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The theory of Brillouin scattering is extended to incorporate birefringence. The necessary modifications
to the Bragg laws are derived by the methods of physical optics. An integral equation method is used to
calculate intensities of the first-order lines scattered by longitudinal and transverse acoustic waves in an
infinite slab of birefringent crystal. This calculation also differs from those of previous authors in taking full
account of internal reflection. Depletion of the incident beam is accounted for. No restriction is made to
acoustic propagation parallel to the crystal faces. The intensity formulas for various cases of acoustic mode
and incident optical polarization are found to differ in geometrical structure, and the differences can alter

the intensities substantially.

I. INTRODUCTION

RILLOUIN scattering of light by acoustic waves
is analogous to Bragg scattering of x rays by a
crystal lattice. The effect is characterized by the
appearance of a small number of scattered lines, usually
only those corresponding to first-order scattering.
Brillouin scattering occurs only if a vector relation
among the acoustic, incident optical, and scattered
optical propagation vectors in the medium is satisfied.!
This relation, which in optically isotropic media is
equivalent to the usual Bragg laws, permits inference
from the directions of incidence and scattering of the
frequency and propagation axis of the acoustic wave
involved. If the relation between the acoustic intensity
and the scattered light intensity is known, Brillouin
scattering may be used to determine how the acoustic
power is distributed among the different frequencies.
Extensive use has been made of this tool.?
Assumptions made in earlier theoretical work?* on
Brillouin scattering are not valid for some crystals of
current experimental interest since they are birefringent
and have high refractive indices. In this paper the
theory of Brillouin scattering is extended to incorporate
birefringence and internal reflection. The Bragg laws
are modified to allow for birefringence in Sec. IL.%* In

* Work partially supported by the U. S. Army Electronics
Command, Fort Monmouth, N. J., under Contract No. DA28-
043-AMC-01876 (E).
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A220, 356 (1953); A220, 369 (1953).
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Sec. III the electric field within the crystal is expanded
in a series of plane waves, and the integral equation for
the electric field is used to derive recursion relations
among the partial amplitudes of the series. Relations
equivalent to boundary conditions at the crystal faces,
as well as an expression for the emerging electric field
in terms of the partial amplitudes, are obtained. In
Sec. IV the partial amplitudes and scattered intensities
are evaluated for some important special geometries in
hexagonal crystals. In each case of scattering by trans-
verse acoustic waves, we find that there is an optical
polarization rotation of 90° upon scattering. The
intensity formulas we derive for various combinations
of acoustic mode and optical polarization differ by
simple but important geometrical factors. As in the
isotropic case, no qualitative difference is found between
the intensities of light scattered by longitudinal and
transverse acoustic waves.

The observation of very intense acoustic disturbances
in some piezoelectric semiconductors subjected to large
electric fields®®?* has focused interest on the Brillouin-
scattering theory presented in this paper. The acoustic
flux, which is due to amplification of noise or an input
signal by means of the acoustoelectric effect, is accom-
panied in some cases by strains large enough to cause
severe crystal damage. The flux is distributed over a
range of acoustic frequencies and propagation direc-
tions. For example, in some of the samples of Zucker
and Zemon, there is significant flux from 100 to 1500
MH?z propagating at angles up to 15° from the electric-
field direction. Brillouin scattering is a convenient probe
with which to investigate these acoustic waves. It does
not disturb the processes responsible for the acoustic
flux. It is a highly selective interaction, scattering
significantly only if the modified Bragg laws are satis-
fied, so that one combination of acoustic frequency and
propagation direction may be examined at a time. The
experimenter adjusts his angles of incidence and scat-
tering to those appropriate to this combination and
measures the ratio of scattered to incident intensity. If

P. O. Sliva and R. Bray, Phys. Rev. Letters 14, 372 (1965); W. H.
Haydl, Phys. Letters 24(A), 413 (1967).
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the relevant photoelastic coefficients are known, he can
use the formulas we derive to evaluate the strain
amplitude. He can translate his sample to study the
variation of the strain with distance from the cathode.
We modify Brillouin scattering theory to accommodate
various acoustic propagation directions. The other
modifications we make to the theory are necessary
because of the nature of the materials manifesting a
strong acoustoelectric effect. The most important of
these are birefringent, having the wurtzite crystal
structure. They have large refractive indices so that
internal reflections must be corrected for, since anti-
reflection coatings efficacious for a wide range of angles
of incidence and scattering are not experimentally
feasible. The need to include birefringence and trans-
verse acoustic polarization leads us to a tensor theory.

II. BRAGG LAWS

In the theory of x-ray diffraction, the Bragg laws are
derived as criteria for constructive interference. This
approach is adapted in this section to light scattering
in birefringent media.® The conditions which must be
satisfied if constructive interference is to occur are: (1)
Light scattered from different parts of the same wave-
front must be in phase; (2) light scattered from different
wavefronts must be in phase. Consider condition (1)
first. In Fig. 1, W’ is the wavefront of a plane acoustic
wave. A plane light wave is incident with wave normals
A4, and BB, at an angle 8;, and is scattered along
AsA; and B,B; at an angle 6,. Condition (1) will be
satisfied if the optical path lengths along 414243 and
B1B,B; are equal, the optical path length being the
integral of the refractive index along the path in space
traversed by the wave-normal. Let %, and #, denote the
indices of refraction before and after scattering, re-
spectively. Condition (1) is equivalent to

7, cosfl;=n, cosb;. (1)

We now examine condition (2). In Fig. 2, WIW’ and
XX’ are successive acoustic wavefronts, separated by
the acoustic wavelength A. Constructive interference
will occur if the optical path lengths along 414245 and
A1B,B; differ by m\, where m is an integer and X the
wavelength in vacuum of the light. This is equivalent

w
\ A B2

I'16. 1. Scattering at one wavefront.
¢ This approach was first used by V. Chandrasekharan. See
Ref. 5a.
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to the condition
A (n; sind;+n, sind,) = m\. (2)

In what follows we shall limit ourselves to m==1,
since the higher orders are faint when conditions for
Brillouin scattering are satisfied.

The modified Bragg laws (1) and (2) take a particu-
larly simple form when expressed in terms of propaga-
tion vectors. Let k;, k,, and Q be the propagation
vectors in the medium of the incident light, scattered
light, and sound. In terms of these vectors, (1) and (2)
are equivalent to

kszkii—-Qy (3>

which states the conservation of quasimomentum for
the process. The condition that energy must be con-
served in the scattering process may be written

W= wi:l:;ﬂ y (4)

where w;, w,, and Q are the angular frequencies of the
incident, scattered, and acoustic waves. Since Q<Kw,,
we can for most purposes neglect the difference between

w; and w,.

Ay A3
B3
w T 8 % w'
A\ Az\\/ T
X { ‘9| 5291’ '

1716, 2. Scattering at successive wavefronts.

In an optically isotropic medium, where the index of
refraction is independent of polarization, n; equals 7,
and (1) and (2) reduce to the usual Bragg laws. In an
isotropic medium |k,| equals |k,|, but in a birefringent
medium they can be quite different if the polarization
of the scattered light differs from that of the incident
light. As illustrated in Fig. 3, the effect of birefringence
can be large even though the difference in the indices
for different polarizations is small.

III. INTEGRAL EQUATION AND
TRIAL SOLUTION

The integral equation upon which our theory is based
may be derived from Maxwell’s equations.” We intro-
duce the polarization density P(7,f), defined in terms of
D(r,t), the electric displacement, and E(r), the
average or macroscopic electric field, by

| 4rPE)=D)—Ew)=[c0r)-1-Ew), ()

"The integral equation was introduced by C. G. Darwin,
Trans. Cambridge Phil. Soc. 23, 137 (1924). It is discussed at
length by M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Inc., New York, 1965), 3rd ed., Chap. 2. Our development
differs slightly from that of the above authors in that we do not
exclude a small volume at R =0 from the region of integration.
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where ¢ is the dielectric tensor of the medium and I the
unit tensor. Substituting (5) into Maxwell’s equations
for nonmagnetic media, we obtain an inhomogeneous
wave equation for E:

(c202/0f— V2)E(r,1)
=dqr(—c202/38+grad div)P(r,f).  (6)

With the aid of the kernel function for the wave
equation, we rewrite (6) in integral form as

E(r,)=Einc(r,)+ f / / / R5(t—t'—R/c)

X (—¢~202/ 3t +grad’ div)P @/ ¢)dv'dt, (7)

where R=r'—r, R=|R|. The incident electric field,
Einc, is a homogeneous solution of the wave equation.
The integral is taken over all space-time. Using Gauss’s
theorem and neglecting noncontributing surface terms
at infinity,® we may transform (7) into

Be)=Ewteot [ [ [ [Pen

X (—¢29%/ 92+ grad’ div’)
X[R1%8(t—t'—R/c)]dV'dr.
It is readily seen that

9? 9*

—8(1—1'—R/c)=—0b@—V'—R/c).
ot'? at?

Similarly, if F(R) is a differentiable function of R, it is
easily shown that

a 0 0
R R )

or ory or; 0r;

These results enable us to rewrite our integral equation
as

E(r,t)=Eine(r,1)

—l—//f/P(r’,t’) (—c¢20%/ 32+ grad div)

X[RW(—t'—R/c)dv'di. (8)

The differential operator (—¢29%/9f-4grad div) com-
mutes with the integration since the limits of integration
do not depend on 7 or £. Rewriting (8) so that integration
precedes differentiation, and performing the trivial
integration over ¢, we obtain

E(r,t) = Eine (1,0)+ (—c20%/ 3124-grad div)

X / / / RP(r, 1—R/c)dv'. (9)

8 See Darwin, Ref. 7, for a discussion of surface terms at infinity.

IN BIREFRINGENT

MEDTIA

ABSORPTION EMISSION

T16. 3. Vector triangle representation of the Bragg laws.

The acoustic disturbance enters the theory through
e, in which it induces fluctuations that depend on space
and time. The acoustic amplitude may be written as

u(r,)=Asin(Q-r—Q). (10)

The components of the strain tensor e due to the
acoustic wave are

61]=Sif COS(Q'R-—Qt)) (11)

Si=3(A40;+4,Q4). (12)

The strain induces a small periodic fluctuation de(r,?)
in . The usual description of this effect is in terms of
Pockel’s photoelastic coefficients pqjxi,® which relate the
change in the inverse of the dielectric tensor to the
strain by the equation

[6(e)Jis= piment. (13)

Since the derivative of the product of a matrix and its
inverse is zero, we deduce from (12)

(82);j= (e1):j cos(Q-r— Q1)

(e1)ii=— (20) ir(20)j1Pk1mnSmn , (15)

£, being the dielectric tensor in the absence of strain.
The crystal in which the scattering occurs is taken to
be a slab bounded by the planes y=0 and y=d. The
acoustic disturbance is assumed to fill the sample.
Without loss of generality we may take the incident
light to be a linearly polarized plane wave entering the
crystal at the y=0 face. Since the scattered electric
field is linear in the amplitude of the incident electric
field, solutions for more general incident fields may be
obtained by superposition. The incident field is

Eine=B exp[i(k - r—wf)]. (16)

As in the theory of Bhatia and Noble,* a sum of plane
waves propagating in the x-y plane is adopted as the
trial solution of (9). We write

where

(14)

where

E(r,t)=> Vims exp[t(Kpms-r—wit)J. (17)
Ims
The components of Kjns are denoted by
Kine= (71,q1ms,0) . (18)

9 F. Pockels, Lehrbuch der Kristalloptik (Teubner, Leipzig,
1906). This work is described by J. ¥. Nye, Physical Properties of
Crystals (Oxford University Press, London, 1957).
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In the summations / and m take on integer values, while
s takes only the values 41 and —1. Waves will be
traveling toward both faces of the crystal because of
internal reflection. The partial wave of amplitude Vi,
is traveling toward the y=d face; that of amplitude
Vim— toward the y=0 face. In the absence of strain,

(19)

Qims= S$qimy Jim= IszsI .

The polarization density associated with the trial
solution is

P=(4r)'Y [eo— I+ 21 cos(Q-r—28) JVims
lms
X exp[t(Kims r—wif)].
When (19) is substituted into (9), integrals appear

having the form

J= (4r)t / / / R expi(A-r'+BR)AV’, (21)

(20)

where A is a vector having components (41,42,0). The
exact form taken by J depends on the region of space

LAWRENCE L.
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containing the observation point.? For y<O0,
J=[2b(A41,B)h(A,B) I {exp[ik(A,B)d]—1}

Xexpi[A1x—b(44,B)y]. (22a)
For y>d,
J=[2b(41,B)g(A,B) ] {exp[ig(A,B)d]—1}

Xexpi[ Ax+b(41,B)y]. (22b)
For 0<y<d,
J=[g(A,B)h(A,B) ] expi(d15+43y)

—[20(41,B)g(A,B) I expi Aw+b(41,B)y]
+ EZb (A- I)B)k (AyB)]—l
Xexpi[ Aww—b(41,B)y+h(A,B)d]. (22¢)

The quantities 5(41,B), g(A,B), and k(A,B) are
defined by
b(41,B)=(B*—A)'", (23a)

The positive square root is used in (23a).
Evaluating the integrals for the region 0<y<d, we
find that (16) is a solution of the integral equation if

Z Vlms expi(K;m‘, . r—wli)——B expi(k~r—wt)—-2 (6-012+g1'ad le) (SO—I) . Vlms

Ims ims

X (724 qums2— 022 exp[i (Kimo - 1—wit) J—[2b(r1, @1)g Kims, @2) I expil 7i+b(r1,@)y—wit]
+[2b(7‘l,&)1)h(szs,(:>1)]‘—l expi[r,x—b(n,&n)y—wzt-l-h(szs,JJz)d]}
—1Y T [(@r-n2)*+grad divier Vimed [ (1478 QP4 (gimet+nd- Q)?— (@r-+#2)2 T

lms n

X expil (Kime+7Q) - 1— (w0 +nQ)t]—[2b(ri+ni-Q, &1 +10) g Kims+1Q, &1+n0) T
X expil (ri+nt- Q)x+b(ri+nt- Qa+nl)y— (i)t ]+ [2b(ri+nt- Q, &1+nQ)h(Kins+1Q, &1+#3) 1
X expi (ri+nt- Q)x—b(ri+nt- Q, @r4+-n2)y+h(kins+nQ, @+ nQ)d— (i +nQ)t]} =0, (24)

where 4, 7 represent unit vectors in the x and y direc-
tions, respectively, and # takes the two values +1, —1.
We have defined @;=w;/c. It is evident from (24) that
w; must vary in steps of @ and K, must vary in steps
of Q as [ is varied if the integral equation is to be satis-
fied. Further, for some value L of /, wz, must equal @
and 7z must equal %-k if B is nonzero. We choose L=0,
obtaining

w;=w+lﬂ, 1'0=i'k; Klms=K0ma+lQ- (25)

The coefficient of any exponential differing from all of
the others in argument must vanish separately. Setting
the coefficients equal to zero, performing the grad div
operation, and simplifying the resulting equations, we
obtain

(‘:’121_— kH—kH-) 'Z [(80_ I) . Vlms
+%81 ‘ (Vl—l,ms+vl+l,ms)] (Zblglms)—l = Balo ) (26&)
(@ 1~k ki) -2 [(eo—D) - Vims

+%81. (VH—l,ms)](zblhlms)eiklm’dz O ) (26b)

@ 20 Vimst3e1r (Vict,ms+Vig1,ms) ]

= (Kstzl— KlmsKlms) : Vlms ) (27)

where

k= (1, &5, 0). (28)

We have used the abbreviations
b= b(fl,(z)l) y Bims= g(Kst,&’z) , hims=h (Klms)‘:’l) . (29)

Equations (26a) and (26b) are equivalent to the bound-
ary conditions on E and H at the crystal faces. Equa-
tion (27) is the recursion relation among the V;u, and
could have been derived from Maxwell’s equations in
the medium. It is also possible, although tedious, to
derive (26a) and (26b) without resort to the integral
equation.

The integral equation also determines the scattered
electric field E, in the region beyond the crystal. The

10 This integral was evaluated by Darwin, Ref. 7, and is dis-
cussed in Born and Wolf, Ref. 7, p. 772.
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polarization density vanishes in this region, and there
is no distinction between average and effective fields.
Using (22b) and (26a), we derive

E,= Z (wzzl— kz+kz+) Z [(80—1) “Vims
l ms

+3er- (Vicr,mst Vg, ms) 1+ (261g1ms) ™
Xexpi(kyp r4gimsd—wit) .

With this equation and the conditions (26) and (27),
E, is completely determined. The propagation direction
of the /th contribution to E, may be read off from (30)
if (28) and (25) are used.

(30)

IV. EVALUATION OF THE SCATTERED
LIGHT INTENSITY

We have derived a complete set of equations for the
partial amplitudes V., and an expression for E,. In
this section we shall calculate the V., the first-order
term of E,, and the intensity due to this term for some
important special cases of crystal symmetry, acoustic
mode, and incident light propagation direction. Most
of the crystals in which Brillouin scattering experiments
have been done have had cubic or hexagonal (wurtzite)
lattices, and further discussion is limited to the wurtzite
structure, which is uniaxial. Intensity formulas for the
cubic case may be obtained by setting the extraordinary
and ordinary refractive indices equal. The difference
between the frequencies of the incident and scattered
light will again be neglected.

Case I

The first case we treat is one in which the crystal
birefringence plays no role. The optic axis is taken in
the plane of the slab faces. The acoustic wave is longi-
tudinal and propagates in the basal plane, i.e., the plane
perpendicular to the optic axis. The acoustic propa-
gation vector is inclined to the slab faces at an angle 8
(see Fig. 4). Coordinates are chosen such that the
%z direction is along the optic axis. The incident light
propagates in the basal plane, is incident at an angle 6;,
and is polarized with its electric vector along the optic
axis.

Our choice of geometry reduces g, to a diagonal
tensor of the form ne? (44 77)+n.2kE, where no and .
are the ordinary and extraordinary indices of refraction.
The nonvanishing components of the strain tensor due
to the acoustic wave are Sy, Sz, S21, and Ss2. The
photoelastic constants are such that e; takes the form

e1=—n¢'[ (P11115 117+ P1120S 22) 10+ 2p1212S12 (2 7+ 71)
4 (poe11S11+ p2220S22) § 71— ne‘*Pasu(Sn'I“Sn)ké .

If any vector A lies along the z axis, the products g A
and &-A will also lie along the z axis. None of our
equations relating the V., to each other and to the
incident amplitude couples the z direction to any other,

BRILLOUIN SCATTERING IN BIREFRINGENT MEDIA
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Fic. 4. The basal plane.

and the E polarization of the incident light will be
unchanged by the scattering. We are left with a scalar
problem, and the tensors €, and e; may be replaced in
all of our equations by the scalars*s.2 and e, respec-
tively, where e1= —np35311(S114See).

The recursion relation (27) takes the simple form

(712+q1m32_ nez‘:)2) Vlms = %51&’2 (Vl——l;ms+ Vl-i-l,ma) . (31)

The subscript 7 on & has been omitted because we neglect
the difference in frequency of incident and scattered
light. With the aid of this relation, we may reduce
(26a), (26b), and (30) to

Z [2 (&’2—' 7’12)”2gzms]”1 (fzz‘l‘ qlmaz"' 52)V1m3= Bazo , (32&)

Z [2 (5)2_ 712)1/2}1 lms]—l

X (124 qims®— @) Vims €xp (himsd) =0, (32b)
E*' = Z [2 (‘2’2_ 712)112glms]_1 (fi2+qlmsz_ a’z)Vlma
lms
Xexpli(kpp r+gimed—wt)].  (33)

We now derive intensity formulas assuming that the
Bragg laws are satisfied for the /=1 line.? Satis-
faction of these laws is the criterion for Vim, to be large.
We neglect Vims for I not equal to zero or unity. Then
(31) may be written as

(34a)
(34b)

(702+q0m32_ nez‘:’z)voms = %51&2‘711"3 s

(712+q1m32_ 7%26:)2) Vlma = %61(:)2‘70"“, .

There are two situations that can occur. In the first, the
internally reflected light also satisfies the /=1 Bragg
condition. This occurs when 8=0. In this case the light
traveling toward the y=0 face interacts strongly with
the acoustic wave. For 80, the light traveling toward
the y=0 face is not influenced by the acoustic wave,
and a separate treatment is required. We treat the =0
case first. Combining (34a) and (34b), and using the
Bragg laws to express goms in terms of gims, Or vice versa,
one obtains a quadratic equation for gim,. Denoting one
root by =0 and the other by m=1, we obtain for the

u The geometry is essentially that of Bhatia and Noble, Ref. 3.
12 The calculation for the /= —1 line is identical.
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possible g values:

oos = S[ Ko+}e@® K¢ 2K 1], (35a)
qors=S[ Ko— te10? K¢ 12K 712 (35b)
qros=S[ K1+32e,02 K 2K 12 ] (35¢)
qus=S[K1—}e@? K1 2K ] (35d)
where

Ko= (nda*—r?)?, K= mi—rH)2. (306)

We define a parameter a by
a=30'e K 2K, (37)

and note that

G00s— Jo1s = J10s— 115 = S (38)
Equations (31) and (35) imply
Vios= K 2K 712V g, , Vie=— K¢ 2K;12Vy,. (39)

The boundary conditions (26a) and (26b) provide
further relations among the amplitudes. If the refractive
indices are close to unity and the angles of incidence are
small, the internally reflected amplitudes V,,_ are
negligible and may be dropped from the theory. In this
case, (32b) provides no information and (32a) only need
be considered. Some materials of current interest have
large refractive indices, e.g., about 2.5 for CdS, and
internal reflection is appreciable. For this reason we
retain (32b) and solve for Vi.— as well as V;,,,.. When
solving (32a), (32b), and (39) for Vous and Vi,.,, we may
drop the term in g, of first order in €, everywhere
except in the phase factors exp(iqimsd). Although this
term is much smaller than the zero-order terms, its
product with d may be of order unity.

We have defined 6; as the angle of incidence and
derived the result 7o=%-k. For the incident direction
chosen in Fig. 4, o= —a sind,. In order to simplify later
formulas, we now introduce other angles (see Fig. 5).
Define 6,, 6/, and 6, by

r1i=wsinf,, #.sinf;/=sind;, n.sind,/=sinf,. (40)
It is evident from (30) and (40) that the scattered light
corresponding to /=1 will emerge at the angle 6,.
Substituting our solutions for goms and gims to zeroth
order in ¢ into (23), remembering the definition (29),

and using (40), we obtain

Gome = —hom—= & (1, cosh — cosh,) , (41a)
gom—=—hom—=—a&(n, cosf/+cosd;),  (41b)
Gimy=—him_=&(n, cost,’— cosb,) , (41¢)
Lim—=—himy = — (1, cosd,’+cos,).  (41d)

It is convenient to introduce the usual E polarization
(electric vector perpendicular to the plane containing
the incident and reflected wave vectors) reflection
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¥ic. 5. Angles of incidence and scattering.

coefficients for a refractive index #.'® These are

RE(n)= (n cosb; — cosb,) (1 cos+cosf;)*,

[6;| <3m (42a)
R.E(n)= (n cosh,’— cosb,) (n cosb,’+cosb,) ™,
[6,| <gw. (42b)

For use in later examples, we also define the H polari-
zation (electric vector in the plane containing the
incident and reflected wave vectors) reflection co-
efficients

RA(n)=R;*(n) cos(0;+6,)/cos(6,—6),
16;] <iw (42¢)

RH(n)= R,%(n) cos(6,+8,")/cos(0,—86,"),
|6,] <iw. (42d)

With the aid of (39), (41), and (42) we may express
(32a) and (32b) in the form

RiE (ﬂe) V10+e“"1°°d—- Vm_e-iqood

—RE(ne) Vel Vyy emwd=0, (43a)
RE(ne)Vippeit0d— Vi, emiand
+RE (1) Virpeitrd— Vi emiand=0, (43b)
Viee— REFne)Vie— Vi +RE () V=05, (43c)
Vip—RE (1) Vieet+ Vi — R E(ne) Vie-=0, (43d)
where
b=2(Ko/K1)'2(nl2—1)"" cosbi(n. cosd/ —cosf;)B. (44)

The /=1 scattered electric field becomes
(E)'=2(n2—1) cosf,(n. cos,’— cosf,)"*W, (45)
where
W=V eta0i— R, (ne) Vipeia0d
4+ Vipeiad—R E(n,) Vi eiand,
The ratio of the scattered light intensity I;, to the
incident light intensity Jinc is
I/Iine= (n2—1) 2 cosb,(n, cosd,’— cosf,) ]
XW-W*(B-B*)—!.

(46)

(47)

13 See, for example, Born and Wolf, Ref. 7.
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Solving (43) and evaluating W-W*, we obtain

where

1’[)\1,)\2] = [1 + 2)\1}\2 COS(ZAVDII) + )\12)\22] { [1 -_ 2)\12 COoSs (2Ko(i)+ )\14][1 - 2)\22 COos (2](1(1) + )\24]
+ ()\1+ )\2)2 sin“ad[kf—l— 2)\1)\2 COS(ZKod—‘ 2K1d) + )\22]
—2 (M—l— )\2) sin'*’ad[ ()\13+ )\23) - )\1 (1 + Al)\gs) [o{013) (ZK()d)

IN BIREFRINGENT MEDIA 889
W W¥={1—-[R,(n,) ?}b* Xsin‘ad F[R¥(n.),R.,%(n.)], (48)
—_ )\2(1+>\13)\2) COS(2Kﬂi)+ )\1)\2(>\1+ )\2) COoS (ZKod— 2K1d)]}—1 . (49)

Finally, for the case 8=0, the ratio of the emergent intensity in the /=1 mode to the incident light intensity

becomes

I1/Iine={1—[R"(n,) 2}? sinad (K o/ K1) (cosb;/ cosb,)?

X[ (1, cos — cosy)/ (1. cosd,’ —cos,”) PF[ R (no),RE(n.)].

This intensity formula and the ones to be derived
subsequently are used as follows: Starting with the 6;
and 0, for which the intensity is to be calculated, obtain
6./ and 8,’ from Snell’s law. Evaluate a or o/, Ko, K3, and
the appropriate reflection coefficients. Substitute these
quantities into (50). Bhatia and Noble* calculated
I/I:n for the case =0, R;Z(n.,)=0 and R,?(n,)=0 in
a nonbirefringent medium. Our result, since for this
case there is no effect due to birefringence, reduces to
theirs if the limits R;Z(#.) — 0, R.Z(ne) — 0 are taken.
The factor {1—[R,F(n.)]*}* reduces the emergent
intensity to zero if the geometry is such that the
scattered light is totally reflected internally. The
parameters of the acoustic wave enter Iy through the
quantity e, which is of the form @ps, where ps is some
combination of photoelastic coefficients and strain
amplitudes. If the sample width d, the strains, and the
photoelastic coefficients are such that ad is small, the
scattered intensity is proportional to (psd)®. It is
possible to measure ad directly as the phase retardation
induced by the acoustic wave in the emergent =0
light. A typical value for ad found by Zucker and
Zemon? in such an experiment on CdS is 0.4 rad.
This was measured for light passing through an acoustic
domain, or region of high acoustic strain, in a sample
with d=1mm. Unfortunately, the relevant photo-
elastic coefficients are not known.

A calculation similar to that above shows that the
intensity of the unscattered (/=0) light is modulated
by a factor cos’ad. The maxima of I; at ad=z3m,
-3, etc. are thus accompanied by complete depletion

o]

(50)

of the incident beam, and the incident light is com-
pletely converted to scattered light.

Due to internal reflection, some light corresponding
to both the /=0 and /=1 lines emerges at the y=0
crystal face (see Fig. 4). The intensity of this light may
also be calculated by the methods of this paper.

If 80, the Bragg conditions are not satisfied for the
reflected light, i.e., for s=—1. A somewhat lengthy
extension of the above calculation shows that (50) holds
if F[A1,\2] is replaced by G[A1,\2], where

G[)\l,)\z:] = { 1— 2)\12)\22 C052 (K0d+K1d) +)\14)\24
—2(1=N2AR) [N\ cos (2K od)+No? cos(2K1d) ]
‘f‘COS2 (ad)[)\12+>\22+2)\12)\22 cos (ZK()(Z"‘ 2K1d):|}—1 .
(51)

Figure 6 illustrates the variation of the scattered
intensity described by Eqs. (50) and (51) with acoustic
frequency and propagation direction in the small strain
limit (@d<1). In this limit we may write I1/Iinc
= (vd)*Z, where v=}e;0/n.. It will be recalled that €
is linear in strain amplitudes and photoelastic co-
efficients. The variable Z, which carries the dependence
on acoustic frequency, has been evaluated numerically
using the parameters appropriate to the experiment of
Zucker and Zemon? in CdS. The light wavelength in air
is taken to be 6328 A, the speeds of the transverse and
longitudinal sound waves are 1.80X105 cm/sec and
4.22X 108 cm/sec, respectively, no is 2.453, n. is 2.470,
and d is 0.10 cm. Each graph of Z versus acoustic
frequency is plotted for the range of frequencies for

o
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which both reflection coefficients are less than unity. A
similar plot for the theory of Bhatia and Noble, which
ignores reflection and is restricted to acoustic fre-
quencies low enough so that ;~0 and 6,~0, is a
horizontal line at Z=1.0. The geometrical structure of
(51) is such that the curves for 8 negative lie above the
corresponding curves for 8 positive.

Case II

In this case, the longitudinal wave is replaced by a
shear wave propagating at an angle 3 to the x axis in the
basal plane, as shown in Fig. 4, and polarized along the
optic axis. The incident light is A polarized with its
electric field in the plane of incidence, i.e., the basal
plane. The tensor € is unchanged in this case, but
according to (11b) and (14) £ becomes e;(BQ-QF)/Q,
where Q= | Q| and ;= —n¢*npsuQ4;. The customary
abbreviation Das= Pazes and the fact that P1313= P23a3
have been used in deriving the above form for ¢;. We
again assume that the modified Bragg conditions are
met for /=1. Because of the birefringence, it is possible
in this case to satisfy these conditions for both /=—1
and /=1 for a particular (nonzero) acoustic frequency.
For the present, we consider the case in which this does
not happen. The case in which it does happen will be
discussed at the end of the section.

As in the theory of Bhatia and Noble, the plane of
polarization is unchanged upon refraction into the
crystal, so that &- Vom,=0. This may be understood as
the consequence of reflection symmetry in the basal
plane. It also emerges from a longer version of the
calculation to follow. As in case I, we retain /=0 and
I=1 terms only in (27), obtaining

o (80 : V0m8+%81 : Vlms)
= (K0m32l_ KOmeOms) : VOms )

@? (90 : Vlms+% (3 VOms)
= (Klmszl_ KlmsKims) ‘ Vlms .

Forming the scalar products of £ with (52a) and Kin,
with (52b), we obtain Q- Vime=Kims* Vins=0. Since Q
is not parallel to Ky, and since Q and Ky, lie in the
basal plane, the scattered amplitudes Vi, are perpen-
dicular to the basal plane. Thus the light polarization
is rotated 90° upon scattering by the transverse wave.
This is a result that was derived earlier by Mueller? for
isotropic materials. Forming the scalar product of
Ko, with (52a), we obtain

n02K0ms ‘ VOms+%Q—1510 : Ko'ms% . Vlms =0.

The electric field within the crystal is not transverse
because of the fluctuations in the dielectric tensor.
Forming the scalar product of Q with (52a) and using
(53), we obtain

(Kl)msz— n02é2)0 * VOms
—1ei?[Q— (2P Q)(Q - Kome)? Tk Vime=0,

(52a)

(52b)

(83)

(54a)
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while the scalar product of £ with (52b) becomes
%61(;)20—10 * VOms_ (K1m52_ nf&z)k . V1m3 = 0 . (54b)

Equations (54a) and (54b) comprise a homogeneous set
of linear equations for Q- Vim, and %- Vi,,. A nontrivial
solution exists only if the determinant of the coefficients
vanishes, i.e., if

(KOmxz'_ ”02(:’2) (Klm.sz_ n626’?)
— 6’0" [1— (10Q)~2(Q- Kom,)*]=0.  (55)

As in case I, we treat first the 8=0 situation, where the
modified Bragg conditions are satisfied for the reflected
light. We have Q- Ko, =Qry, where 7, is again equal to
® sinf;. In this case, the angles 8,, 0, and 6, are defined
by

r1= sinf;,

ng sinf;/ =sinf;, #.sind,/=sind,. (56)

Equation (55) reduces to

(goms?— K?) (q1me*— K1) = ;0" cos®0 ,  (57)
where
Ko= (ngt—r®)?, Ki=n2a—r2)2.  (58)
Solving (57) as in case I, we obtain
qoos=$(Ko+3a), (59a)
go1s=5(Ko—3a), (59b)
9103=5(K1+%a) ) (59C)
qus=s(K1—3a), (59d)
where
a= %615)2 (KoKl)—ll? COS@/ . (60)
Substituting (59) and (60) into (54a), we derive
(—1)™(Ko/K1)'2Q" Voms=Q cosf/k+ Vime. (61)

Using (23), (29), and (56) to evaluate gims and kyms, we
find that (41c) and (41d) are unchanged, while (41a)
and (41b) are replaced by
Zom+=—hom—=0(no cosf;’ —cosb;) (62a)
gom—=—hom+=—a&(no cosf/+cos;).  (62b)

Equations (56), (58), (61), and (62) allow us to rewrite
(26a) and (26b) as

RH ('no)}% . V1o+eiq°°d— k . Vm__e—iqood

—RA(no)k- Viyyeimdd - Vyy_e—iand=0, (63a)
R.E(no)k- Vi eind—F. Vg g—iand
+R3E (ﬂe)é . V11+6iqud— ]% . V11..6°'"”'q”d= 0 , (63b)

k- Vioy— R (no)k- Vio-— k- Vi,
+RA(n)k-Vi_=b", (63c)

%' V10+—‘ RSE(ME)E . Vm_.+}% . V11+

—RE(nok-Vi1_=0, (63d)
where
b =2%-B(no cosd — cosd;) (Ko/ K1) M2
X [COS (0.,'*' 01-’) (noz— 1)]_1 . (64)



IN BIREFRINGENT MEDIA

891

B=-15.0°

M—IO_O°
- "
; B=-5.0°

B=15.0°

166 BRILLOUIN SCATTERING
1.0
0.8
________ A
N 1
£
So.6
(8]
&
Fic. 7. Acoustic frequency de- o
pendence of scattered intensity. Small
strain limit. Case II. 004
&
’_-
z
0.2
0 .
(o) 1000

Solving (63) and evaluating 71/7inc, we obtain

I/Iine= {1—[RZ (1) P}2[ (n2—1)/ (ne®—1)]? sin%ed
X (Ko/ K1)[[(no cost — coss)/ (n cos,’— cosfs) ?
X cos?0, cost, cos(0;,—6.) T2F[ R (no),R.F (n.)],
(65)
where F was defined by (49).
If 840, an extension of the above calculation shows
that

L/ Iine= {1—[RE(ne) PYL(né—1)/ (nd—1) P sin’e’d
X (Ko/K1)[ (1o cos — cosb)/ (. coss’ — cosfs) J*
X cos?,[ cosh, cos (8;—0;) 2GR (no),R:% (n.)],
(66)
where

o = %€, (KoK1)™1/2 cos (6 —B) (67)

and G was defined by (51).

Figure 7 is a plot of the intensity factor Z for case II.
Compared with those of Fig. 6, these curves are com-
pressed horizontally. This is due to the lower speed of
transverse sound, since the acoustic wave vector rather
than the frequency determines the scattered intensity.
The low-frequency region enclosed by the dashed lines
is expanded in Fig. 8. This region exhibits more struc-
ture than the corresponding region of Fig. 7. The rapid
drop in intensity as the frequency is decreased is due to
birefringence. At low-acoustic frequencies in birefrin-
gent media 6; and 6, and the reflection coefficients grow
large.

The Bragg conditions for the /=1 and /=—1 lines
are met simultaneously if sin(9/—8)=0. If this occurs,
V_1,ms may not be neglected. When the appropriate
scattering angles are used, I11/Iinc is given by (65) for
B=0 if a factor of  is introduced on the right-hand side
and « is replaced by «/v2. The I=1 and /=—1 lines
have equal intensity and appear symmetrically about
the unscattered beam. For 850, I11/Iin. is given by

2000 3000 4000 5000

ACOUSTIC FREQUENCY (MHz)

6000

(66) if a factor of % is introduced and o is replaced
by o' /V2.

Since n=~n. in most materials, the factor [ (n2—1)/
(n®—1)] is approximately equal to unity. The bire-
fringence influences the scattered intensity through the
geometrical factors, since, as seen earlier, 6;, 6/, 6, and
6,' are quite different in birefringent and isotropic
media. The factor cos(6/— ) in o’ arises because of the
H polarization of the incident light. The scattered light
is E polarized, and the refractive index for E polariza-
tion in this case is 7., so that R,#(n.) is the appropriate
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reflection coefficient, as in case I. The incident light,
however, is H polarized and its refractive index is #,,
so that R;#(n,) must be used.

Case III

The H polarization of case II is changed to E polari-
zation in case III, so that the incident electric field lies
along the optic axis. An analysis similar to that of case
IT shows that the scattered light is again polarized at
right angles to the incident light. If =0, the intensity
ratio is
I1/Iine={1—[RH (no) FYL (n’—1)/ (né—1) J sin’ad

X (Ko/K1)[ (1 cosd— cosds)/ (no cos’— cost,) 2

X [cost; cos(0,—8,") [ cosbs | 2F[ R:E (ne) RE (o) ],

(68)

where
a=%60%(KoK1)™12 cosy’, (69)
K0= (nczd)g-'“foz)”z, K1= (ﬂ025)2—7’12)1/2. (70)

For 50,
1/Iine={1—[RH (o) P}[ (ne?*— 1)/ (n2—1) ] sin%ad
X (Ko/K1)[ (ne cosd — cosfs)/ (ny cos,’— cosf,) J?
X [cost; cos (8, —8,") ]2 (coshs)2G[ R:E (n.),R.H (n0) ],
(71)

where
o = 3t (KoKo)™ cos (0, —).

In case II1, the incident light is E polarized, and has
refractive index n,, while the scattered light is H
polarized, and has refractive index o Therefore,
RH(ng) and R,E(n,) of case II become R;Z(n,) and
R.H(ny) in case III. The factor cos(6/—g) in (67) for
o’ of case II, having its origin in the H polarization of
the incident light in that case, becomes cos(6,’—p8) here
because the scattered light is H polarized. Figure 9 is a
plot of the intensity factor Z for case III. These curves
are quite similar to those of case II.

Case IV

In case IV, the acoustic shear wave is polarized along
the x axis and propagates along the optic axis. The

incident light propagates in the yz plane and has H
polarization. There is again a polarization flip of 90°
upon scattering. The intensity is given by (65) if the
appropriate changes in refractive index are made, i.e.,

no—> (cos?0/nd=+sin? /nf)~1/2,
Ne—> Ny,

No other change is necessary.

Case V

The incident H polarization of case IV is changed to
E polarization in case V. The intensity is given by
(68) if

ne—> (cos?0,’ /ne*~+sin?6,’ /n2)~12

Nog—> Ne.

The polarization flip also occurs in this case.

V. SOME COMMENTS

In the cases we have treated, scattering by transverse
waves has been characterized by a 90° rotation of
polarization, while no polarization rotation occurred
upon scattering by a longitudinal wave. It appears that
these results are due to the special geometries we have
assumed. In the general case, rotations other than 0°
or 90° are to be expected.

The intensity formulas we have derived for the
different cases differ in geometrical structure. The
differences may not be ignored, but they are not
extensive enough to support the contention that the
mechanisms of scattering by transverse and longi-
tudinal waves differ fundamentally.!
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