)'o2(oo, 0)=— 3' 8
doo'co" —Boo(oa', 8)

4 aZ

where

X —PAi(r)+r Ai'(r)+r2 Aiq(r)], (3.28)
/a/

(&o
—a&') d

r =
( [, Ai'(x) =—LAi(x)],Ef1 i'

~p D. pines, F/ementury Excitat7'ons in SoMs (W. A. Benjamin,
Inc., New York, 1964), p. 136.

requires o2(s&) to fall off faster than (1/oo ) as a& ap-
proaches inGnity. Thus the constants of integration
must all be zero and integration of the Airy function
three times gives
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n25the differential equK.no~»g t""G'(* "and

Aii(x) = Ai(t)dt . (3.»)
G,//(x) x Gi(x)+—=—=0 (3.36)

Th s since the diffifferentialus
e K.hmi e'ted energy rang,

numerical

e

1 " d(o'a)" em((o', 0)
ei(0, 8)=1——

integrat

f Dielectric ConstantD. Real Part o ie ' ant

8)

isfinite

ove a
1 ads us to the eq

ata 6~2 )

1 b]e to(3 28) is easily app 'ca

1
ei(s)) = 1+—6' — ——

I ~2(~') —~2(—~')j.

E (3.1) for e2(&u, 8) givesUsing Kq.

11She Kramers-Kron gi or isper sion equations,
t is related to theo d' 1 ctric constant is rep of the ie ec

art of the die ec riimaginary part o

(3.30)

/"
dry (a 'e2((u )0)

03 0 0

2
ei(0)0) = 1+-(P (3.38)

ns it may be shownf the above equations, i mFrom any of t e a
that

d(s'en(a)', 0)

00

ei(a, 8)= 1+— // //2 ( // 0)

nt in anstatic dielectric constant
'

3.38) suggest thatlectric field, q.
'

g i(o) )
information abou

y 08
1 I" ')—Ai~—

„(o'(ra"—ra') [ 0 ~
4 0

(3.31)

It may be show n that

" dt—Ai(1+x) = —)r Gi x), (3.32)

solid.
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1i )=— ds slil(sx+-, sGix =—

OC)

ei(a), a) =1+— 1 t/e' —&o)
d&o'(u'2&2(s)', 0) —Gi~

0

do)'(u").*2(&o',0) —Gii—

ex ansion of the integrand ofKit a ph a artial fraction p

real part of the ieecd l t o t texpress the real pa
uniform e ec1 tric 6eld near a

APPENDIX A: PPROOF

that the quantities
1 fth

'x we show t an
K . 221 are

u.(k,r) =P 8„"(k)u„(0,r) .

k) are deter-or the coefficients 8„The equations for t e c
mine yd b the Hamiltonian

r E(k) e'"'u„(k,r-r . A2)V'+V(r) e'"'u (k,r = . '"' r .
2'

treatment givesThe usua 1 k p perturbation r

0 -'G;"+'~. (3.3)dM Gl 62(/)) )0) Gi

0=8„/'(k) +&.(o)—&-(k)

the limiting formzero wehave e
' ' '

mAs co approaches z

ei(0,8)= 1+ —Gi" —~. (3.35)des'ru" eg(au') 0)—
00

r o SoHds (Cambridge~ . ', Princi les of the J'heory o o
University Press, London, 1

A3)+i +8„"(k—) u„i— " k k (u„(0,r) f
7 fu„(0,r)), (

%=0.r of the band p, at k= .

c 0
11 o fFi i tarit, " then a

s that thed 't therefore followsknown 8 /'(k) are real an
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B )'(k) are also real. By definition,

t9

X„„(k)= d'rl *(k,r) — N„(k,r)
Ng

8=p B.)'(k) B "(k)(N„(0,r) I N, (0,r))
Bk,

8
=P B„"(k) -B "(k) .

v

(A4)

and apply Eq. (33) to Eq. (32) with the result

BIO Q„I "dadpdy
es(~, h) =

'l&AP. I'"f ( ))v)'"

&& dr'ds' Ai(e+r') Ai(P+s')

cdg M Qgr Qys
xAiI &+ —, (35)

Qg

where
The last expression is real, hence the quantities X„„{k)
are also real. r'=Kr and s'=Ks,

kr'8
eu(M, 8)=

h'o)'
I
8,8„8.I '~'

dc~de„de,

g Ai' — — Ai' — Ai'

APPENDIX 8: ALTERNATIVE 9ERIVATION OF
es(~,8) NEAR CRITICAL POINTS

In Sec. IIIA, Eq. (2.52) was modified for photon
energies near critical point energies. In the following we
propose to show that the same equations result from a
diBerent approach. Using the results of Elliott, "
Tharmalingam, " and Aspnes, " the imaginary part of
dielectric constant near critical points may be expressed
as15

and a, P, y are dummy variables resulting from the use
of Eq. (B4).The integrals over r' and s' may be evalu-
ated using the formula"

y+s*
df Al(z+/) Al(Y —sb) = — Al

(1+a)~II

which reduces the three Airy functions in Eq. (35) to
a single Airy function

BIQ,Q„Q, I'I' "dndpdy

o (&V)'"

Xb(ho)y Aced+ e,+e„+—e.), (B1)
Ai

IQI
(38)

Ai'{z)=— Ai(/+ex),
o

(33)

where K= 2~t3. Let us now define for the ith coordinate

8;Q=—
K

"R. J. Elliott, Phys. Rcv. 108, 1384 {I957).

where ~, is the energy gap and for the ith coordinate
8,s= F,s/2';, where F;=e8,, h; is the component of the
field in the ith direction, and p, ; is the reduced effective
mass in the same direction. The constant 8 is deined
in Eq. (3.10). We may use the i) function to evaluate
the e, integral and the result may be expressed as

4~sB
I 8.8„I

ep(ra, 8) = drds Ai'(r) Ai'(s)
&o'

I 8,8„8,I'~s

G)g N 8gr as'))
XAis — — — I, (32)

8, 8, )

where r= —(e,/h8, ) and s= —(e„/h8„). The function
Ai'(x) is related to a single Airy function by the
integraP'

Q'= Q.'+Qy'+Q. '. (39)

and introducing the signs of the reduced masses, i.e.,
the signs of the 0;, explicitly into the equation as was
done in Eq. (3.5). Since we have shown that Eq. (39)
is equivalent to Eq. (3.5) we need not repeat the com-
putations between Eq. (3.5) and the final result, but
may just express the 6nal result for the four types of
critical points as given in Eqs. (3.14).

Xofe added ~e proof In a recent .treatment of the
eBect of electric 6eM on the absorption edges of in-
sulating crystals, Rees LH. D. Rees, J. Phys. Chem;
Solids (to be published); Solid State Commun. 5, 365
(1967)] has derived a relation connecting the field
effect and zero-field spectrums similar to Eq. (3.1).
Rees, using a representation in which the electric Geld
appears as a force term in the equation of motion, treats
low-angle scattering by an adiabatic approximation.

Equation (38) is essentially the same form of equa-
tion as Eq. (3.5) and. may be put in the same form by
defining

e.=&IQ*I~, "=@IQ.IP, and "=&IQ Iv, (31o)


