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Point imperfections in crystals Inay produce localized modes of vibration with frequencies not allowed in
the perfect crystal, or resonances with frequencies within the perfect-crystal f'requency bands. In general,
such frequencies depend both on parameters characteristic of the defect and on Green's functions charac-
teristic of the dynamical properties of the perfect lattice. In the limits of frequencies, both very high and
very low with respect to the maximum perfect-lattice frequency, simple equations, giving physical insight
into the nature of the defect mode, are developed, and the results are compared with recent calculations on
specific models and with experiment. It is shown that for a variety of situations the defect-mode properties
are, to first order, very directly related to the-mass and force-constant parameters in the center only.

l. INTRODUCTION
'
+OINT imperfections in crystals perturb the vibra-

tional Hamiltonian of the crystal and modify the
normRI modes of vlbrRtlon. At, fI'cqucnclcs glcRtcl than
the maximum host-lattice frequency, localized modes
with large amplitudes in the neighborhood of the im-
perfection may result, or alternately, the defect may
give rise to resonance effects within the normal-lattice
spectrum.

Such phenomena have been established by a wide
variety of experimental techniques; the relationship of
these experimental results to established theory has
recently been reviewed by Maradudin. "

The Green's-function approach to defect-lattice vi-
brations is now well established, at least for low defect
concentrations, and general discussions of the methods
developed are given, for example, by Lifshitz, a Mara-
dudin, 4 and Elliot. ' The theories express the properties
of the localized modes or resonances, on the one hand,
in terms of parameters characteristic of the perturba-
tion by the imperfection (e.g., the changes in force and
mass constants), and on the other, in terms ot lattice
response functions or Green's functions characteristic
of the perfect crystal. Isotopic substitution in a lattice
has received by far the most attention, but most point
imperfections involve also changes in. force constants.
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Though a formal solution of this case is easily found, l

applications to realistic problems —by Sievers and
Takeno, Yussouff and Mahanty, Patnlk. and
Mahanty' Brice, Benedeck and Nardelli ""Tseng"
and others —involve either highly simpli6ed models or
extensive computation.

Some of thc lntclcstlrlg experimental sltuatlons cor-
respond to localized modes with frequencies very large
by comparison with the maximum frequency of the
host lattice, e.g., the U center in the alkali hahdes" or
sharp resonances at very low frequencies, e.g. , the prop-
erties of Li+ ions in KBr. Experimental evidence'~'eon
Li+ in KCl and theoretical studies'~ ' suggest that thc
I.i+ ion is unstable on the defect-lattice site, resulting
in the intrinsically nonharmonic behavior discussed by
Bowen, Gomez, and Krumhansl. " The low-frequency
resonance in lithium-doped K.Br is very sensitive to
stress and alloying CGects, ""suggesting that it may b c
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possible to monitor continuously the transition from a
resonance condition mainly harmonic in character (as
probably exists in KBr:Li) to an unstable coniiguration
characterized by tunnelling and other nonharmonic
eifects (as in KCl:Li). It is therefore essential to under-
stand fully the predictions of harmonic-lattice dynami-
cal theory for low-frequency resonances.

We wish to present a rather di6erent treatment of the
defect-lattice dynamical problem applicable for the cases
of high-frequency localized. modes and for very low-

frequency resonances. In these limits, it is possible to
derive useful asymptotic results which help to relate
directly the properties of point imperfections to experi-
mental observation, and to provide simple physical
pictures of the resonance state. This work may be re-
garded as extensions of ideas introduced by Krumhans12'
and Matthew "

In Sec. 2 we consider the much-studied problem of
isotopic substitution in a cubic lattice in. the conven-
tional Green's-function formalism of Brout and
Uisscher. "We derive asymptotic results for the high-
and low-frequency case as a guide to the analysis of
more general problems. In Sec. 3 we formulate the vi-
brational problem in a somewhat new way by dividing
the crystal-basis space into two subspaces, one char-
acteristic of the strongly perturbed region of the defect,
the other characteristic of the rest of the crystal (the
so-called "excavated. lattice" ). This technique is similar
to those used by Krumhansl 23 %'agner 26 and Sitzman
and Rozsa. '7%e compare the results with those derived
from specific models in the conventional Green's-
function formalism and with recent experiments. Very
recently, Toyazawa, Inoue, Inui, and Hanamura" have
developed a similar method to discuss coexistence of
local and band character of both electronic and lattice
excitations in impurity systems.

2. ASYMPTOTIC LIMIT FOR THE CASE
OF ISOTOPIC SUBSTITUTIOÃ

If we consider a cubic Bravais lattice with host mass
M and an isotopic impurity of mass M', the equation
to determine the resonance or local-mode frequency ~&
1S

M' —M ML,

1+ (PQ =0,
M 3X

where (P denotes the principal value of the surronation
over all lattice frequencies co~,' and X is the number
of unit cells in the crystal.

"J.A. Krumhansl, in Proceedings of the International Confer-
ence on Lattice Dynamics, Copenhagen, 1963 (Pergamon Press,
Inc. , New York, 1965), p. 523.
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26 M. Wagner, Phys. Rev. 131, 2520 (1963)."U. Sitzman and P. Rozsa, Proc. Phys. Soc. (London) 85, 285

(1965)."Y. Toyazawa, M. Inoue, T. Inui, M. Okazaki, and E. Hana-
mura, J. Phys. Soc. Japan 22, 133/ {1967);22, 1349 (196/).

For the case ~~)&co, where ~„ is the maximum

perfect-lattice frequency, a straightforward expansion
of (1) in powers of co~;2/cur, ' yields a series solution for
a&r,

' in powers of the small parameter M'/M:

~& ') ( ')- ( ')'
~)

'
+&I = + +order

M' M'

where (&ep) is the mean value of ro, ,2 (see, for example,
Matthew'4 and Elliot"). It is diffj.cult to prove the con-

vergence of such an expansion in general, but it is inter-

esting to note that for the case of the one-dimensional

chain, which has the analytic solution"

arz' ——co '/(1 —e'),

where a=i —(M'/M), the series is convergent for all

values of M'/M for which a localized mode exists. In
general, the series will converge for M'/M less than
some critical value, but in considering modes of fre-

quency very much greater than the maximum lattice
frequency, i.e., M'/M«1, such difhculties will be
unimportant.

For resonant modes, similar expansions are possible
in powers of ~»,2/cuL~ for &o, , P(coJ„'—5, and. &or.'/&v~;2

for cv, ,2) &vz.'+5, where 5 is a small quantity. This is
discussed in Appendix A. For &vr«sr~, (i.e. , M'&)M),
we obtain an expansion for cgL,

' in terms of the small

parameter M/M':

M M ~

-+order +
M'(M ') M'

For a continuum Debye model,

= 5&max

1/(~ )= g&max ~

Using these values, Eqs. (2) and (4) are consistent with
the results presented by Brout and Visscher. "

Thus, for both M'))M and M'&(M, the local fre-

quency euL, is given to 6rst order by the relation

a)z,'= k/M', (6)

where k is an effective force constant independent of
M'. It is of interest that the value of k is signi6cantly
different for localized modes and resonant modes:

& =M(+') = 35M',„' (Debye model)~) ~

&=M/(&o ')= ~SM~ ' (Debye model)co(&v, .
A generalization of such results and an insight into

the meaning of such effective force constants is one of
the objectives of this paper.

~ R. J. Elliot, in ProceeChngs of the Internationat Conference on
Lattice Dynamics, CoPenhagen, 1963 (Pergamon Press, Inc. ,
New York, 1965), p. 459.

3 J. A. Krumhansl, J. Appl. Phys. Suppl. 33, 307 (1962).
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In the case of the resonant mode, the resonance re-
sponse is damped to give a haU-width 5mq which, for a
Debye model, reduces to

Z~&/~, = (~/4v3) (M/M')i12, (8)

to lowest order in (M/M')&; a general model will have
the same Inass dependence in the low-frequency limit.

V=
u~ C

and with a point imperfection by

(10)

where I and I' are symmetric square matrices which
describe the interaction constants in the local subspace
~8) in the perfect and imperfect crystal, respectively,
while C and C' describe the interaction constants in the
rest of the crystal

~ q
—8). The nonsquare matrices u

and a', with their respective transposes ar and (u')r,
describe the coupling between the space ~8) and the
space

~ q
—8).

The equation of motion of the imperfect crystal is
given by

which yields

L1"—~'jl v) =o,

LL'—oP11i8)+a'i q
—8)=0,

(")'I8)+("- '1)
I ~—8) =0

A quasi-equation-of-motion for the subspace ~8) may
be readily obtained:

P' ~' ( 'a~c'1)—i(n')'1~8) =-0 (13).
We may deGne a Green's-function matrix operator for
the imperfect lattice such that

GL V' —aP11= —1,
where

-Gy-H, 8 ~q 8, y—I-

3. FORMULATION OF THE GENERAL
DEFECT DYNAMICAL PROBLEM

We wish to consider a crystal containing one point
defect in which the displacement field

~ y) is described
in terms of the Cartesian basis displacements of the
atoms in the crystal. VVe divide the X-dimensional
space

~ io) into two subspaces: ~8), which gives the dis-
placement Geld of a local region at the defect; and

~
rp —8), which gives the displacement field of the rest

of the crystal. I.et the reduced-mass potential-energy
matrix of the crystal containing no point imperfection
V be

A formal solution of (11) yields

Ge, e= —LL' —co'1—a'(c' —co'1)-'(n') rj '. (16)

For ru) cv, (c'—au'1) ' will be a real operator, but for

, the response operator will be a complex matrix
operator of the form

(c'—co'1) '=(P(c' —co'1) '+i%(e),

where 6' denotes the principal part of the response func-
tion and X(o&) the out-of-phase component.

If we are interested in the resonant response of the
impurity region, the frequency of resonance ~1, will be
given by

Re(detLL' —Mr,
'—a'(c' —(oi,')(a')'j) =0. (18)

Equation (18) is the equivalent of the resonance con-
dition arising in the standard formalism, but we shall
now manipulate Eq. (18) to give some useful and simple
results in the high- and low-frequency limits.

The last term in brackets of (16) is the "shift-
broadening" matrix of Toyazawa et al.28 Its real part is
(u')(p(c' —&oI,')(a')r, and the imaginary part is (a')
~( )(")'.

A. High-Frequency Localized Modes

For &or,'»&u~~', we may choose the space ~8), such
that &I.' is much larger than all the elements of the
matrix c'. Then (c'—cur, '1) ' may be approximated by

('— ') '= —(/ ')t +('/ ')j ( )

where the correction terms involve higher powers of
co&, '. Equation (18) now reduces to

dett L'—~i'1+ (1/~i')o'(o')'3= o,

terms of order 1/ml, ' and higher having been neglected.
It is of interest that, to this level of approximation, the
frequency of the localized mode does not depend on the
internal properties of the bulk of the crystal, i.e., it does
not depend on c .

I. Isotopic Impurity iu a Monatomic Cubic Lattice

We Grst test our formahsm on the traditional proving
ground of the isotopic impurity M' in a cubic lattice of
host mass M. Let 4 (t,P; n, n')/M be the elements of the
reduced-mass potential-energy matrix of the perfect
crystal. Here l and t' label the atoms, while 0,, n'= x, y, s
denote the components of the displacements; 4'(t, l; n,n)
is independent of / and o..

We wish to study localized modes due to the im-

purity atom (set, for convenience, at the origin). ~e
consider the space

~
8) to be the three-dimensional space

of the Cartesian basis displacements of the isotopic im-

purity, while
~ y —8) are the Cartesian basis displace-

ments of the rest of the atoms in the crystal. Now,
L'= (M/M')L, u'= (M/M')'"a, and c'=c. Because of
the cubic symmetry, the determinantal condition (20)
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reduces to a single equation,

C(l,/; n,n) —
a&z,'+ — P Q 4'(/, /'; n,n')'= 0, (21)

coL,~ '+' ' 3''
which, on solving as a series in the small parameter
M'/M, gives

been applied —for example, by Litzman and Cely" and
Lengeler and Ludwig" —to speci6c models.

B. Low-Frequency Resonances

We now consider the limit of eL,&&cv . This implies
that ~1. is very much less than the typical diagonal ele-
ments of c'. The operator (c'—aP1) ' may then be ap-
proximated by

C (l,l; n,n) C (/, /'; n,n')'
+ZZ

M' ' ' ' MC(ll nn)

+terms of order (M'/M)&v 2. (22)

(c'—cut,'1)~ (c') '+ (c')-'(c') '&os,'+order coz,
4

and Eq. (18) reduces to

detLL' —Mt,'—a' (c')-'(a') rg =0. (24)

From the properties of the perfect-lattice dynamical
matrix V, it is easy to show that M(aP)=C(/, /; n, n),
and M'(&u')=gt, C'(l, l', n,n')'. Equation (22) then
reduces to Eq. (2) as required.

To 6rst order, the localized mode frequency is given
by the Einstein oscillator frequency of the isotopic
impurity, and so the effective force constant k is just
the restoring force on an atom when all the other atoms
in the crystal are at rest. Dynamical correlation with
the motion of other atoms in the crystal has no effect to
this order of approximation. Equation (22) may be
adapted to allow for force=constant changes, provided
the isotopic perturbation is predominant as discussed
by Matthew'4 and Gunther. "

detLL' —cps,'1j=0. (23)

Equation (23) may be solved by the usual methods of
molecular dynamics to give a set of impurity modes
classified according to the irreducible representations of
the point group of the impurity, i.e., "pseudomolecule. "
Some of these solutions may not have frequencies which
are higher, or at any rate much higher, than m, , such
modes will not simulate realistic localized modes. Solu-
tions of (23), which yield &or))co, will, however, be
good approximations to the true localized modes both
in frequency and eigenvector. If the components of a'
are typical of force constants in the perfect lattice, the
correction terms in Eq. (18) are of order a~~4/col. ',
which results in corrections to the values of roi,' of order
(&o~,„/o&1.)' ra~,„'. Such molecular approximations have

3' L. Gunther, J. Phys. Chem. Solids 26, 1695 (1965).

Z. Impurity witk a Large Xearest ItVeigkb-or

Inter et,.tioe

High-frequency localized modes may alternately be
produced by point imperfections with very large
nearest-neighbor force constants. Here, it is convenient
to choose I8) as the space of the basis displacements of
the impurity atom and its nearest neighbors. Now the
elements of L' are larger than those of either u' or t,',
and to 6rst order, the possible localized modes may be
calculated from the quasimolecular secular equation

I. Isotopic Impurity iu a Mortatomic Cubic Lattice

Proceeding in a slightly difterent manner from the
high-frequency case, we immediately exploit the cubic
symmetry and con6ne ourselves to displacernents that
transform as a speci6c row of the T~„representation,
i.e., the only representation in which the impurity
moves. Now we choose the ~8) subspace as a single-
impurity basis displacement (say, x, y, or s), while

~ p —8) spans the crystal basis displacements which
transform as the same row of T~„as

~
8).

Solving Eq. (24) to lowest order in M//M', we obtain

where

cot,'=L' a'c '(a')— —
=k/M',

k =MLL —ac 'ar j.
(23)

(26)

~~ U. Sitzrnan and J. Cely, Czech. J. Phys. 118, 320 {1961).
33 B. Lengeler and W. Ludwig, Z. Physik 171, 273 (1963).

This has still the same "mass-spring" form of the high-
frequency case, but the effective force constant of the
resonances is not the simple Einstein oscillator restoring
force ML, but contains an additional component
MaC 'u .Let us attempt to understand how this extra
effective force arises in the low-frequency case.

We consider a static displacement field ~8) of the im-
purity in the crystal: This produces a force 6eld per
unit mass of —(a')r ~8) and causes a static relaxation—C '(a')r~8) of the rest of the crystal. The displace-
ment of the crystal hence exerts a mass-reduced 6eld—a'C '(a') r

~
8) on the impurity, in addition to the local

force Geld L'~ 8) induced if the lattice is not allowed to
relax. The effective force constant which determines the
resonance condition in Eq. (24) corresponds to the re-
storing force per unit mass exerted. by the lattice if it is
allowed to relax in a quasistatic manner, i.e., the lattice
is responding to the motion of the heavy mass in an
adiabatic way, just as the electrons in a crystal respond.
to the motion of the nuclei (Born-Oppenheimer ap-
proximation). For an. isotopic impurity, the Einstein
restoring force I.' and the relaxation term a'C '(a')r
are proportional to M/M': Though the correlated re-
sponse of the lattice plays an important part in the
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resonance process, the isotopic dependence of the reso-
nance frequency is the same as that of an Einstein
oscillator.

In Appendix B we relate the effective force constant
of Eq. (26) to the effective force constan. t of Eq. (5)
deduced from the standard Green's-function formalism.
The simple asymptotic descriptions of the isotopic
localized mode, and the isotopic resonance derived from
the Green's function Ge e of Eq. (16), help one to under-
stand the discrepancies between the effective force con-
stants in the high- and low-frequency cases.

The Green's function G& ft may alternately be used to
discuss the natural harmonic breadth of the resonant
response. From (16) and (17), it is clear that the
imaginary part of the response function will be
(a')1V(a&) (a')r. If the resonance is sharp, the breadth at
half-height her& will be approximately

A(or/~or, ——(1/2ior, ') La'1V(~er, ) (a') ']. (27)

For the isotopic case, C'= C, i.e., C' is as for the perfect
crystal, and the elements of 1V(c0) will be of the order of
magnitude ~e/co, ' by analogy with the analysis of
Krumhansl, 23 while the elements of a' and (a')r are of
order (M/M')'t' u&, '. Remembering that

we find that

we are considering resonances at frequencies much lower
than any resonances characteristic of the neighbors.
The range of validity of this assumption will be dis-
cussed at a later stage. Examining Eq. (24) and solving
for orL,

' to first order in the small parameter ~ which
characterizes the impurity, we find

(29)

i.e., the simplest effective force constant of the reso-
nance is just the Einstein oscillator force constant with
the rest of the lattice rigid: L' X(M/M')ce '. The
extra force constant in higher order arising from the
adiabatic response of the lattice is of order X'(M/M')
Xco, which is of higher power in X and which may
be neglected in lowest approximation.

The breadth of the resonance will likewise be given
from (27), by

(30)

We note that the breadth is much more sensitive to
weakness of coupling (depending on X to the power e~)

than to the mass parameter. This is seen to be a general
feature, and the expression (30) has been obtained by
simple arguments, It is not surprising that special
models have arrived at similar results, though with
considerably more algebraic effort.

neer/red, ——A (M/M')", (28)
4. DISCUSSZON

where A is a number of the order of unity. This is in
agreement with Eq. (8).

A basic limitation of the approach is that we cannot
readily compute 1V(cd) exactly, but we can easily find
the power-law dependence of the fractional breadth
Acus/a&r, on the basic parameter M/M'. Extension of
arguments of the type of Appendix B establishes the
exact correspondence between Eqs. (28) and (8). For a
Debye model, the value of 2 is 0.45, but the value will

vary somewhat depending on the properties of C in a
particular case.

p. Impurity with u Very Weuh Force Constant

Very low-frequency resonances may alternately result
from the weak dynamical force constants of the im-

purity. We therefore wish to discuss the case of an im-

purity atom where force constants are of the order of
5, times the principal force constants in the perfect
crystal (X«1). We allow the impurity to have a mass
M' as before, and let

~
e) represent a basic displacement

of the impurity.
Now L'=X(M/M')L, and a' X(M/M')'»a. C' will

no longer be the same as C of the perfect crystal, since
the atoms near the impurity will have somewhat dif-
ferent force constants from corresponding atoms in the
perfect crystal. However, these changes will not be as
radical as those of the impurity, and we postulate
(C'—oP) '=C' ' in the frequency range of interest, i.e.,

By examining the problem of resonances and local-
ized modes in a particular representation, we have de-
rived simple asymptotic results for which very little
knowledge of the perfect-lattice response functions is
needed. Further, the approach gives some physical
insight into these phenomena. For a very high-fre-
quency local mode due to an imperfection which is pre-
dominantly isotopic, the mode may be, to erst order,
sunulated by an Einstein. oscillator (the impurity vi-
brating in the field of the rest of the crystal static). It is
interesting to note that in this limit, the result contains
no information on the response functions of the perfect
lattice, but depends only on the local properties of the
defect. These results confirm previous interpretations by
Matthew'4 and Gunther. "It is also possible to estimate
simply the corrections to these leading terms LEq. (22)].

In contrast, for low-frequency modes due to heavy
impurities, the lattice is able to respond to the slow im-
purity motion by relaxing adiabatically. Here the ac-
commodation of the lattice to the impurity motion sig-
ni6cantly reduces the eGective force constant of the
center.

A particularly interesting case is that where the dy-
namical coupling between the impurity and its environ-
ment is very weak by comparison with the perfect-
lattice coupling. As the impurity is largely decoupled,
the extra restoring force arising from correlated lattice
response becomes small compared with the Einstein
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oscillator contribution. Therefore, in the weak-coupling
limit, the resonance once more closely resembles an
Einstein oscillator. The e6'ective-force constant of the
resonance then can be simply interpreted in terms of the
"local" force constant of the impurity; similarly, the
dependence of the resonant frequency on (M')'12 is ap-
parent. Most important, the weakness of coupling
between the impurity and the lattice implies that reso-
nances involving weak interactions with the lattice will

tend to be much less damped and thus sharper than iso-
topic resonances having similar frequencies.

Let us now critically examine this low-frequency
case by comparison with calculations on specific models,
a,nd relate them to recent experiments.

As discussed in Sec. 3, we are able to make an exact
correspondence between our approach and the asymp-
totic results for the isotopic case derived from conven-
tional theory. For the case of weak dynamical coupling,
several studies have been carried out. Brice' considers
resonances due to interstitials in silicon and germanium,
on the assumption that the coupling of the interstitial
atom is weak and that the dispersion of the perfect
crystal is spherically symmetric. By extensive compu-
tation and graphical analysis, he infers empirically that
the frequency and breadth of the resonance is given by
equations of the type (29) and (30), up to a frequency
of 4 of the maximuIn transverse acoustic frequency.
Further, he computes eigenvectors for the resonant
mode, which support the Einstein oscillator picture. It
may be noted that, because the weakly coupled atom
is interstitial, the assumption that the properties of
(C' —aP1) ' are comparable with those of (C—a&'1) '
should be especially good in this case.

Sievers and Takeno' discuss a model of a cubic
crystal with equal nearest-neighbor central and non-
central interactions: In the limit of weak coupling, they
find the same result for the resonant frequency as that
predicted here. Their expression for the breadth of the
band does not agree in detail with the predictions of
Eq. (30), and, it has the quite nonphysical property that
if 3f'=3f, i.e., if the mass of the impurity is the same
as the mass of the perfect-lattice atoms, the breadth of
the resonance goes to zero: This result must be in-
correct physically, and serves to raise considerable
question of the model Green's function they use.
Patnaik and Mahanty' consider a somewhat more com-
plicated lattice model and obtain results for the fre-
quencies of the resonances similar to those of Sievers
and Takeno', the breadths of the resonances are not
derived.

Benedek and Nardelli"" are the only workers to
carry out calculations on ionic crystals, i.e., crystals with
long-range force constants: Allowing for a local change
of mass and short-range interaction, they compute in
great detail the resonant response of the impurity and
the host crystal; they compare their results with the
experimental infrared absorption data on KBr:Li 'and

KBr:Ag.3' The pattern which emerges diGers somewhat
from the predictions of Eqs. (29) and (30). To explain
the very low-frequency resonances of Li+ in KBr, a very
weak local-interaction constant is inferred as required
by Eq. (29) and by Sievers and Takeno. ' Arguments by
Matthew" and others" "suggest that for a small ionic
impurity, I'(&I.: If the ion is in a cubic site, there is no
harmonic contribution to I.' from Madelung forces, and
the repulsive and polarization interactions can conspire
to produce a very low value of I,'. However, the o6'-

diagonal coupling u' of the impurity to the lattice does
contain electrostatic interactions, and c' may, as a
result, be rather more comparable with u than the
analysis of Sec. 3 B 2 might indicate. This suggests that
in ionic crystals, the impurity interaction term
a'(C' —sP1) '(a')r may play a more significant role in
low-frequency resonances, The extreme sensitivity of
the resonant frequencies to stress and alloying""
could be explained entirely by the delicate balance
between short-range repulsive and polarization in I.', but
this situation will also be highly sensitive to the terms
a'(C') '(a') .

Na, rdelli and Benedek" "hand a smaller isotopic shift
for the KBr:Li system than indicated by Eq. (29), and
to obtain agreement with experiment, they must invoke
large anharmonic sects. The implication of their result
is that the ions around the impurity must also be suK-
ciently perturbed to contribute to the resonance in a
dynamical way, in contrast to the adiabatic response of
the lattice indicated for the heavy-mass impurity.

The breadth of the resonance which we And from
Eqs. (29) and (30) by fitting X to the resonance fre
quency in Li:KBr, is about one fifth of the experimental
value, but the reservations with respect to either long-
range forces (discussed above) or anharmonicity could
modify the expression for the breadth considerably.
The other purely harmonic models we have referred to
also yield narrower theoretical widths than found
experimentally.

These examples highlight the successes and failures
of our simple approach to the resonance problem. Ke
obtain good agreement with special models having
short-range forces, and the simple pictures we have de-
veloped for the resonance state have very direct appli-
cation there. The principal features of isotopic and
coupling dependence of resonances are apparent. For
more complicated systems with rather more subtle per-
turbation patterns, any model including ours must be
interpreted with more care. In fact, the I.ifshitz Green's-
function method is inappropriate. The basic de.culty
of any formulation is that one can establish experi-
mentally only a very limited amount about the prop-
erties of the link term between the impurity system and
the rest of the crystal; but even in the case of low-
frequency resonances in ionic crystals, our analysis

'4 A. J. Sievers, Phys. Rev. Letters 13, 310 (1964).
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gives some general understanding of why signi6cant
differences may arise between calculations on simple
models and more realistic simulations of the defect.

It would be useful to carry out further calculations
on the lines of Nardelli and Benedek' "in order to de-

termine how sensitive their results are to the particular
force-constant model used (i.e., to the perfect-lattice
response functions), and to the precise form of the per-
turbation around the defect.

5. CONCLUSIONS

where

Expanding, we obtain

G(col) =lim(1/3Ã)l P (1+co '/corP+. )
q, i

It has been shown that, independent of the model of

crystal vibrations, localized modes with frequencies

much greater than the maximum frequency of the
lattice may be adequately described by the vibrations

of the impurity region in the crystal, the rest of the
crystal constrained to be static. Quite similarly, low-fre-

quency resonances with very weak dynamical coupling

can in some cases be described as Einstein oscilla-

tors; but for low-frequency resonances of very heavy-

mass substitutions with force constants comparable to
those of the host crystal, the lattice responds adiabati-

cally to reduce the effective-force constant of the center
to a value considerably less than that appropriate for
an Einstein model. For impurities weakly coupled to
the lattice, the behavior is again that of an Einstein
oscillator, and the damping is strikingly small, 0(Rat'),

where X is the coupling constant.
We consider that our model gives information com-

plementary to that derived from large-scale machine

computations using the conventional Green's-function

formalism literally. Moreover, for interpretation of ex-

perimental data, our equations for frequencies and

widths are probably as accurate as any lattice models

computed numerically but based on special force-

constant choices.
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—g ((ag'/&o, „')(1+(or,'/&oq„'y .)], (A2)
q, i

where or q i (Nl, b in the erst summation and
raq P)a&rm+b in the second summation. For small »,
we may conveniently express G (a&1.) as a series in powers
of a)1/a), where cu is the maximum perfect-lattice
frequency. We thus obtain

G(u)g) = —(1/31V) Q (cur, '/co ')+A+8, (A3)
q, s

where A and 8 are given by

& =hm (1/3&) 2 (~L2//~ 2+1+& 2/&L2+. . .)
q, i

~q (~l,'—b

8=—hm (1/3N) g ((ol,'/co, „')(1+col,'/cu '+ )
q, i

c0q i +cog 1$.

(A4)

G(») = ~r.'(~ ')+0(col/—~ )'. (A5)

Applying Eq. (As) to Eq. (1) and solving for»' to
lowest power in (3f/M') yields Eq. (4).

APPENDIX B

The leading term of (A3) is of order (cur/co ~)', since
at low frequencies the density of phonon states must at
least be proportional to ~', the terms in A and 8 can
at most give contributions to G(») of order (»/ur, „)'.
If the density of states co' up to co=or&, , the terms in
A and 8 to this order cancel exactly, and the 6rst cor-
rection to the leading term is of order (»/~ )'. This
is to be compared with the results of Brout and
Visscher, 25 who assume a Debye distribution through-
out the frequency range. G(a&I,) is then of the form

I

APPENDIX A

Let us consider the properties of the function

I
G(o&1.)= (P Q

3N q,
'
col.2—co

=lim (1/3X)l E ((ul, ',8)—R+(a)g', 8)],

(A1)

We wish to show that the eBective force constant
M(I. aC 'ar) obtained —in E-q. (26) is identical with
the effective force constant 3f/(cv ') obtained in the
asymptotic limit of the standard Green's-function
formalism, applied to a cubic crystal.

Consider a static reduced-mass force fmld
l F) applied

to the perfect crystal: Then the induced displacement
6eld

l p) is given by

(81)
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&ow (&o ') is given by the trace of the inverse re-

duced-mass potential-energy matrix (de6ned with care
to eliminate zero-frequency modes) divided by the
order of V. Since all atoms of the perfect cubic crystal
are equivalent, all the diagonal elements will be equal,
giving

i.e., (V ');; is the induced displacement on the ith com-

ponent of displacement due to unit force per unit mass
applied to the ith basis direction. The effective restoring
force on a unit mass (including the reaction force due
to the other atoms in their new equilibrium configura-
tion) is therefore

(B4)(a& ')= (V—');;.a=1/(V ');;. (&2)
Therefore we have

But u is exactly the quantity (I. aC '—ar) appearing
in Eq. (26), i.e.,

I. aC 'ar =—1/(—V—')"

M(L—aC 'ar)=M/(a& '). (&~)

This shows that Eq. (4) is equivalent to Eqs. (25) and

(&~) (26)
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Optical Properties of Alkali-Halide Crystals*
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ReAectivity data from single crystals of alkali halides have been obtained in the ultraviolet region of the
spectrum where excitonic and low interband transitions occur. Following recent calculations for the band
structure of KC1 and KI and basing our analysis on the experimental data, it has been possible to predict
the properties of the band structure in other alkali halides and describe satisfactorily the low-lying transi-
tions. Furthermore, a close relationship between the conduction band and the energy of the L bands of the
F center has been established.

1. INTRODUCTION

"LTRAVIOLET absorption from thin 61ms and
reQectivity from cleaved crystals are among the

most direct methods for investigating the intrinsic
optical properties related to the excitation of electron
states of alkali halides. As far as the absorption meas-
urements are concerned, there exist in the literature
extensive data at room temperature, ' liquid-nitrogen
temperature, ' and 10'K.2 On the other hand, if we
except the pioneering work of Hartman et al. ,

' the
reQectivity of alkali halides has not been studied ex-
tensively. Yet the important work by Philipp and
Ehrenreich, 4 although confined to room temperature,
has fully shown the potentiality of these measurements.
At present, no systematic analysis, comparable to that
relative to the absorption, is available for the reQec-
tivity from single crystals at low temperatures. ReQec-
tivity measurements are expected to yield details
characteristic of the crystal structure more easily than

* Preliminary data have been presented at the National Con-
ference on Alkali Halides, Consiglio Nazionale delle Ricerche,
Milano, Italy, 1966.' J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev.
116, 1099 (1959).' K. J. Teegarden and G. Baldini, Phys. Rev. 1SS, 896 (1967).' P. L. Hartman, J. R. Nelson, and J. G. Siegfried, Phys. Rev.
105, 123 (1957).' H. R. Philipp and H. Ehrenreich, Phys. Rev. 131,2016 (1963).

absorption data from thin alms. In fact, one of the
experimental results derived from this assumption has
been the observation of structures which are presuma-
bly to be attributed to excited levels of the Wannier
type. These structures had been previously observed,
with certainty, in the absorption spectra of iodides
only."

Until recently, the theoretical interpretation of the
optical spectra has been based on the use of simple
models for the excited states' and limited generally to
the lowest-energy peaks. An attempt to explain the
rich structure above the edge was made, not long ago,
by Phillips, who based his analysis on a tentative
band scheme for the alkali halides. A connection with
the band structure of rare-gas solids has also been
anticipated, since the alkali halides may be considered
a slightly more complex version of the rare-gas solids. '

' F. Fischer and R. Hilsch, Nachr. Akad. %iss. Goettingen, II,
Math. Physik. Kl. 8, 241 (1959);F. Fischer, Z. Physik 160, 194
(1960).' For a review of the exciton models see R. S. Knox, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 5.' J. C. Phillips, Phys. Rev. 136, A1705 (1964); in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1966), Vol. 18.

SR,. S. Knox and F. Bassani, Phys. Rev. 124, 652 (1961);
L. F. Mattheiss, ibid. 133, A1399 (1964); J. C. Phillips, ibid.
136, A1714 (1964); W. B. Fowler, ibid. 132, 1591 (1963).


