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Brillouin Scattering in Birefringent Media*
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The theory of Brillouin scattering is extended to incorporate birefringence. The necessary modifications
to the Bragg laws are derived by the methods of physical optics. An integral equation method is used to
calculate intensities of the first-order lines scattered by longitudinal and transverse acoustic waves in an
infinite slab of birefringent crystal. This calculation also divers from those of previous authors in taking full
account of internal reQection. Depletion of the incident beam is accounted for. No restriction is made to
acoustic propagation parallel to the crystal faces. The intensity formulas for various cases of acoustic mode
and incident optical polarization are found to diBer in geometrical structure, and the differences can alter
the intensities substantially.

I. INTRODUCTION

RILLOUIN scattering of light by acoustic waves
is analogous to Bragg scattering of x rays by a

crystal lattice. The eGect is characterized by the
appearance of a small number of scattered lines, usually

only those corresponding to first-order scattering.
Brillouin scattering occurs only if a vector relation
among the acoustic, incident optical, and scattered
optical propagation vectors in the medium is satis6ed. '
This relation, which in optically isotropic media is

equivalent to the usual Bragg laws, permits inference
from the directions of incidence and scattering of the
frequency and propagation axis of the acoustic wave

involved. If the relation between the acoustic intensity
and the scattered light intensity is known, Brillouin
scattering may be used to determine how the acoustic
power is distributed among the di6erent frequencies.
Extensive use has been made of this tool. '

Assumptions made in earlier theoretical work'4 on
Brillouin scattering are not valid for some crystals of
current experimental interest since they are birefringent
and have high refractive indices. In this paper the
theory of Brillouin scattering is extended to incorporate
birefringence and internal reQection. The Bragg laws

are modi6ed to allow for birefringence in Sec. II.5' In

*Work partially supported by the U. S. Army Electronics
Command, Fort Monmouth, N. J., under Contract No. DA28-
043-AMC-O1876(E).' An inequality involving the wavelengths of sound and light,
and the amplitude and width of the sound beam must also be
satisfied. See G. %. Willard, J. Acoust. Soc. Am. 21, 101 (1949).
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and D. K. Winslow, Proc. IEEE 53, 1604 (1965); G. B.Benedek
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A220, 356 (1953);A220, 369 (1953).
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Sec. III the electric 6eld within the crystal is expanded
in a series of plane waves, and the integral equation for
the electric 6eld is used to derive recursion relations
among the partial amplitudes of the series. Relations
equivalent to boundary conditions at the crystal faces,
as well as an expression for the emerging electric field
in terms of the partial amplitudes, are obtained. In
Sec. IV the partial amplitudes and scattered intensities
are evaluated for some important special geometries in
hexagonal crystals. In each case of scattering by trans-
verse acoustic waves, we 6nd that there is an optical
polarization rotation of 90' upon scattering. The
intensity formulas we derive for various combinations
of acoustic mode and optical polarization diGer by
simple but important geometrical factors. As in the
isotropic case, no qualitative di6erence is found between
the intensities of light scattered by longitudinal and
transverse acoustic waves.

The observation of very intense acoustic disturbances
in some piezoelectric semiconductors subjected to large
electric fields' ' has focused interest on the Brillouin-
scattering theory presented in this paper. The acoustic
Qux, which is due to ampli6cation of noise or an input
signal by means of the acoustoelectric eGect, is accom-
panied in some cases by strains large enough to cause
severe crystal damage. The Qux is distributed over a
range of acoustic frequencies and propagation direc-
tions. For example, in some of the samples of Zucker
and Zemon, there is significant Qux from 100 to 1500
MHz propagating at angles up to 15' from the electric-
6eld direction. Brillouin scattering is a convenient probe
with which to investigate these acoustic waves. It does
not disturb the processes responsible for the acoustic
Qux. It is a highly selective interaction, scattering
signi6cantly only if the modi6ed Bragg laws are satis-
6ed, so that one combination of acoustic frequency and
propagation direction Inay be examined at a time. The
experimenter adjusts his angles of incidence and scat-
tering to those appropriate to this combination and
measures the ratio of scattered to incident intensity. If

P. O. Sliva and R. Bray, Phys. Rev. Letters 14, 372 (1965);W. H.
Haydl, Phys. Letters 24(A), 413 (1967).
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the relevant photoelastic coefficients are known, he can
use the formulas we derive to evaluate the strain
amplitude. He can transla, te his sample to study the
variation of the strain with distance from the cathode.
We modify Brillouin scattering theory to accommodate
various acoustic propagation directions. The other
modifications we make to the theory are necessary
because of the nature of the materials manifesting a
strorig acoustoelectric effect. The most important of
these are birefringent, having the wurtzite crystal
structure. They have large refractive indices so tha, t
internal rejections must be corrected for, since anti-

reAection coatings eScacious for a wide range of angles

of incidence and. scattering are not experimentally
feasible. The need to include birefringence and trans-
verse acoustic polarization leads us to a. tensor theory.

II. BRAGG LAWS

to the condition

A(e; sin8;+n, sin8, ) = mX.

In what follows we shall limit ourselves to m=&j. ,
since the higher orders are faint when conditions for
Brillouin scattering are satisfied.

The modified Bragg laws (1) and (2) take a particu-
larly simple form when expressed in terms of propaga-
tion vectors. Let k, , k„and (} be the propagation
vectors in the medium of the incident light, scattered
light, and sound. In terms of these vectors, (1) and (2)
are equivalent to

k, =kd-Q,

which states the conservation of quasimomentum for
the process. The condition that energy must be con-
served in the scattering process may be written

In the theory of x-ray diffraction, the Bragg laws are
derived as criteria for constructive interference. This
approach is adapted in this section to light scattering
in birefringent media. ' The conditions which must be
satisfied if constructive interference is to occur are: (1)
Light scattered from different parts of the same wave-

front must be in phase; (2) light scattered from different
wavefronts must be in phase. Consider condition (1)
first. In Fig. 1, 8"8"' is the wavefront of a, plane acoustic
wave. A plane light wave is incident with wave normals

AjA~ and BjB~ at an angle 0,, and is scattered along

A2A, and B2B3 at an angle 8,. Condition (1) will be
satisfied if the optical path lengths along AiA2A3 and

8&B&83 are equal, the optical path length being the
integral of the refractive index along the path in space
traversed by the wave-normal. Let n; and e, denote the
indices of refraction before and after scattering, re-

spectively. Condition (1) is equivalent to

n, cos8;= e, cos0, .

We now examine condition (2). In Fig. 2, WIF' and
XX' are successive acoustic wavefronts, separated by
the acoustic wavelength A. Constructive interference
will occur if the optical path lengths along A ~A2A3 and

A~8283 differ by mX, where m is an integer and X the
wavelength in vacuum of the light. This is equivalent

where cu;, cu„and 0 are the angular frequencies of the
incident, scattered, and acoustic waves. Since 0«cv„
we can for most purposes neglect the difference between
co; and M,

—X

1'Ia. 2. Scattering at successive wavefronts.

In an optically isotropic medium, where the index of
refraction is independent of polarization, ~z; equals &z, ,

and (1) and (2) reduce to the usual Bragg laws. In an
isotropic medium

~
k;

~
equals

~
k, ~, but in a birefringent

medium they can be quite different if the polarization
of the scattered light differs from that of the incident
light. As illustrated in Fig. 3, the effect of birefringeiice
can be large even though the difference in the indices
for different polarizations is small.

GI. INTEGER@ EQUATION AND
TRIAL SOLUTION

Bp

FIG. 1. Scattering at one wavefront.

W

'This approach was 6rst used by V. Chandrasekharan. See
Ref. 5a.

The integral equation upon which our theory is based
may be derived from Maxwell's equations. ' We intro-
duce the polarization density P(r, t), defined in terms of
D(r, t), the electric displacernent, and E(r,t), the
average or macroscopic electric field, by

krP (r, t) —=D(r, t) —E(r, t) = Le(r, t) —Ij E(r,t), (5)
'The integral equation was introduced by C. G. Darwin,

Trans. Cambridge Phil. Soc. 23, 137 (1924). It is discussed at
length by M. Born and E. Wolf, I'rincip/es of Optics (Pergamon
Press, Inc. , New York, 1965), 3rd ed. , Chap. 2. Our development
differs slightly from that of the above authors in that we do not
exclude a small volume at 8=0 from the region of integration.
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nd I thewhere r. is the dielectric tensor of the medium and

unit tensor. Substituting (5) into Maxwell's equations

wave equation for E:

(c '8'/Bt' ~7o) E(r, t)

=4m( c .'a—'/B-to+grad div)P(r)t). (6)

Kith the aid of the kernel function for the wave

equation, we rewrite (6) in integral form as

E(r, t) = E;„,. (r,t)+ R 'b(t t' R—/c)—

E(r, t) = E;„.(r,t)+ P (r', t')

X ( c'ct'/Bt"—+grad' div')

X [R 'S(t t R-/c)]d—V'd—t'.
It is readily seen that

g2 g2

S(t t' R/c) =—S—(t t' R—/c)— —
Bt"

X (—c 'i7'/c7tl'+grad' div')P(r')t')d V'dt', (7)

where R= r' —r, R=
~
R

~

. The incident electric fiel,
K;„„is a homogeneous solution of the wave equation.
The integral is taken over all space-time. Using Gauss's

theorem and neglecting noncontributing surface terms

at infinity, ' we may transform (7) into

&8SORPT) pg

e,

EMISSJQN

FiG. 3. Vector triangle representation of the Bragg laws.

S*~=o (A4i+~~Q') .

The strain induces a small periodic fluctuation 6e(r, t)
. Th 1 description of this eGect is in terms o

P k 1' hotoelastic coeflicients p,,oi,o which re ate t e

change in e invh
'

th 'nverse of the dielectric tensor to e

strain by the equation

[8(e—')]"=p;, iieoi. (13)

Since the derivative of the product of a matrix and its
inverse is zero, we deduce from (12)

(he),,= (ei);; cos(Q r—Qt), (14)

The acoustic disturbance enters the theory through
e., in which it induces fluctuations that depend on space
and time. The acoustic amplitude may be written as

u(r, t) = A sin(Q r—Qt) . (10)

The components of the strain tensor e due to the
acoustic wave are

e;,=S,;cos(Q R—Qt),

(ei),,= —(ro);k(eo), ipoi .& ., 15

ao being the dielectric tensor in the absence of strain.
The crystal in which the scattering occurs is taken to

be a slab bounded by the planes y=0 and y=d. The
acoustic disturbance is assumed to fill the samp e.
Without loss of generality we may take the incident

light to be a linearly polarized plane wave entering t e
1 t th =0 face. Since the scattered electric

field is linear in the amplitude of the incident electric
field, solutions for more general incident fields may be
obtained by superposition. The incident field is

E;„,=8 exp[i(k r—oot)]. (16)

A
'

th theory of Bhatia and Noble, 4 a sum of plane
waves propagating in the x-y plane is adopte as e

trial solution of (9). We write

cI 8
F(R) = F(R).

Br Br Br, Br;

These results enable us to rewrite our integral equation

as

E(r, t) = E;„,(r, t)

P (r', t') (—c ao/dt'+grad div)

X [R 'S(t t' R/c)]-d V'd—t' —(g).
The differential operator (—c '8'/Bt'+grad div) com-

mutes wiith the integration since the limits of integration
do not depend on r or t. Rewriting (8) so that integration
precedes differentiation, and performing the trivial
integration over t', we obtain

E(r, t) =E;„.(r,t)+ ( c'8'/Bt'+—grad div)

E(r, t) = g Vi, exp[i'(Ki, r ooit)]—(17)
lmtt

The components of K&, are denoted by

Ki, ——(ri,qi „0).
R 'P(r', t R/c)do'. (9)—' F. Pockels, Lehrbuch der Eristalloptik {Teubner, Leipzig,

1906).This work is described by J. I'". Nye, P'hysical Properties of
Crystals {Oxford University Pi'ass, London, 1957).

~ where
Similarly, if F(R) is a differentiable function of R, it is

easily shown that

See Darwin, Ref, 7, for a discussion of surface terms at infinity.
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In the summations l and m take on integer values, while

s takes only the values +1 and —1. Waves will be
traveling toward both faces of the crystal because of
internal reQection. The partial wave of amplitude V~~
is traveling toward the y=d face; that of amplitude
V& toward the y=0 face. In the absence of strain,

8-=~etc 0g = IS

The polarization density associated with the trial
solution is

P= (4gr) 'P [op—I+og cos(Q r—nt)]Vg„,

Xexp[i(Kg„, r—cogt)]. (20)

When (19) is substituted into (9), integrals appear
having the form

containing the observation point. '0 For y(0,
J= [2b(A g,B)h(A,B)] '{exp[ih(A, B)d]—1)

Xexpi[A &x—b (A g,B)y7. (22a)
For y&d,

J=[2b(Ag, B)g(A,B)] '{exp[ig(A,B)d]—1)
Xexpi[A gx+b(A g,B)y]. (22b)

For 0&y&d,

J= [g(A,B)h(A,B)7 g expi(Agx+Aoy)
—[2b(Ag, B)g(A,B)] ' expi[Agx+b(Ag, B)y]

+[2b(A, ,B)h(A B)] '
Xexpi[Agx —b(Ag, B)y+h(A, B)d]. (22c)

The quantities b(Ag, B), g(A, B), and h(A, B) are
defined by

b(Ag B)= (B'—Ago)'go (23a)

J~ (4gr)
—g &—' expi(A r'+BR)dV's (21) g(A, B)=Ao—b(Ag, B), h(A, B)=A,+b(Ag, B). (23b)

The positive square root is used in (23a).
where A is a vector having components (Ag, Ao, 0). The Evaluating the integrals for the region 0(y(d, we

exact form taken by J depends on the region of space find that (16) is a solution of the integral equation if

p Vg, expi(Kg, r cogt) —Bexp—i(k r—cot) —p (coco+grad div)(op —I)'Vg
lme lrgse

X{(rgo+S,o ogg')gg' exp[i(K—g, r—cogt)]—[2b(rg, cog)g(Kgm„cog)7 ' e pix[r +gxb(r , g)cyogoggt]—
+[2b (r g, cog) h(Kgm„cog) 7 ' expi[rgx b(rg, cog)y —cogt+h (Kgm—„cog)d])

—-', Q Q [(pog+nQ)'+grad div]og Vg„,{[(rg+nf, Q)'+ (Icgg,+nj.Q)'—(cog+nQ)'] '
lme n

Xexpi[(Kg, +nQ). r—(cog+nQ)t] —[2b(rg+nt Q, cog+nQ)g(Kg„, +nQ, cog+nD)7 '

Xexpi[(rg+ng Q)x+b(rg+nt Qcog+nQ)y —(cog+no)t]+[2b(rg+nf, Q, cog+n&)h(Kg s+nQ, cog+nO)7 '

Xexpi[(rg+nf Q)x—b(rg+ni Q, cog+nQ)y+h(kg, +nQ, cog+nQ)d —(cog+nQ)t]) =0, (24)

where a, g represent unit vectors in the x and y direc-

tions, respectively, and n takes the two values +1, —1.
We have defined cog=cog/c. It is evident from (24) that
co& must vary in steps of 0 and I&, must vary in steps
of Q as l is varied if the integral equation is to be satis-

fied. Further, for some value L of /, col, must equal co

and rz, must equal 4 k if B is nonzero. We choose L=0,
obtaining

cog=u+tft, ro=f, k, Kg„,——Ko„,+tQ. (25)

The coefBcient of any exponential di6'ering from all of

the others in argument must vanish separately. Setting

the coefficients equal to zero, performing the grad div

operation, and simplifying the resulting equations, we

obtain

(cogoI —kg+kg+) Q [(oo—I) Vg ~

me

+oog (Vg gms+Vg+gms), 7(2bgggms, ) '=B&gos (26a)

( pI-k k ) Z [( o
—I) V-

tee

+.-'.. (V,+, )7(2b,h, .)e'"-'=0, (26b)

cog [oo ' Vgms+ o &g ' (Vg g, ms+Vg+g, ms)—]

where

= (Kg 'I Kgm. K—gm, ) Vg ., (27)

kgg= (rg, Wbg, 0).

' This integral was evaluated by Darwin, Ref. 7, and is dis-
cussed in Born and Wolf, Ref. 7, p. 772.

We have used the abbreviations

bg= b (rg, cog), gg g(mKsg cog),mhg .=h(Kgm. ,cog) . (29)

Equations (26a) and (26b) are equivalent to the bound-

ary conditions on E and H at the crystal faces. Equa-
tion (27) is the recursion relation among the Vg, and
could have been derived from Maxwell's equations in

the medium. It is also possible, although tedious, to
derive (26a) and (26b) without resort to the integral
equation.

The integral equation also determines the scattered
electric Geld E, in the region beyond the crystal. The
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polarization density vanishes in this region, and there
is no distinction between average and effective fields.
Using (22b) and (26a), we derive

Es ——g (~/2I —kc~kc„) P [(so—I) Vlm*

ya4

+221' (Vl—l,ms+Vl+l, ms)]' (2&Cg/me)

&& eXpi (kl+ r+glm, d u/t)—. (30)

With this equation and the conditions (26) and (27),
E, is completely determined. The propagation direction
of the /th contribution to E, may be read off from (30)
if (28) and (25) are used.

IV. EVALUATION OF THE SCATTERED
LIGHT INTENSITY

We have derived a complete set of equations for the
Partial amPlitudes Vl„, and an exPression for Ess In
this section we shall calculate the V~ „the 6rst-order
term of E„and the intensity due to this term for some
important special cases of crystal symmetry, acoustic
mode, and incident light propagation direction. Most
of the crystals in which Brillouin scattering experiments
have been done have had cubic or hexagonal (wurtzite)
lattices, and further discussion is limited to the wurtzite
structure, which is uniaxial. Intensity formulas for the
cubic case may be obtained by setting the extraordinary
and ordinary refractive indices equal. The di6'erence
between the frequencies of the incident and scattered
light will again be neglected.

Case I
The 6rst case we treat is one in which the crystal

birefringence plays no role. The optic axis is taken in
the plane of the slab faces. The acoustic wave is longi-
tudinal and propagates in the basal plane, i.e., the plane
perpendicular to the optic axis. The acoustic propa-
gation vector is inclined to the slab faces at an angle P
(see Fig. 4). Coordinates are chosen such that the
s direction is along the optic axis. The incident light
propagates in the basal plane, is incident at an angle 8;,
and is polarized with its electric vector along the optic
axis.

Our choice of geometry reduces eo to a diagonal
tensor of the form 2222(i2+ jj)+N,2kk, where N2 and 22,

are the ordinary and extraordinary indices of refraction.
The nonvanishing components of the strain tensor due
to the acoustic wave are SI~, S~2, S~~, and S22. The
photoelastic constants are such that s~ takes the form

el SO [(pllllS11+p1122S22)ii+2p1215$12(ij+J~)
+ (p2211S11+p2222S22)jj] «c p2311(S11+S22)kk ~

If any vector A lies along the s axis, the products ao A
and ~q. A will also lie along the s axis. None of our
equations relating the V&, to each other and to the
incident amplitude couples the s direction to any other,

y=O

FIG. 4. The basal plane.

P [2(+'—«P)'/'g/me]-'(«Pyq/me' —~')V/me ——Bb/2, (32a)

Q [2(c02 «2)1/2h ]—1

X («12+q&,2 ce2)Vc .e—xp(ihc, d) =0, (32b)

E g [2 ((g2 r/2)l/2gc ] 1(«P+q$ 2 &y2)V/
Lme

&(exp[i(k/+ r+g cd—cA)]. (33)

We now derive intensity formulas assuming that the
Bragg laws are satis6ed for the /=1 line.""Satis-
faction of these laws is the criterion for V», to be large.
We neglect Vc, for l not equal to zero or unity. Then
(31) may be written as

(«2'+q2 .' «4'&)V~—.=221~'Vl „
(«1 +qlme «Ce cs/ )Vlms 2 &lcs«VOms ~

(34a)

(34b)

There are two situations that can occur. In the 6rst, the
internally rejected light also satisfies the 3=1 Bragg
condition. This occurs when P=0. In this case the light
traveling toward the y=O face interacts strongly with
the acoustic wave. For P&0, the light traveling toward
the y=O face is not inQuenced by the acoustic wave,
and a separate treatment is required. We treat the P=0
case first. Combining (34a) and (34b), and using the
Bragg laws to express qo, in terms of q& „orvice versa,
one obtains a quadratic equation for q&, .Denoting one
root by m=O and the other by m= 1, we obtain for the

~ The geometry is essentially that of Bhatia and Noble, Ref. 3.
~ The calculation for the l =—1 line is identical.

and the E polarization of the incident light will be
unchanged by the scattering. We are left with a scalar
problem, and the tensors ao and a.& may be replaced in
all of our equations by the scalars~e, ' and e&, respec-
tively, where 21———lee'p»11(S11+S22).

The recursion relation (27) takes the simple form

(«P+qc, ' rc,'co')—V/ms=22107(Vg l,me+Vc+1 ess). (31)

The subscript l on co has been omitted because we neglect
the diGerence in frequency of incident and scattered
light. With the aid of this relation, we may reduce
(26a), (26b), and (30) to
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possible q», values:

qpp, s[——Kp+)ezp7Kp '/'Ki '/'j,

qpi, ——sLKp ——elppqEp i/qKi 1/q]

qzp, = sLEz+x4ezipqEp '/'Ez '/zg

q», st——z ', ez~—'K-p '/qEz '"J,
where

(35a)

(35b)

(35c)

(35d)

E = (n 'p/' —r ')'/' E = (n 'pP r')'/' —(36)

We define a parameter n by Fic. 5. Angles of incidence and scattering.

and note that
(37)

coefficients for a refractive index &z.
"These are

g00s g Ols g10s g 11s (3g)
R;s(n) = (n cose —cos8;) (n cose +cos8,) ',

~e, ~&-,~ (42.)
Equations (31) and (35) imply

K l/2E &/2V V ——K 1/2E I/2V (39)

The boundary conditions (26a) and (26b) provide
further relations among the amplitudes. If the refractive
indices are close to unity and the angles of incidence are
small, the internally rejected amplitudes Vi a,re
negligible and may be dropped from the theory. In this
case, (32b) provides no information and (32a) only need
be considered. Some materials of current interest have
large refractive indices, e.g., about 2.5 for CdS, and
internal reAection is appreciable. For this reason we
retain (32b) and solve for V/ as well as V/~. When
solving (32a), (32b), and (39) for Vp, and Vi.„„,we may
drop the term in q&, of first order in ~1 everywhere
except in the phase factors exp(zq/, d). Although this
term is much smaller than the zero-order terms, its
product with d may be of order unity.

Ke have defined 8; as the angle of incidence and
derived the result r0 ——i k. For the incident direction
chosen in Fig. 4, r0 ———co sin8;. In order to simplify later
formulas, we now introduce other angles (see Fig. 5).
Define e„e, and 8,' bv

r&= pp sine, , zz, sine =sine, , s, sin8, '=sin8, . (40)

It is evident from (30) and (40) that the scattered light
corresponding to l=i will emerge at the angle 0,.
Substituting our solutions for q0, and q1, to zeroth
order in ei into (23), remembering the definition (29),
and using (40), we obtain

R,e(n) = (n cose, ' cose—,) (n co, se,.'+cos8, )
—",

(42b)

For use in later examples, we a, iso define the II polari-
zation (electric vector in the plane containing the
incident and refiected wave vectors) reAection co-
efFicients

R;s(s) =RP(s) cos(8;+8 )/cos(8; —8 ),
~
e„~ &-,,'~ (42c)

RP (n) =R,.» (s) cos(8,+8,, ')/cos(8, .—8,'),
(42d)

With the aid of (39), (41), and (42) we may express
(32a) and (32b) in the form

R,/p(n )Vz~eiqppd V&~e
—iqppd

—R ~'(np)Vii e'«'"+V i e «'"=0 (43a)

Rps(n, ) V,p+e'«Pd Vip e—'"'d

+R,'(n, ) V e'q»" —V» e 'q»" = 0 -(43b)

Vlpp. Ri ('sp) Vip- Vll++Ri (np) Vil— b
y (43c)

Vip+ R, (n—.) Vzp '+Viz+ R," (n—,) Viz ——0, (43d)

where

b=2(Kp/E )'"(n '—1) "cosef;(np cos8,' cose,)B. (44)—
The l= 1 scattered electric field becomes

(E,)'= 2(n,' 1) cose,—(n, cos8, ' —cose,.) 'W, (45)

where

gpm+= IZpm = pp(np COSep —COS8,'),

gpm = kpm = P/(np Cosei +Cosei),

gzm+ = —Aim = /d (Sp COSep —Cosep),

gim-= /Zipm/. = —pp(np COS8„+COS8,) .

(41a)

(41b)

(41c)

(41d)

W = V,~e'q o" R,"(n,)V,~e 'q o—'-
+V eiq»d R E(n )V e

—iq»d (46)

The ratio of the scattered light intensity I1, to the
incident light intensity I;„,is

It is convenient to introduce the usual E polarization
(electric vector perpendicular to the plane containing
the incident and reflected wave vectors) reflection

Iz/I;, = (n.' 1)qL2 cos—8, (n, cos8„'—cos8,)j q

XW W*(B B*) '.
3 5ee, fog egg, mple, g01n. and Wolf, Ref. 7.
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Solving (43) and evaluating W W*, we obtain

W W*= {1—[R,, '(n.)]')'O'Xsin'ud I'[E;x(n, ),R., ~(n,)],
where

(48)

FP i X~]= [1+2K|A& cos(2kod)+APE~ ]{[1—2XP cos(2Eod)+Xi ][1—2XP cos(2Eid)+X~ ]
+ P q+ X&)2 sin4udP P+ 2XqX2 cos(2Eod —2Eqd)+ F22]
—2(Kg+ X.) sin'-'ud[P P+XP) —Xg(1+ltgX2 ) cos(2Eod)

—X~(1+XiV,2) cos(2E,d)+X,X,() &+X,) cos(2Eod —2E&d)]) '. (49)

Finally, for the case P==0, the ratio of the emergent intensity in the /=1 mode to the incident light intensity
becomes

I,/I;„,= {1—[R„'(n)]',)' sin'ud (Ko/E&) (cos8;/cos8 )'
X [(1'I6 cos8,' cos8;)/(11 ~ cos8, —cos8~ )]F[R, (1'Lg),Rg ('8„)]. (50)

This intensity formula and the ones to be derived
subsequently are used as follows: Starting with the 0;
and 0, for which the intensity is to be calculated, obtain
8 and 0,' from Snell's law. Evaluated or Q Ep Ey and
the appropriate reflection coefficients. Substitute these
quantities into (50). Bhatia and Noble' calculated

I~/I;„, for the case P=O, R,E(e.) =0 and R,s(e,) =0 in

a nonbirefringent medium. Our result, since for this
case there is no eGect due to birefringence, reduces to
theirs if the limits RP(e,) —+ 0, E,s(n.) —& 0 are taken.
The factor {1—[R,s(rs,)]'p reduces the emergent
intensity to zero if the geometry is such that the
scattered light is totally reflected internally. The
parameters of the acoustic wave enter I~ through the
quantity u, which is of the form cups, where ps is some

combination of photoelastic coeKcients and strain
amplitudes. If the sample width d, the strains, and the
photoelastic coefBcients are such that ad is small, the
scattered intensity is proportional to (psd)'. It is

possible to measure nd directly as the phase retardation
induced by the acoustic wave in the emergent l=0
light. A typical value for o,d found by Zucker and
Zemon' in such an experiment on CdS is 0.4 rad.
This was measured for light passing through an acoustic
domain, or region of high acoustic strain, in a sample
with d=1 mm. Unfortunately, the relevant photo-
elastic coefBcients are not known.

A calculation similar to that above shows that the
intensity of the unscattered (l=0) light is modulated

by a factor cos'O.d. The maxima of I& at o,d=~~x,
&+x, etc. are thus accompanied by complete depletion

of the incident beam, and the incident light is com-
pletely converted to scattered light.

Due to internal reflection, some light corresponding
to both the l=0 and l=i lines emerges at the y=0
crystal face (see Fig. 4). The intensity of this light may
also be calculated by the methods of this paper.

If PWO, the Bragg conditions are not satis6ed for the
reflected light, i.e., for s= —1. A somewhat lengthy
extension of the above calculation shows that (50) holds
if F[X&,4] is replaced by G[X&,4], where

G[Xx&X2]= {1—2XPX2' cos'(Eod+Eid)+X&'Xa'
—2(1—XPXP)P P cos(2Eod)+XP cos(2Etd)]
+cos'(ud) P P+XP+2Xq9 P cos(2Eod —2Eqd)]} '

(51)

Figure 6 illustrates the variation of the scattered
intensity described by Eqs. (50) and (51) with acoustic
frequency and propagation direction in the small strain
limit (ud«1). In this limit we may write I~/I;„,
= (yd)'Z, where p=-,'cia&/e, . It will be recalled that e~

is linear in strain amplitudes and photoelastic co-
eScients. The variable Z, which carries the dependence
on acoustic frequency, has been evaluated numerically
using the parameters appropriate to the experiment of
Zucker and Zemon' in CdS. The light wavelength in air
is taken to be 6328 A, the speeds of the transverse and
longitudinal sound waves are 1.80X105 cm/sec and
4.22X 10' cm/sec, respectively, No is 2.453, n. is 2.470,
and d is 0.10 cm. Each graph of Z versus acoustic
frequency is plotted for the range of frequencies for

I.O

FIG. 6. Acoustic frequency dc-'~ ~
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which both reQection coefficients are less than unity. A
similar plot for the theory of Bhatia and Noble, which
ignores reQection and is restricted to acoustic fre-
quencies low enough so that 0,=0 and 0,=0, is a
horizontal line at Z=1.0. The geometrical structure of
(51) is such that the curves for P negative lie above the
corresponding curves for P positive.

Case II

while the scalar product of k with (52b) becomes

2oloo2Q1Q-Vo .—(Kl 2 n 24o2)k. Vi, =o. (54b)

Equations (54a) and (54b) comprise a homogeneous set
of linear equations for Q Vi, and k Vi, . A nontrivial
solution exists only if the determinant of the coeKcients
vanishes, i.e., if

(K 2 n 2+)(K 2 n 2~2)

——,'pi'oo'L1 —(npooQ) '(Q Kp„,)']=0. (55)
In this case, the longitudinal wave is replaced by a

shear wave propagating at an angle p to the 2: axis in the
basal plane, as shown in Fig. 4, and polarized along the
optic axis. The incident light is B polarized with its
electric Geld in the plane of incidence, i.e., the basal
plane. The tensor eo is unchanged in this case, but
according to (11b) and (14) ei becomes p, (kQ+ Qk) /Q,
where Q=

~ Q~ and pi —— noon—,op44QA3 The .customary
abbreviation p44 ——p2323 and the fact that p1313—p2323

have been used in deriving the above form for e~. We
again assume that the modified Bragg conditions are
met for I,= 1. Because of the birefringence, it is possible
in this case to satisfy these conditions for both l= —1
and l = 1 for a particular (nonzero) acoustic frequency.
For the present. we consider the case in which this does
not happen. The case in which it does happen will be
discussed at the end of the section.

As in the theory of Bhatia and Noble, the plane of
polarization is unchanged upon refraction into the
crystal, so that k. Vp, =o. This may be understood as
the consequence of reaction symmetry in the basal
plane. It also emerges from a longer version of the
calculation to follow. As in case I, we retain I,=0 and
l = 1 terms only in (27), obtaining

op2(ep Vo,+-2'ei Vi,)
= (Ko 2I—Ko,Ko,) Vo „(52a)

4p'(ep V,„,+23, Vp, )
= (Ki„,'I—Ki„,K;„,) Vi„,. (52b)

Forming the scalar products of k with (52a) and Ki,
with (52b), we obtain Q Vi, ——Ki, Vi, ——0. Since Q
is not parallel to Ki „and since Q and Ki, lie in the
basal plane, the scattered amplitudes V~, are perpen-
dicular to the basal plane. Thus the light polarization
is rotated 90' upon scattering by the transverse wave.
This is a result that was derived earlier by Mueller' for
isotropic materials. Forming the scalar product of
Kp „with (52a), we obtain

no'Ko, Vo,+2Q-"iQ Ko,k Vi, ——O. (53)

The electric field within the crystal is Dot transverse
because of the Quctuations in the dielectric tensor.
Forming the scalar product of Q with (52a) and using

(53), we obtain

(Kp 2—np24o2)Q Vo .
——,

' piop2[Q —(npooo2Q) '(Q Kp, )']k Vi„,= 0, (54a)

As in case I, we treat first the P= 0 situation, where the
modified Bragg conditions are satisfied for the rejected
light. We have Q Kp =Qrp where rp is again equal to
co sin0;. In this case, the angles 0„0,and 0,' are defined

by

ri=o/ sinH, , np sinH, '=sinH;, n. sinH, '=sinH, (56)

Equation (55) reduces to

(57)(q
2 K 2) (ql 2 K12)—14312oo4 cos28 &

where
—(n 2~2 r 2)1/2 K (n 2~2 r 2)1/2 (5g)

Solving (57) as in case I, we obtain

where

qoo, =2(Ko+2n),

q, i, ——s (Kp ——,'n),

qio, =2(K1+-2,n),

qii. ——s(K1—-', n),

n=-,'3,~2(KpKi) '/'cosH .

(59a)

(59b)

(59c)

(59d)

(6o)

Substituting (59) and (60) into (54a), we derive

(—1)"(Kp/Ki)'/'Q Vp, ——Q cosH k Vi„,. (61)

Using (23), (29), and (56) to evaluate gi, and hi ., we
find that (41c) and (41d) are unchanged, while (41a)
and (41b) are replaced by

go += kp =M(np cosH' cosH ), (62a)

go~= —ko~»= —op(no cos8,'+cosH;). (62b)

Equations (56), (58), (61), and (62) allow us to rewrite
(26a) and (26b) as

Rp(np)k Vio»e'«« kVip e '«o"—

R;~(np)k—Vii»e'&»e+k Vii e
—4««= 0 (63a)

R,+(no)k Vip»e421o& k'Vi~e &pie'
+R +(n o)k ~ Voii+e'2»" —k Vii e 'o»d= 0 (63b)

k vip» —Rp(np)k vio —k v„»
+R' (no)k Vii b', (=63c)

k Vip» —R, (n,)k Vip +k V„»
—Rp(n, )k Vii =0, (63d)

where

b'=23 B(np cosH; —cosH;)(Kp/Ki) /'

XLCOS(8,—8')(np2 —1) I
' (64)
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Solving {63)and evaluating Iq/I;„., we obtain

I /I = {1—[g x(pp, )g'}p[(e,'—1)/(npp —1)]'sin'nd

X (Ep/E&) [(gp cos8 —cos8,)/(s, cos8, —cos8,)]'
Xcos 8;[cos88 cos(K 8i )] ~[~8(~p))~~ ('+~)] y

(65)
where F was de6ned by (49).

If P40, an extension of the above calculation shows

that

I&/I;..= {1—[R, (e,)g'}'[(N.'—1)/(ep' —1)j' sin'n'd

X (Ep/Eq) [(happ cos8 —cos8;)/(e, cos8,'—cos8,)g'

Xcos'8;[cos8g cos(8;—8; )] 'G[Z, (Ãp), RP(pp.)],
(66)

(66) if a factor of -,'is introduced and n' is replaced
by n'/v2.

Smce happ sq 111 most mater1ais& the factor [(ply 1)/—
(npP —1)j is approximately equal to unity. The bire-
fringence influences the scattered intensity through the
geometrical factors, since, as seen earlier, 8;, 8,8„and
8, are quite diGerent in birefringent and isotropic
media. The factor cos(8 —P) in n' arises because of the
H polarization of the incident light. The scattered light
is E polarized, and the refractive index for E polariza-
tion in this case is N. , so that E, (N.) is the appropriate

n'=-'pg(P(EpEi) '" cos(8; —P) (67)

and G was dehned by (51).
Figure 7 is a plot of the intensity factor Z for case II.

Compared with those of Fig. 6, these curves are com-
pressed horizontally. This is due to the lower speed of
transverse sound, since the acoustic wave vector rather
than the frequency determines the scattered intensity.
The low-frequency region enclosed by the dashed lines
is expanded in Fig. 8. This region exhibits more struc-
ture than the corresponding region of Fig. 7. The rapid
drop in intensity as the frequency is decreased is due to
birefringence. At low-acoustic frequencies in birefrin-
gent media 8; and 8, and the reflection coeKcients grow
large.

The Bragg conditions for the 1= i and. /= —j. lines
are met simultaneously if sin(8 —P) =0. If this occurs,
V ~, , may not be neglected. %hen the appropriate
scattering angles are used, I~q/I;„ is given by (65) for
p=0 if a factor of p is introduced on the right-hand side
and n is replaced by n/V2. The /=1 and /= —1 lines
have equal intensity and appear synunetrically about
the unscattered beam. For P/0, I+~/I;, is given by

N 06
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Fzo. 8. Low-frequency section of Fig. 7 expanded.
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reQection coeKcient, as in case I. The incident light,
however, is H polarized and its refractive index is eo,
so that RP(np) must be used.

incident light propagates in the ys plane and has H
polarization. There is again a polarization Rip of 90'
upon scattering. The intensity is given by (65) if the
appropriate changes in refractive index are made, i.e.,

Case III
Np-+ (cos'8g'/nP+sin'8, '/np) "

Case V

The H polarization of case II is changed to E polari-
zation in case III, so that the incident electric Geld lies K~~ tip,

along the optic axis. An analysis similar to that of case ~o other change is necessary
II shows that the scattered light is again polarized at
right angles to the incident light. If P=O, the intensity
ratio is

1&/1;p.= (1—[R (ep)]')'[(ep —1)/(e '—1)]'sin'nd
X(Ep/Ex)[(e. cos8 c8o—;)s/(n cops8,

'—cos8,)]'
X[cos8;cos(8,—8,')j'[cos8,+'F[RP(n, ),RP(ep) j,

(6s)

The incident H polarization of case IV is changed to
E polarization in case V. The intensity is given by
(68) if

e.—+ (cos'8 '/np'+sin'8 '/e ') '~'

Sp~ R~.
where

G'=
p pgoJ (EpEg) cos8

(N2~2 ~2)1/p E —(~2~2 g2)1/2 (70)

The polarization Rip also occurs in this case.

V. SOME COMMENTS

For P~O,
11/1 =(1 [Rg~—(sp)]')'[(sp' 1)/(n—y' 1)]'s—ill'Gd

X (Ep/Ey)[(B~ cos8, —cos8,')/(sp cos88 —cos8~)]

X[cos8;cos(8„—8')j'(cos8) 'G[R s(n.),RP(np) j,
(71)

where
n'=-', pgco'(EpEg) '"cos(8.'—P).

In case III, the incident light is E polarized, and has
refractive index n„while the scattered light is H
polarized, and has refractive index no. Therefore,
RP(ep) and R s(ep) of case II become RP(e,) and
R, (mp) in case III. The factor cos(8 —P) in (67) for
a' of case II, having its origin in the H polarization of
the incident light in that case, becomes cos(8,'—p) here
because the scattered light is H polarized. Figure 9 is a
plot of the intensity factor Z for case III. These cunres
are quite similar to those of case II.

Case IV

In the cases we have treated, scattering by transverse
waves has been characterized by a 90' rotation of
polarization, while no polarization rotation occurred
upon scattering by a longitudinal wave. It appears that
these results are due to the special geometries we have
assumed. In the general case, rotations other than 0'
or 90' are to be expected.

The intensity formulas we have derived for the
diferent cases diGer in geometrical structure. The
differences may not be ignored, but they are not
extensive enough to support the contention that the
mechanisms of scattering by transverse and longi-
tudinal waves dier fundamentally. "
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