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A general expression for the imaginary part of the one-clectron interband dielectric function of a solid
in the presence of an electric field is derived. The result is valid for all regions of k space and explicitly takes
into account the variation of the dipole matrix element and effective mass throughout the Brillouin zone.
Under certain approximations the finite-electric-field dielectric function reduces to the convolution of the
zero-field dielectric function with an Airy function. This result can be used in conjunction with band-
structure calculations which have already been done in order to predict the line shape of the electrore-
flectance spectra as a function of electric field. The convolution expression reduces further at nondegenerate
critical points, and the forms for the four types of critical points are presented. In certain instances it is
possible to unfold the convolution integral and obtain the zero-field dielectric function from either the
finite-field dielectric constant or the electroreflectance data at isolated critical points.

I. INTRODUCTION

HE recent development of modulation tech-
niques'™7 in the study of energy bands has suc-
ceeded in providing much needed information for the
starting points of band-structure calculations and has
given further impetus to the study of band structure.
These modulation techniques have involved the appli-
cation of periodic perturbations such as electric field,*
strain,® or heat” to the solid and have used phase
sensitive detection methods to measure the periodic
modulation of the optical properties of solids.

The power of these methods lies in the fact that
modulation techniques enhance the signals at certain
points in the band structure: the critical points or the
van Hove singularities where the relative interband
gradient of the energy vanishes at some point of k space.
By measuring the piezo-optic, thermo-optic, or electro-
optic spectrum, it is possible in principle to obtain the
energy and position in k space of the critical points of
the energy band spectrum.

Knowing the effect of an electric field on the band
structure of a solid is a necessary prerequisite for the
interpretation of experimental electro-optic results, not
only to determine the critical points but also to deter-
mine the validity of the one-electron approximation for
interband transitions. Following the initial work of
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Franz® and Keldysh,® many calculations of the effect
of an electric field on the real and imaginary parts of the
dielectric properties have appeared in the literature 1016
With few exceptions, these calculations have been done
in the framework of the weak field, effective mass ap-
proximation. In every case, the results have been re-
stricted to regions of k space where the energy bands
are simple functions of k. It is the purpose of this
paper to derive a general formula for the imaginary
part of the interband dielectric constant e (w,&) for
a solid in an electric field which does not require the
assumption of quadratic energy surfaces about par-
ticular points in k space. The expression derived allows
direct calculation of e (w,8) for a solid directly from
the theoretical band structures calculated by pseudo-
potential 118 k-p,1® or other methods.? This general
formula is derived in Sec. II.

In Sec. III, it will be shown that for regions of k
space having quadratic energy surfaces there is a very
simple convolution integral relating the finite-field
dielectric constant to the zero-field dielectric constant
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through an Airy function. This convolution integral
form will be shown to be valid for indirect transitions
as well as direct transitions near critical points. Using
the fact that the electric field mixes all of the states in
k space, it will be shown that in principle it is possible
to recover the zero-field dielectric function from dif-
ferential electro-optical data. Also, the above-mentioned
convolution integral form for the imaginary part of the
dielectri¢ constant in an electric field is used with the
Kramers-Kronig relations to calculate the real part of
the dielectric constant.

Appendix A is a proof used in Sec. II and Appendix B
is an independent derivation of the results of Sec. III.

II. CONVOLUTION INTEGRAL FORMULATION
OF ELECTRIC-FIELD EFFECT

In this section a convolution integral representing the
effect of an electric field on e, the imaginary part of the
dielectric constant, in terms of the zero-field parameters
will be derived. The derivation of Callaway,® which is
based on the work of Argyres® and Kane,? will be fol-
lowed ; es(w,8) will be obtained by calculating the inter-
action of an electromagnetic wave with the crystal. A
similar derivation has also been given by Yacoby, for
both direct and indirect transitions at an M, edge.**

We consider first the absorption of light by a solid in
the absence of an electric field, using the semiclassical
approximation where the perturbation introduced by
the photon is represented by the vector potential

A=ed et riot, (2.1)

The one-electron states of the solid are assumed non-
degenerate and represented by Bloch functions which
satisfy the equation

h2
[———v2+ V) :'gb,.(k,r) —E(a(kn), (2.2)
2m

where the potential V (r) is periodic in the lattice. k and
n denote the wave vector and band index, respectively,
with k being restricted to the first Brillouin zone. The
Bloch functions are normalized to the volume V as

/ @Y Y (6 (k1) = BrraBae (2.3)
1’4

and can serve as a basis for expansion of a function over
the volume.

By time-dependent perturbation theory, the transi-
tion rate from the filled discrete state represented by the
Bloch function y,(k,r) to the empty discrete state

%P, W. Argyres, Phys. Rev. 126, 1386 (1962).
2 E, O. Kane, J. Phys. Chem. Solids 12, 181 (1959).

HANDLER,

AND BLOSSEY 166

¥ (K';r) is given by®
1 4

w(k’n'; k)n; l)=-I a k/)nl; k)n) t) l 2=‘;:2'l H/k’.n’;k.n,[ 2
t

sin?2 (W, —w,—w)t

» (249

Hoonr —wn—w)?

where the matrix element H'ys n/,x,» in the dipole
approximation is given by

H’k’,n';k,n: <¢n’(k/’r) {

iehA

eViga(kr), (2.5

mc

and #w,= En, fw, = E,. Since ¢ (k',r) and ¥ (k,r) are
Bloch functions,

(1) | 9 Y (1)) = ipm,,(kmrk, (2.6)

which can be taken as the equation defining P, (k).
The transition rate per unit time from the filled states
¥a(k,r) to the empty states . (k',r) is therefore

2 A2

,E' Pnr,,(k) l 201k

w(k/,n'; ks £)=

m2cth?
sin?} (W, — wp—w)?
- (2.7)
Hewnr — wp—w)?
In the limit of large ¢

_ sin%jwt
lim =1ré(w), (2.8)
t—>0 wzt

and the total transition rate over the entire solid is ob-
tained by summing over all filled and empty states,
giving

2me?A?

2 & Pun(k) |8 Epn(k)—fw], (2.9)

Wiot™
m2c2h k.n'in

where the sum #’ ranges over empty bands and » over
filled bands, and E,,(k)=E, (k)—E,(k). To obtain
the number of transitions per unit volume per unit time

we write
V
T
x  (2m)3 )p.z.

where the integral is taken over the first Brillouin zone.
Including the factor of 2 for spin degeneracy gives the
desired rate per unit volume per unit time as

(2.10)

2re?A? 2

m2c?h n . (2m)3

X / | & P (K) |20 Enrn (k) — ] (2.11)
B.Z.

23 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co.,
New York, 1955), p. 195f.
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Since the imaginary part of the dielectric constant is

nc  2wcth
elw)=—a=—mw, (2.12)
%) w?A4?

Eq. (2.11) gives
471'262
ak
m2w2 ﬂ‘:.n /B.Z. (21r)3
X | & Pun(k) [20[ Enn(k)—fo], (2.13)

€2 (w) =

which is the usual result for e; in the absence of an elec-
tric field.'” The sums 7’ and » are over empty and filled
bands, respectively. Equation (2.12) supposes a low
rate of loss of incident energy with distance (small a),
but a rigorous derivation of e; by means of the current
operator also yields Eq. (2.13).%

In the presence of an electric field e§=F, Eq. (2.2)
becomes

hZ
[-———V2+ V(r) - Fx:]¢v,n(kl;r)
2m
= Wv,n(kl)¢v.’n(kl’r) ’

where the direction of the electric field is chosen to be
the x direction. It is assumed that this direction co-
incides with one of the (infinite) vectors of the reciprocal
lattice.?! If this is done, the Brillouin zone can be chosen
so that the symmetry perpendicular to the field is re-
tained, and the eigenfunctions ¢,,.(k.,r) can be ex-
panded in terms of the Bloch functions of the unper-
turbed Hamiltonian as*

bvn(kir)= ‘kL 4y 2 (k)¢ (kyr)

with normalization.

(2.14)

(2.15)

/ B (600G n (K1) = o S G- (2.16)
14

Substitution of Eq. (2.15) into Eq. (2.14) gives the
equation of the coefficients 4,,,(k):

0=kZ {4, n(R)[En(k)— W, (k) —Fxu(kr)}, (2.17)

and taking the inner product of this expression with
Y (K',x) yields

0= % {A v,n(k)[En(k) - er,n(kl)jan’nak’k
— Ay (R F @ (K1) |2 |n(ky1))} . (2.18)

It is now necessary to consider the matrix element of
x which appears in Eq. (2.18). Since the Bloch function
can be written in the form

Yn(kr)=e* "y, (kr), (2.19)

# M. Cardona, in Solid State Physics (Academic Press Inc.,
New York, to be published).
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where #,(k,r) is cell-periodic, it follows that

7}
<¢nf<k',r>|xm(k,r»=—z'am.(gk—ak,k)

+ it Xwn(k), (2.20)

where

d
X (k)= / Brun (e )—un(lr).  (2.21)
14 akx

The operation of the derivative on the Kronecker delta
function has symbolic significance only and is a result
of differentiating Eq. (2.19), where the wave vectors k
form a quasicontinuum but are really discrete. However,
if the volume V is large enough k may be considered
continuous allowing interpretation of the derivative in
the usual manner. The derivative of the Kronecker
delta therefore is equivalent to the negative of the de-
rivative of the function multiplying the Kronecker
delta within the summation operation over the variable
of differentiation. Therefore, Eq. (2.18) becomes

d
0=% ak,k{a,.m[ﬁ,xk)—Wy.,.<kl)—w——ak ]Ama{)
kz

—-iFann(k)Ap,n(k)} , (2.22)

and the sum over the vector k can be carried out im-
mediately, eliminating the & function of k and k'.

We sum over the index »’, obtaining independent
equations for the coefficients 4,,.(k):

0= l:E,.(k)~iF }__; Xowra(k)

d
—W,n(ky)—iF ]A,,,.(k). (2.23)
ok

z

The fact that the summation of X,/,(k) over the index
n’ results in a quantity dependent on # and k like the
energy E,(k) suggests the definition of an effective

energy )
E/)(k)=E.(k)—iF 3 X,n(k), (2.24)

which takes into account the interband terms X, (k)
as well as the intraband polarization of the Bloch func-
tions represented by —Fd/dk,. The interband terms
represent electron transfer between bands,?? which
causes a decay in the wave-function amplitude of an
initially filled state and an increase in that of an empty
state. Therefore, the second term on the right of Eq.
(2.24) is complex. [In fact, if the crystal has inversion
symmetry, the X,/,(k) are purely real as is shown in
Appendix A and thus the interband contributions to
the energy are purely imaginary.] Retention of the
quantities X,/,(k) means that the normalization con-
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dition of Eq. (2.16) cannot be satisfied; this difficulty
is avoided by assuming that the electric field is suffi-
ciently small so that interband tunneling is negligible.

The equation for the coefficients 4,,.(k,) in the ap-
proximation that the interband tunneling is negligible
is therefore

2
[E"(k)— WV,n(kl)_iF——}Av,n(k) =0. (2.25)
ok

z

The general solution of this equation is
4 v,n(k) = Cy.n(kl)
i ke
Xexp{;/ [W,,,.(kl)—E,,(kl,k,’)]d/e,"» , (2.26)
0

where the coefficient C,,,(k.) and the energy W,,.(k.)
can be determined by the normalization condition of
Eq. (2.16) and the choice of the Brillouin zone which
makes the end points in the x direction equivalent.? If
the length of the Brillouin zone in the x direction is K ,,
then by equivalence we have 4, ,(k+K,)=4,,.(k), so

2mF

+E,(ky), (2.27)

VV,,"(k_L) =

T

where we define

i 1 ke
By(k)=— / i Ea(koky).  (2.28)
Ka: 0

We note that since E,(k) is periodic in the Brillouin
zone there is no need to integrate from the limits in
Eq. (2.28), but in general

ket Kz

_ 1
Ba(k)=— / TS Ealko k), (2.29)
Kz kz

a result which will be used later. The coefficient C,,» (k)
is determined from the normalization condition: if the
length of the box in the x direction is L, and the length
of the unit cell in this direction is R, so that there are
N cells in the x direction (L,=NR,), then C=N"12and

1
Ay n(k)y=—v
v/N

ok
XeXP{'—FZ— / [W.,,.(kl)-—E,.(kl,k,')]dkz’}. (2.30)

Equations (2.15), (2.27), (2.28), and (2.30) determine
the wave function of the electron in the presence of an
electric field, from which the imaginary part of the di-
electric constant can be calculated as previously done
with the zero-field wave functions.

At this point it may be useful to list the approxima-
tions inherent in the result given by Eq. (2.30). The
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neglect of the interband tunneling terms has already
been discussed. The fact that the matrix element of «
could be separated at all into interband and intraband
terms depended on the Bloch form of the wave function,
Le., that the potential V(r) is periodic in the lattice.
This is a characteristic of the one-electron formalism,
which neglects all interactions between electrons and
in particular neglects the Coulomb attraction between
the electron and hole which results in excitons. This
approximation must necessarily limit the application
of the results to cases where the electron-hole inter-
action is small. Finally, nondegenerate perturbation
theory is used so that the formalism may break down
at degeneracy points of bands.

We now proceed through the calculation of the
imaginary part of the dielectric constant using the wave
functions just obtained. The transition rate out of the
state ¢,,(ky,r) into the state ¢, . (ki',r) caused by the
perturbation of Eq. (2.1) is

1

”‘[a»’n’kl’;vnkl;tlz ='-{H,v’n’kl’;unkll 2
¢ 2

3 1
SIN23 (Wyrnrie s — ok, — )¢

, (2.31)

t(wv’n’kl’”‘wvnkl"‘w)z
where #w, nrir =W, (Ki), etc., the matrix element is

ied
H,y’n'kl';vnklz: <¢v'n'(k1/,r> l —é: Vl¢un(kl)r)>
mc

iehA

i
Y by i Pan(R) Ay ¥ (K) 4, ,a(k),  (2.32)
me ke h
and P, (k) is defined in Eq. (2.6). Taking the limit of
large ¢ according to Eq. (2.8) and summing over all
final (empty) and initial (filled) states denoted by the

wave functions ¢, (k.',xr) and ¢,,,(ky,r), respectively,
gives the total rate of transitions over the entire volume

V asin Eq. (2.9):

2A 2
2’”6 Z é Pn'n(k.l.,kz)é' Pn’n*(kl,q:c)
m262h WkZin'
X A 4 ,ﬂ'*(klyk:t)A v,n(klykz) A v,n*(kl,Qz)A v .ﬂ’(kl’qx)
X[ Wy (k) =W, n(k)—hw].  (2.33)

Substituting Eq. (2.30) for the coefficients 4,,,(k) and
Eq. (2.27) for W,,.(ky) gives

2me?A? - _— .
m2c2hN2 "li;Znn‘ € n/n( 1,k:)e~ n'n ( ;,qz) exp{_l;.
qz

k2 _ 2nF
X/ dkz/I:En’n(kl,kzl)_En’n(k1)+ K (V_'VI)]J
9q.

z

Wiot™=

Wiot =

£4

27F _
xa(K (v’-—v)-}—En:,.(kl)-—hw). (2.34)

z



166

Since the double sum over v and ' is over the combina-
tion (v—’), it can be replaced with the equivalent ex-
pression® valid in the limit of large N :

2z fo=)>NZ fw atf(§) e, (2.35)
v 1 )

which enables the integration over the § function to
be performed with the result

82A 2K:p le -
—_— exp['r—(E'n'n(kx)-hw)]
mZCZhNF l];m' F
qz
X é Pn’n(klakz)e' Pn’n*(kl,qx)

i ke
Xexpi—
ol

Since K ,=27/R,, the change from sums to integrals in
k space, followed by multiplication by 2 for spin de-
generacy and dividing by the volume of the box in order
to obtain transitions per unit time per unit volume,

gives
/ d*k / dgs
B.Z. B.Z

¢4
‘s exp[z-—w,, )] |

W=—
in'n

Weot=

dk.z,[En'n(k.Lkz/) - hw] } . (2.36)

m2*c*hF

Xé Pn’n(kl,kz)é' Pn'n*(kl,q:z)

2 i ke
— | @k Ewn(kihe)— o } 2.37
Xl [Tt 230

and by Eq. (2.12) the imaginary part of the dielectric

f(1/2>Kz+VKz
—(1/2)Kz+vK 2

(1/2)Kz

'z

v —=(1/2)Kz

v —(1/2)Kz

where the periodicity of P..(k) in k space has been
used in the second step and Eq. (2.29) in the third. But
Eq. (2.39) is the term /= (y—»’) of the sum over / in
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)
dkqu::é' Pn’n(kl,kz)é' Pn’n* (khqz) CXP{'—/

az+v' Kz

925

constant in the presence of the field F=¢§& is

2me?
/ ak f dg
m2w?F J .z, B.Z.

X exp[zL[En (k) — hw]]

in'n
Xé Pn’n(kl,kz)é' Pn'n*(klqu)
2
X
(2m)?

€2 (w, 8) =

—
exp{% f dkx’[E,.’n(kl,k,’)—hw]}. (2.38)

9z

Equation (2.38) is completely equivalent to the
result obtained by Callaway! before the evaluation of
his matrix element M ,., except that by combining the
two integrations implicit in |M .. |2 we have obtained
€2(w,8) in a slightly different. form. This form is neces-
sary to represent the electric-field effect on e, as a con-
volution-type integral in terms of zero-field quantities.
It is possible to go back to Callaway’s formulation by
simply writing the exponent integral between the limits
k. and g, in Eq. (2.38) as a product of two exponent
integrals between the limits 0 and k., and ¢, and 0, re-
spectively, assuming P,,(k) is independent of k, ex-
panding the energy about the point k=0, and retaining
only the /=0 term in the sum over /.

The integrations over &, and g, cover the first Bril-
louin zone (B.Z.) in the field direction. Since the B.Z.
width in this direction is K, these integrations can be
taken between the limits 43K ,, and may be represented
in (k.,q.) space as an integration over a square of side K ,
centered at the point (0,0). We next consider the (k.,q.)
integration over the square of side K, centered at
(vK4,v'K ;) which is, omitting irrelevant terms,

U2 Katv' Kz i ke
dkx / dq:c g.P",”(kl,kz)?P,,',.*(kl,qz) eXp{-—/ dkz/[Enrn(kl,kz,)_hw]}
(UDKotv' Ky FJy,

qaz

dkz'...}

7 kz 7 kztvKy
Xexp[——/ dk,’---l e {—/ dk,'-'-}
F qz P F kx

(/2)Ks iK, _
/ kel gzt Prrn(Kiyks) e Porn* (kiyqs) exp{—l—;(v- V)[Ewa(k 1)—hw]}

i
Xexp[; / dkz'[E,.».(klkz')—w}, (2.39)
gz

Eq. (2.38), so the 1ntegra1 over the square of side K,
centered at (vK »V'Kz) in (ksq:) space gives the
I= (v—7') term in the sum over /. The £,,q, integrations
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can therefore be defined so as to absorb the sum over /,
for instance, if =0 we have /= —»’, and the sum over
all / generates the strip |£.| <3K., |¢.| < in (ksq.)
space as shown in Fig. 1. Conversely, the strip
|gz] <3K., | k.| < o is generated for »'=0.

The convolution integral formulation follows by
putting the variables &,,q. on an equal footing. To do
this, we map the squares defined by the index I=»—»'
in the following way. If / is even, the square is centered
on the point (3/K., 3IK,). For odd I, the square is bi-
sected along the face diagonal 6= —45°; the upper right
half (URH) is mapped on the URH of the square cen-
tered on [3(I—1)K,, —3({—1)K.]. The sum over all /
now completely maps the strip defined by | k;+¢.| < K.,
|ks—g.| < o as shown in Fig. 1, and

2me? Ko—kz

/ ik, / ik /
m*w*F J 3.2, —w —Ka—kz

XZ é n’n(kl:kz)é'Pn’n*(kl:QZ)

dq.

e(w,8)=

2 i (ks
X — Ak [Enrn(kiks')— P } 240
ol [ )| 240

We now define new variables a,b such that

a=%(ks+q.); b=%(ka—q.); dk.dg.=2dadb. (2.41)

The region of integration in Eq. (2.40) is defined by
these variables as

K
la| <—, (2.42)

", |b] <,
2

SO

47"82 Kz/2 00
e(w,8)= > / dk, / da / db
m*w?F nn’ J g 7, —K./2 —o

Xé Pn'n(k.L, a+b)€‘ Pn'n*(kj., d_b)

2 1 atbd
X expy — Ak [Enrn(kiks')— o } (243)
2} P[F /a_b C 1ka) ]

If £./'=k.—a so that k./=Fk,"+a, and if we repre-
sent the dummy variable ¢ by k., Eq. (2.43) becomes

4me? ©
e, &)= ) % / db
m2w?F nn’ B.Z. —a0

2
& P.., éP.,.* )
Xé Pn n(k.t, kz+b)5 Pn n (kl; kz b)(21r)3

7 b
XeXp{;/ dkz”[En’n(ki, k¢+k2’/)*—h€0]} . (2.44)

-~b

In order to obtain a form which reduces easily to the
zero-field equation and which can be readily expanded
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7
\\\(/
Ny \
SR

at

F16. 1. Equivalent regions of integration for Eq. (2.39).

for weak fields, we change variables once more by de-
fining s, ¢ of reciprocal energy dimension:

b k;”
s=—, =

F F

With this substitution, Eq. (2.44) becomes the basic
expression for the imaginary part of the dielectric con-
stant in the presence of an electric field:

4re? I g
alw,8)=—— 3 [ v / ds
m2w? nn' J gz, —
2
x é Pu’n(k+SF)€' Pn’n*(k—sF)(zw)a

Xexp{i/,dt[E,.»,.(k—f-tF)—hw]}. (2.45)

The field therefore mixes states along its direction in %
space. Reduction to the zero-field case is trivial, since
for F=0 the integral in the exponent is just

25[Eqrn(k)— hw]
and

/-“’ ds exp{2is[ Enrn(k)— fuw]}
- = w3 Buall)— o], (246)

which, when substituted into Eq. (2.45), gives
Eq. (2.13), the zero-field expression for es.
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The length of the shortest reciprocal lattice vector
in the direction of F will be designated as Kp. This
appears as a periodicity is s, of period As=Kp/F. By
explicitly including this in Eq. (2.46), the Stark steps
can be obtained.® The integral over s can be par-
titioned into an integral over a fundamental line
|s] <Kp/2F which is summed over the centers IKy/F
of these lines. By Eq. (2.29), this leads to

e(w,8)= / d*k exp{'b*l[E,. (k) — hw:]}
B.Z.

w2lnn

2 KFr/2F
X / dsé Pon(k+sF)e P, .*(k—sF)
(2m)3 ) _kper

Xexp[i / dt[Em,.(k-f-tF%—hw]]. (2.47)
Since for any function G (k.),?

> exp[i—lG(kl):l—k—; > a(c(kl)+}<—z'), (2.48)

an alternative expression is

4202k
a0, &) = ) / %
mzszz Vnn’ /.7,

2 Kp/2F
xa(E,, (k) — hw+-—l’> / ds
(27)% ) _kppor

X & Pprp(ktsF)e P *(k—sF)

Xexp[i /~ Zdt[En'n(k—}—tF)—hw]}, (2.49)

which has steplike structure in E,,(k.) with step sepa-
ration 7F/K p. Equation (2.49) is useful for large fields;
for small fields Eq. (2.47) is more convenient. In the
latter case the only contribution is from the /=0 term
because of the large quantity Ky/F which causes a
rapidly varying phase of the exponent for /70.

The simplest possible approximation of Eq. (2.45) for
finite fields is to expand the energy and/or the mo-
mentum in a Taylor series in terms of the field, keeping
only the lowest terms. Even though such an expansion
is nonperiodic, the fact that only the /=0 term in
Eq. (2.47) contributes appreciably suggests that the
Taylor expansions should be a good approximation since
they fit E and P in the contributing region at small s
and ¢ The energy may be expanded in terms of the
field F as

Enln(k'f‘tF) = Enrn(k)+f(F * Vk)En’n(k)

t2
+;(F~ Vi) Eun(k)+- -+, (2.50)
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Substitution of Eq. (2.50) in Eq. (2.45) and subsequent
integration over ¢ yields

“s [ akler. ,,(k)[

mPw? n'n J 3.7,

e(w,8)=

(2m)3

X / ds exp{2is[ Enrn(k) — hw]

+3is}(F- vi)2Ean(k) },

where we have assumed that P(k+sF)=P(k). The
integration over ¢ removes odd powers in F. The terms
of even order in F, not included in Eq. (2.51), are of
fourth order or higher and are considered negligible.
In the weak-field approximation these terms are ne-
glected. Since the Airy function (Ai) is defined as?

(2.51)

1 00
Ai(x)= 2— ds exp[ 3is34-isx]

T J—w

1 0
=—/ ds cos(3s3+xs), (2.52)
0

™

where the constant of normalization N=x so that
limeso | €] Ai(x/€e)=8(x), Eq. (2.51) becomes

4m2e?
€2 ((J), 8) =

> d*% ’
(

m2w? n'n | 3.7, LJ

AL SNCIE

hw)] (2.53)

1 . En’n(k)_
X[:hlﬂn'n(k), AI( hﬂn’n(k)

in the weak-field approximation, where

F2 1/3
() = h[—{l ,
8u

= i) = {h—jl?;(F-mﬁE,.,n(k)}—l

(2.54)

wrn (K -_l, 55
~feamaw] L s

and #Q.,(k)=%0/2*® where #6 is the characteristic
electro-optic energy.1*Q,., (k) and the mass un» (k) have
the same sign and may be either positive or negative.
We note that the reduced mass defined in Eq. (2.55)
is just the interband reduced mass of the pair of states
between which the transition is taking place, calculated
in the direction of the electric field. If the band structure
of a solid is known, i.e., if E./»(k) is known for every k

26 H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C,,
1964), Appl. Math. Series 55, 446 ff.
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in the B.Z. and if values for P,,(k) can be com-
puted and are slowly varying in the field direction,
then e;(w,&) can be calculated directly from Eq. (2.53)
since #Q, (k) can be derived from E, ,(k) using Egs.
(2.50) and (2.51). Equation (2.53), in contrast to pre-
vious calculations,® % is not limited to a region in k
space where the energy surfaces are quadratic, but in-
cludes changes in the curvature of the energy surfaces
explicitly in the form %Q;, (k). It should be remembered
that the difference Ae(w,8)=e2(w,8)—e2(w,0) is of
interest experimentally and may be calculated from
the band structure of a solid using Egs. (2.13) and
(2.53) and subtracting the resulting curves.

To emphasize the similarity between the zero-field
and weak-field equations, let us rewrite Eq. (2.13) as

e@0)=Y [ d%Cpn(k)5[Enn(k)—ho] (2.56)

n'n J B.Z.

and Eq. (2.53) as

e2(w,8)=2 A%k Corrn(k)

n'n J B.7.

X[; hsz,.,ln(k) ] A1<Eh9(k)(;)hw >] 250

where

Cua(k)=

m‘*’:[:(Zr)J' ¢Punllf?. (259)

Comparing Eqs. (2.56) and (2.57), it is seen that the
effect of the electric field, in the approximations used to
derive Eq. (2.53), is simply to replace the § function
by the Airy function with the appropriate prefactor. At
any point k the electric field thereby mixes contribu-
tions from other points in the neighborhood of k. In the
limit that the field goes to zero, this mixing should
vanish : we note that in this limit F — 0, #Q,.(k) — 0,
and since

li [ Y E"'”(k)_h“) — O[ Eprn (k) — o] (2.59)
S YR 1( 79 ]_ [Eal)—hea]. 2.

Equation (2.57) reduces as it must to Eq. (2.56).

Within the given approximations, Eq. (2.53) relates
the band structure of a solid to its interband dielectric
properties, but it is of value to simplify Eq. (2.53)
about certain points in k space, where the relative
gradient of the transition energy vanishes. About these
points, %#Q,,(k) is independent of k thus further sim-
plifying the results. The equations for the interband
dielectric properties of a solid in an electric field near
critical points are derived and their applications dis-
cussed in the following section.
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III. CONVOLUTION INTEGRAL FORMULATION
NEAR CRITICAL POINTS

In this section, it is our purpose to show that, for
direct transitions near critical points and also for in-
direct transitions, the imaginary part of the dielectric
constant may be expressed in convolution integral form
as
0 1 W —w
wle(w,8)= dw'w'2ea(w’,0) {———- Ai(——-——)} , (3.1)

where @ is a constant and is given by
I?
8uph

—00

$= (3.2)

1
=—-—3(F'Vk)2E"’"(k)’

where up is parallel to the direction of the field F.
For direct transitions, Eq. (3.1) is a simplification of
Eq. (2.53) near critical points with the assumptions that
the momentum matrix element and %#Q,,(k) are inde-
pendent of k and only transitions between two bands
need be considered. For indirect transitions, we con-
sider only phonon-assisted transitions between a maxi-
mum in the valence band and a minimum in the con-
duction band. Equation (3.1) will then be used to derive
the optical density of states in terms of finite-field quan-
tities and then to calculate the real part of the dielectric
constant using the Kramers-Kronig relations. An inde-
pendent derivation for direct transitions is given in
Appendix B which also results in Eq. (3.1).

A. Direct Transitions

Near critical points, the transition energy is a quad-
ratic function of k and may be expressed in terms of re-
duced effective masses as

ket k2 RS2
E(k)=Eg+%’l2<-+—‘+"‘>’ (33)

Mz My Mz

where E, is the gap energy.
Depending on the signs of the reduced masses there

are four independent types of critical points which may
be defined as

Mo: poypiy,p. positive,

M, : pau, positive, u, negative,

M : pa,p, negative, u, positive,

M. pgypyn. negative.

Assuming that #Q, . (k) and Py, (k) are independent
of k near critical points and only two bands are in-
volved, we may write Eq. (2.53) as

¢2|e-P|? 1 E()— ke
ex(,8)= / &% Ai< ) (3.4)
1rm2w2 B.Z. l hQ, hQ

Using Eq. (3.3) and assuming the B.Z. boundaries
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may be extended to positive and negative infinity in
the weak-field limit, we may change the integral over
k space to an integral over energy. The signs of the
effective masses may now be introduced explicitly and
the equations for the four types of critical points may
be written in condensed form as

e?|e P2/ 2\32 ® dede,de,

<;1;) | aptypas [ 112 o
{ 1 Ai[ (£)(ex+€,) (£) 26,4 (Ey— ) ]} ’
|70 )

&(w,8)=

wmin?

X
(3.5)

where e;=#2k2/2|u;| and the notation (+)% means that

the sign is positive for the M; and M; edges and nega-

tive for the other two edges, e.g., (+)%is positive for the

M and M, edges and negative for the M, and M ; edges.
If we define the change of variables

u=¢,+e¢ and e=¢, (3.6)
and evaluate the integration over e, the result is
e? €P 2 /8 MzlhyMz 1z poe déz
o(0,8)= |e-P| ( | watty l) / e
m"’w* hﬁ 0 \/Ez
1 (£)0%(1) 2,4 (Ey— hww)
x{ Ai[ ’ ]} . @)
| %2 hQ

It is known that, for the M, and M, edges, €(w,8) is
divergent but that Ae;(w,8) = es(w,&) — €2(w,0) is finite.!®
Thus it should be possible to extract a field-independent
divergent term from Eq. (3.7) for the M, and M, edges.
With this in mind, we define #= (+)%%’ and add and
subtract identical terms in the M, and M, equations so
that we may use the formula?®

/.,, L Ai() =1

to extract the divergent term. Following this procedure,
Eq. (3.7) may be rewritten as

(3.8)

Mo 62(&’,8) =
w"’\/h '\/6, 0 lhﬂl
’ . EO_
XAiI:(u +e)+( ﬁw)]; (3.90)
7

My: 62((.0,8)‘—’

—B ® de, ® du
ZwZ\/k,/o \/ez{/; | 22|
I: — (4 e)+(E;— Tw)

X Ai :I
HQ

/_w . 1[~(u’+ez);;(Ea-hw)]]; (3.9)
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—B ® de, * du'
Ms: e(w,8)= / lf
2w2\/h 0 '\/6, 0 Ihﬂl

,[(u'+ &)+ (Eg— hw)
XAl ]
/293
* du (' +e)+ (E,—
Ai[
—0 ]hﬂ| #Q

hw)]} ; (3.9cj

M;: ez(w,a)—— /
201 )0 Ve o ;m]
—(u/+Fe, E,—hw
xAi[ (w'~+e)+( )], (3.94)
7Q
where 26| 8| I\
elePi*y umm)
= . 3.10
mh \ (3.10)

Using Eq. (3.8) and defining the change of variables

v=u'+¢e and (3.11)

reduces Egs. (3.9) to

€= €;

B ®
Mo: Eg(w, 8) = / d'v\/v
W/ Jo

R

—B @
My: ez(w,8)=w2\/h/; dn/v
1 —_ Ey,— hw
x[ Ai[ v+ (&, )]}
* de,
+ ; (3.12b)
B e 202%/% Jo Ve
Mz: ez(w,8)=w2\/hﬁ d'v\/v
% { 1 Ai[v-I—(E,,—hw)]}
| 22| #Q
B ® de
5 (3.12¢)
B - 2w2\/h 0
Ms: éz(w,8)=w2\/h/;’ dv\/v

X { Ihlﬂl Ail:—v+(:;—hw) ]} , (3.12d)

where the second terms on the right-hand side of
Eqgs. (3.12b) and (3.12c) are indeed field-independent
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divergent terms, as expected, and all the other terms on
the right-hand side of Eq. (3.12) are field-dependent
finite terms. Using Eq. (2.59), we have the zero-field
limit of the above equations which may be written as

M 0.

e(w,0)=—(w—w,)"?, w>w,
w?

=0, (3.13a)

w<wg;

e2(0,0) = ——(w,—w)'/*
w?

Mll

B 1 © dE
==,

w?2/% o VE
B 1 ©® dE

Pl VE

w<w,

(3.13b)

w>wg;

e2(,0) =——(w—w,)'*
w2

Mg:

B 1 © dE

@2/ ) VE
B 1 *dE

= —_, (3.13¢)
w2/ )0 /E

Ms;: w<w,g.

ex(,0) =—(w,—w)''?,
w?

=O’

where %w,= E,. Since the sign of Q is that of ur, which
depends on the field direction for M; and M, edges,
Egs. (3.12b) and (3.12c) are actually two equations
—one with @ positive and one with Q negative. These
two signs for Q are equivalent to the parallel and
transverse field effects calculated previously.!s It may
easily be shown that Eqs. (3.12) reduce to the previous
results and in fact, the same starting point as used by
Aspnes is used in Appendix B to derive Egs. (3.12).
With the change of variable v= (%)%(w’—%w,), Egs.
(3.12) may also be expressed as

B
Mo: 62((0,8)=—-/
w2

wg

(3.13d)

Ww>w,

0
do (@' —w,) /2

1 w' —w
el
Q Q
._._B wg
My: ez(w,8)=—~—/ do’ (wy—w')1/2
w? J_o
1 W' —w
i s()]
e Q
B 1 © dE
+—-——/ —; (3.14b)
wi20/h/)o AE
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—B
M,: 62(0),8)=——2—/ do' (' —wg)t/?
w? S,

[ ()

B 1 © dE
_—— —; (3.14¢)
0)22\/;1 0 \/E

B o

Ms: ez(w,8)=—/ do’ (w,—w’)1/?

w? ) _q

1 w —w
X{-—Ai( >] (3.14d)

(el Q

In the form of Eqs. (3.14), we can easily see that
comparison of Eqs. (3.13) and (3.14) gives the result

0

1 W —w
wley(w, &)= dw'ew ?es(w’,0) {——— Ai( > ] , (3.15)
2 Q

o l

where we have used Eq. (3.10) to include the divergent
terms in the convolution integral form of Eq. (3.15)
which is identical with Eq. (3.1).

We will now show that Eq. (3.1) is applicable to in-
direct transitions as well as direct transitions near
critical points.

B. Indirect Transitions

For indirect transitions, i.e., phonon-assisted transi-
tions, a sum over the center-of-mass as well as the rela-
tive wave vector must be carried out due to the extra
degree of freedom introduced by the inclusion of pho-
nons.!? The sum over the center-of-mass states can be
expressed as a properly normalized integral as

(M M M )2
N A

c.m. 2mw2h3

/ Ao [Eom 17, (3.16)
0

where E..n. is the center-of-mass energy of the electron-
hole pair and, for the ith direction, M ;= m.;+ms,;, where
me and my, are the electron and hole effective masses, re-
spectively. The equation for direct transitions may be
changed to indirect transitions by the addition of the
above sum, by replacing #w by [fw— Ee.m . Fhuwl,
where 7w, is the energy of the phonon, and multiplying
by (nw+3=+%) in Penchina’s’? notation. The upper
and lower signs refer to the emission and absorption of
phonons of energy 7w, respectively. Since indirect
transitions are generally taken to be from maxima in the
valence band to minima in the conduction band, all
effective masses will be taken as positive in the follow-
ing. Also, for the above replacement to be valid, we have
assumed that the square of the matrix element which
now contains an energy denominator does not change
appreciably over the range of integration. Following the
above procedure and using Eq. (3.12a), the imaginary
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part of the dielectric constant in an electric field for

indirect transition is given by
M M M,)H?

ind =
o 8) 2w2hd

/d&mwmmw
0

0

B
X (ne+3+%) / EVE
wZ\/h 0

1 E+Ee.m.+ Eg=t oo —hw
X { Ail: :I} (3.17)
Defining a change of variables
to'=FEom.+E+E,Lhwo and E=E (3.18)
and evaluating the E integral gives the result
. 0 [ ,
€24 (w, &) =— dow’ (0 —wyFowe)?
w? wgtwky
1 W —w
SILI Lo TR
12| Q
where
&P |t 3£3)
- 2am*ht
X (mwme,,mwm;,xmh,,mh,)llz . (320)

Again, as with the direct transitions, we may use
Eq. (2.56) to find the zero-field limit of Eq. (3.19) which
may be expressed as

e (w,0)= (Q/”) (0—w,Fwr)*
=0

W > wywyo
w<wgtwg.

(3.21)

Thus again we arrive at the desired result by comparing
Egs. (3.19) and (3.21) which is

0

1 W' —w
wle(w,8)= dw'w'?es(w’,0) {—-—— Ai(—-———) } (3.22)
— |2] Q

and is the same as Eq. (3.15) and Eq. (3.1).

We will now show how the above equation may be
employed to calculate zero-field quantities from finite-
field quantities.

C. Optical Density of States from Finite-Field Data

The fact that Eq. (3.1) is applicable to both direct
and indirect transitions in the limit of constant effective
reduced mass, i.e., constant @, indicates that it is, to a
certain extent, a general formula. In this light, we will
then proceed to invert Eq. (3.1) and thereby derive
equations that relate finite-field data to zero-field data.
The zero-field imaginary part of the dielectric constant
is proportional to the optical density of states; for
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example, for direct transitions, we have
202
wle(w,0)= ; |&P|2V (fw) (3.23)
m

where N (Aw) is the density of states for the transition.
Thus if we can calculate w?e2(w,0), we have calculated
the optical density of states within a constant of
proportionality.

Using the completeness relation of the Airy function,'®

0

/ dt Ai(t+x) Ai(t+y)=o6(x—y), (3.24)

and assuming Q is a constant, Eq. (3.22) may be in-
verted resulting in

wren(,0) = /: o ex(s, 8) {l_slzl Ai(f—;—w—,» . (325)

Another result may be derived relating differential
data to zero-field data. Starting with either Eq. (3.22)
or Eq. (3.25) it may be shown that

2 a0 l=— [ d fF{a @8]
—T[ w?ez(w, = W' 2—{ —Ae(w', 8
dot [mz/_w 2 lor

X {-I%I Ai(w;wl)] . (3.26)

where Aey(w,8) = ea(w,8) — €2(w,0). Since the differential
data has finite amplitude about critical points and is
zero elsewhere, we might expect the integration over
all energies in Eq. (3.26) to give more accurate results
than Eq. (3.25). It is possible to integrate Eq. (3.26)
explicitly to evaluate w?e:(w,0). The sum rule?

/ we(w)dw=1rw,? (3.27)
0

requires e(w) to fall off faster than (1/w?) as w ap-
proaches infinity. Thus the constants of integration
must all be zero and integration of the Airy function
three times gives

2 0 ® d(.!’/ 123F aA /
wle(w,0)=— B © Z{EZ' ez(w,S)}
1
X {EZ-I[Ai(r)-I—r AV (r)+r2 Ail(r)]} , (3.28)

where

=C;ﬁ,muh§@mm

26 D. Pines, Elemeniary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1964), p. 136.
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and
Aba() = / Ai(d)dt. (3.29)
0

Thus since the differential data Ae;(w,8) is finite over a
limited energy range, Eq. (3.28) is easily applicable to
numerical integration.

D. Real Part of Dielectric Constant

From the Kramers-Kronig or dispersion equations,?
the real part of the dielectric constant is related to the
imaginary part of the dielectric constant as

(3.30)

Le(w)—ex(—a")].

T w —

1 ©  do
a(w)=14+-¢ / -
—® %)
Using Eq. (3.1) for es(w,&) gives
2 0
e;(w,8)=1+——/ dw v 2ex(w’’ ,0)
wJ -

X@/":;Tza%@h;—, Al(w—;>} (3.31)

It may be shown that

© di
® / — Ai(t+a)= —7 Gi(x), (3.32)
—o 1
where?®
1 ©
Gi(x)=- / ds sin(sx+%s%) . (3.33)
TJo

With a partial fraction expansion of the integrand of
Eq. (3.31) and the employment of Eq. (3.32), we may
express the real part of the dielectric constant in a
uniform electric field near a critical point as

a0 {é Gi<w; >}
)
w';“’)}, (3.34)

As w approaches zero, we have the limiting form

0

61(0’ 8) 1+

1 = 1
+ dw w'2ez(w’,0) {5 GI(

@ J 0

b 1 w’
a(0,8)=14 | dw'w'%e(w’,0)— Gi” -—> . (3.35)
— Q8 Q

¥ J. M. Ziman, Principles of the Yheory of Solids (Cambridge
University Press, London, 1964), p.
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Knowing that Gi(x) satisfies the differential equation?
1
Gi"’(x)—x Gi(x)+-=0 (3.36)
™

leads us to the equation

1 r® do'w?e(w’,0)
61(0,8)=1—_f —_—
TJ o Q3

® dw'w'2e(w’,0) [ w’
+ / —--—{— Gi(-)}. (3.37)
—» Q3 Q Q

From any of the above equations, it may be shown

that
2 ® duw'e2(w’,0)
€(0,0)=14+-¢ / —

™ w

(3.38)

Since €(0,8) is the static dielectric constant in an
electric field, Eq. (3.37) and Eq. (3.38) suggest that
by measuring Ae;(0, &)= €1(0, &) — e1(0,0) we may derive
information about the optical density of states of the
solid.
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APPENDIX A: PROOF

In this Appendix we show that the quantities
Xwn(k) defined by Eq. (2.21) are real if the crystal
satisfies inversion symmetry. To do this, we expand the
cell-periodic part of the Bloch function, #,(k,r) as

un(k,1) =22 Ba"(K)un(0,1) . (A1)

The equations for the coefficients B,™(k) are deter-
mined by the Hamiltonian

hZ

[ “om T V<r>] ety (kyr) = Ea() e rup(r) . (A2)
m

The usual k- p perturbation treatment gives

h2k?

h2
+i— X B2 (k- (w,(0,) | V], (0,1)), (A3)
m v

where E,(0) is the energy of the band u at k=0.

If the phases of the wave functions at k=0 are
chosen so that #.(0,r) is real for even parity and imagi-
nary for odd parity,’® then all coefficients of the un-
known B,*(k) are real and it therefore follows that the
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B.#(k) are also real. By definition,

Xpn(k)= / darun'*(k,t)—iun(k,r)
ok,
a
=23 Bnl“(k)gl:Bn"(k) (uu(0,) | 26,(0,1))

d
=3 Bn'(k)—Bn(k). (A4)
v Ok

The last expression is real, hence the quantities X, (k)
are also real.

APPENDIX B: ALTERNATIVE DERIVATION OF
€(0,8) NEAR CRITICAL POINTS

In Sec. IITA, Eq. (2.52) was modified for photon
energies near critical point energies. In the following we
propose to show that the same equations result from a
different approach. Using the results of Elliott,*
Tharmalingam,! and Aspnes,'® the imaginary part of
dielectric constant near critical points may be expressed

2516
47?B ®
—_— f dedeyde,
72%02|60,0,0.1% ) —

., - ez . - ey . - ez
X A12< A A}
%, 76, 70,
X 6(hwy— o+ e,+€,+¢.) ,

where %w, is the energy gap and for the 7th coordinate
03=F2/2hu;, where F;=¢8;, 8;is the component of the
field in the ith direction, and u; is the reduced effective
mass in the same direction. The constant B is defined
in Eq. (3.10). We may use the § function to evaluate
the ¢, integral and the result may be expressed as

ez(w, 8) =

(B1)

4r2B|0,0,] .
e(w,8)=—— drds Ai%(r) Ai%(s)
©2]0,0,0,]12 )
we—w O 0,5
XAi2< —————), (B2)
02 z 02

where r=— (e,/M8,) and s= — (¢,/#6,). The function
Ai2(x) is related to a single Airy function by the
integrall®

1 0
Ai2(x)=—

KT Jo

¢
— Ai(f+«x), (B3)
't
where k=223, Let us now define for the 7th coordinate

(B4)
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and apply Eq. (B3) to Eq. (B2) with the result
B|Q.Q ® dadBdy
e(w,8)= d
276?|Q2 %12 o ()
X / dr'ds’ Ai(a+7") Ai(B+s')
Wg—w—Qr"—Qys"
xai(v+ ), @9
Q.
where
r'=kr and §'=«xs, (B6)

and e, 3, v are dummy variables resulting from the use
of Eq. (B4). The integrals over 7’ and s’ may be evalu-
ated using the formulal®

b 1
/ dt Ai(x+18) Ai(y—zt)= Ai[

y+zx :l
| 14288 ’

(1 +z3)l/3
(B7)

which reduces the three Airy functions in Eq. (BS) to
a single Airy function

B|9.92,2.|Y2 * dadBdy
62(0),8)= [
2me? o (afy)?
1 Q.a+Q Q; —w)”
x{—Ai[ a+Q,8+Qv+ (w, w)J}, (B8)
| @] Q
where

B=0,5+0,4+Q.5. (B9)

Equation (B8) is essentially the same form of equa-
tion as Eq. (3.5) and may be put in the same form by
defining

e=h|Q|a, ¢,=%|Q[B8, and e=%|Q. |y, (B10)

and introducing the signs of the reduced masses, i.e.,
the signs of the Q;, explicitly into the equation as was
done in Eq. (3.5). Since we have shown that Eq. (B9)
is equivalent to Eq. (3.5) we need not repeat the com-
putations between Eq. (3.5) and the final result, but
may just express the final result for the four types of
critical points as given in Egs. (3.14).

Note added in proof. In a recent treatment of the
effect of electric field on the absorption edges of in-
sulating crystals, Rees [H. D. Rees, J. Phys. Chem.
Solids (to be published); Solid State Commun. 5, 365
(1967)] has derived a relation connecting the field
effect and zero-field spectrums similar to Eq. (3.1).
Rees, using a representation in which the electric field
appears as a force term in the equation of motion, treats
low-angle scattering by an adiabatic approximation.



