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Covalent Bond in Crystals. I. Elements of a Structural Theory
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An a posteriori theory is developed for the structural energy of covalent crystals. The microscopic theory is
based on ionic pseudopotentials and valence dielectric screening. The theory explains the difference between
empirical pseudopotential form factors derived from the optical spectra of semiconductors and the metallic
form factors calculated from free-ion term values by Animalu and Heine. A byproduct of the theory, which
utilizes Penn s model isotropic semiconductor dielectric function, is a relation between the covalent bonding
charge and the macroscopic dielectric constant. In self-consistent form the theory is an example of the
"bootstrap" approach, applied here to treat the eGect of covalent bonding on the ground-state energy of the
valence electron gas. It is argued that the axiomatic character of the covalent theory is to be expected on
symmetry grounds, and it is shown that the theory is superior to a nonlinear multiple-scattering theory
based on the free-electron dielectric function. The extension of the theory to III-V and II-VI semiconductors
ls described brieRy. The theory may be used to calculate elastic and macroscopic dielectric properties of
covalent crystals starting only from ionic pseudopotential form factors.

L INTRODUCTlON

1
~~NE of the most basic and widely used concepts in

the quantum theory of matter is the covalent
bond. A number of empirical theories have made use of
the concept of the covalent bond, but only a few at-
tempts have been made to construct a general micro-

scopic theory.
Because of its periodicity, the covalent bond can be

studied with greatest precision in crystals, where it can
be immediately subjected to Fourier analysis. In our

view, alternative approaches which stress the real-space

aspect are restricted at the outset by being subject either
to rigid basis states (atomic-orbital method)' or to a
rigid length of the order of the atomic radius (Thomas-
Fermi method). s The results obtained from these calcu-
lations show poor convergence, and to the extent that
the calculations are tractable, they underestimate the
degree of localization and the amount of charge con-
tained in the covalent bond.

The most obvious basis states for describing the
covalent bond in crystals are thus plane waves. These
must be orthogonalized to the atomic core states LHer-
ring's orthogonalized plane-wave (OPW) methodj';
then for a given k in the Brillouin zone accurate eigen-

functions require about 60 OPW's. The valence charge

density and valence energy can then be obtained in

principle by sampling enough different k's in the
Brillouin zone.

This method was used4 with a rather coarse sampling

to obtain the Fourier components for diamond for p~
with X= (111),(220), {311),(400), and (222) (in units

of 2s/a). The results were in good agreement with

experiment, ' but (apart from demonstrating the suita-

bility of plane-wave basis states) so cumbersome an

~ P. P. Ewald and H. Honl, Ann. Physik 25, 281;26, 673 (1936).
4 H. C. Bolton and J. %. Heaton, Proc. Phys. Soc. (London)

78, 239 (1961).
C. Herring, Phys. Rev. 67, 1169 (1940).

4 L. Kleinman and J. C.
'

Phillips, Phys. Rev. 125, 819 (1962);
I. Goro6' and L. Kleinman (unpublished).

~ S. Gottficbqr gad F. YVolfel, Z. Elektrochem. 63, 891 (1959}.
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approach shed little light on the qualitative character of
the covalent bond.

More satisfactory is the multiple-scattering treatment
of Bennemann. He starts from unperturbed plane-
wave states, and introduces ionic pseudopotentials. The
effect of these on the crystal eigenfunctions is then
analyzed using t matrices, modified to include scattering
from clusters of one, two, and three atoms. The latter
terms include the effects of bonding and bond-bond
interactions, respectively. Good results are obtained for
the crystal charge density and cohesive energy.

In our view Bennemann's work has not developed
further chieQy because too much stress is laid in the
exposition' on the formal complexities associated with
dynamical, nonlocal contributions to the self-energies
of the plane-wave (metallic) basis states. (The actual
calculations, however, treat these terms in a simple
way. )' On the other hand, when an energy gap opens
in the spectrum it appears that perturbation theory can
be considered as only an asymptotic series. Bennemann's
calculations suggest that the asymptotic series may give
good results, but if we are interested in energy differ-
ences, e.g., chemical shifts within a given crystal struc-
ture, or relative stability of different structures, or
lattice vibration spectra, then the effects of the gap in
the spectrum should also be included in the theory.

The aim of the formalism presented here is therefore
twofold: (1) To formulate the scattering theory in a
simple manner, stressing its structural aspects, and
including many-body effects in as simple a way as
possible; and (2) to include from the outset the effects
of the energy gap in the spectrum, thus refining Benne-
mann's free-electron perturbation theory by using a
covalent spectrum and covalent basis states.

D. rSOTROPrC COVmzm ~ATOMS

The usual application of t matrices involves plane
waves incident upon spherically symmetric scattering

s K. H. Sennemann, Phys. Rev. 133, A1045 (1964); 139, A482
(1965).
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COVALENT BON 0 l N CRYSTALS. I

centers. The exact wave function 0'j, is then given in
terms of the incident plane wave ft, by

@„=pg+Qg(k, k')t(k, k')fg, (2.1)

where t(lt, k+q) is obtained as the solution of the
integral equation

where a=E,/4Ep and tv'=4n¹/vt is the plasma
frequency. Together with the valence electron. density
N either e, (0) or E, determine completely the properties
of the model isotropic semiconductor.

Because of the presence of the energy gap the model
basis functions are no longer plane waves

~
k) but instead

are the covalent bonding (or antibonding) states

t(k, k+q) =v(k, k+q)+ v(k, k+q') where
( ka) =a

( k)w p (
k'),

fk')= fk(1—2]k i/ski))

(2.5a)

(2.5b)

Xg(k+q', k+q)t(k+q', k+q)dq'. (2.2)

(2.3)

Here g is the electron propagator

g(k,k') =1/[E(k') —E(k)]

v, (0)=1+(Ace„/E,)'C(n),

C=1—e+-',n',

(2.4a)

(2.4b)

' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789

(1966}.' J. C. Pbi&»ps, Phys. Rev. 112, 685 (1958); W. Saslow, T. K.
Bergstresser, and M. L. Cohen, Phys. Rev. Letters 16, 354 (1966).

~o D. R. Penn, Phys. Rev. 128, 2093 {1962).

and the scattering potential e has been assumed to be
nonlocal.

In order for (2.1) to be useful, the potential V must
be sufhciently weak as not to form bound states below
the valence levels. This is accomplished by transforma-
tion to the pseudopotential representation. ' For many
elements (e.g. , Si and Ge) containing s and p core levels,
but for which d valence states are not important, the
pseudopotential can be treated as a local function. To
facilitate computation and to simplify notation we shall
henceforth assume this to be the case. Even for crystals
such as diamond, where the absence of p core states
means that the pseudopotential is quite diGerent for
l=o and 3=1 states, it is possible' to Gnd a local
pseudopotential which gives a good description of the
crystalline energy levels near the energy gap. These are
the levels most important to covalent bonding, so that
it is likely that the local pseudopotential approximation
can be made to yield semiquantitative results even for
cases such as diamond.

Before proceeding to study covalent bonds and bond-
bond interactions, we wish to decide on the optimal form
for the spherically symmetric atomic form factor v(q).
The t-matrix theory is analogous in some respects to
Brillouin-Wigner perturbation theory, in the sense that
an improvement in the asymptotic expansion of
covalency eGects can be obtained by calculating each
term self-consistently. We propose to do this both with
regard to the energy denominators (2.3) and with
regard to basis functions. Penn has shown" how to
calculate the dielectric function v, (q) for a model
isotropic semiconductor. An average energy gap E, is
introduced into the theory through the relation

is a plane wave with vector parallel to k. The magnitude
ky corresponds to the Fermi wave number of a free-
electron gas of density N. The coefficients n (k) and P(k)
are obtained by solving the model secular equation

—,'Eg .(( k—2k, ()—E
(2 6)

(k)= (ik+qi)=h'k '/2~. (2 g)

Now the free ion pseudopotential v;(q) is screened by the
Hartree dielectric function ef(q) of a free-electron gas to
produce the metallic pseudopotential form factor'4

(2.9)

In practice the prescription (2.9) is modified slightly
to include the sects of exchange and exclusion of the
valence charge density from the core region. " The
values of v„(q) so obtained agree very well with Fermi
surface data.

We believe that a better model for the isotropic
covalent atom starts from the covalent pseudopotential
form factor defined by

v, (q) =v, (q) =v;(q)/, (q), (2.10)
~ V, Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964); 12, 529

(1965).
~ A. 0. E. Animalu, Phil. Mag. 11,379 (1965)."A. Q. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965)."M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).

for the eigenvectors, with e(k) = k'k'/2m. The covalent
energies E(k&) are the eigenvalues of (2.6). Explicit
formulas are given by Penn. '0

In metals very satisfactory atomic form factors have
been obtained by Heine and co-workers" " in the
following way. The atomic core is replaced by an
l-dependent pseudopotential determined" from spectro-
scopic levels of the hydrogenic ion plus one electron.
The pseudopotential form factor of the bare ion, v;(q),
is then derived by taking matrix elements of the
t-dependent ionic pseudopotential P~ v between plane-
wave states

~
k) and

~ k+q) normalized to an atomic
volume

v, (q) =g)(ktv ik+q). (2.7)

The wave vectors k and k+q are constrained to lie on
the energy shell
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TABLE I.The contributions to the scattering factor per atom in
diamond of the covalent charge density computed in several
di6'erent ways. In column III are listed the results obtained when
the scattering of the free atom Hartree-Fock charge density is sub-
tracted from the experimental values (Ref. 5). Column IV gives
the difference between Bennemann's complete T matrix and the
atomic t matrices only. Column V shows the diGerence between
experiment and the atomic t matrices.

Sb Expt —(free atom) T—t Expt —t

&111&

&220&

&311&

i400l

1

0
—1
—2
—2

0.14
0

—0.07
—0.15
—0.11

0.05
—0.15
—0.17
—0.13
—0.13

0.12
—0.09
—0.11
—0.15
—0.16

where e,. (g) is the dielectric function calculated by Penn
for his model isotropic semiconductor dined in terms
of covalent energies and basis states by (2.4)—(2.6). The
first feature of (2.10) that should be noted is that be-
cause e, (0) is finite, v, (q) does not describe a neutral
atom. The reason for this must be understood before
we proceed further. The following discussion is guided

in part by the statement (made both by Kleinman-
Phillips4 and Bennemann') that the difference between

the exact charge density and the linearly screened

charge density is described by transfer of charge from
the atom to the bond.

to each of the four bonds. The total charge in each
bond is 2Zb.

The spatial distribution of the bonding charge can
be inferred in diamond from its contribution to the
x-ray scattering factors measured experimentallys or
calculated theoretically. "Brill" has represented the
valence charge density as a superposition of spherically
symmetric atomic charges plus bonding charges. The
scattering factors PK are then determined from expres-

» R. Bm, Z. Electrochem. 63, 1088 (1959).. Note that Brill
includes both carbon atoms in his definition of f,(E).

III. COVALENT BOND—MACROSCOPIC
RELATIONS

In (2.9) and (2.10) only the diagonal part e(g) of the

general dielectric response tensor e(q, rI+K) is used to
screen the bare pseudopotential form factor. This
procedure, " sometimes called the neglect of local Geld

corrections, is suitable for many metallic crystals, but
not for covalent crystals. In our case we may anticipate
the formation of covalent bonds, and regard this as the
principal local 6eld correction. The deficiency in valence

charge of the covalent atom is concentrated at the
covalent sites located halfway between nearest neigh-

bors. For the specific case of tetrahedral bonding con-

sidered here, this means that each atom with four
valence electrons contributes the charge

(3.1)

sions of the form

FK——S.(K)f.(K)+Sg(K)fg(K), (3.2)

where S,, q(K) represent the structure factor evaluated
at atomic and bonding sites, respectively, and f, , &(K)
are the atomic and bonding form factors. Depending on
the way in which Ii z and f, (K) are evaluated one ob-
tains different results for fb(K). These are shown in
Table I. It appears reasonable to impose the condition
that fq(K) should be a nonincreasing function of K In
this case the most consistent results are obtained when
Iix is taken from experiment' and f, (K) is determined
from the free-atom Hartree-Fock charge density. 4 This
gives

fa(K) = (0.21&0.05) t 1+(K/2kr)i] '(e/atom) (3.3)

for K=(111), (220), (222), (311), and (400) (in units
of 2ir/a). The result (3.3) tells us that the characteristic
dimensions of the bonding charge density are very much
smaller than those of the atomic charge density. (The
characteristic wave number of the latter is kr =

~
(111)

~

.)
We may therefore replace the bonding charge density
by a point charge of magnitude 2Zb.

Comparison of (3.1) and (3.3) provides the first.
quantitative check on our model. The value of e(0) in
diamond is 5.8 according to optical measurements. "
Thus (3.1) gives

ft, (0)= 1/e, (0)=0.17(e/atom) . (3.4)

Considering that e, (0) is a macroscopic quantity,
whereas the wave numbers q that are important for
microscopic considerations are in the region q k&, we
regard the agreement between (3.3) and (3.4) as quite
remarkable. This agreement provides some motivation
for our a posteriori model.

1Vote added in proof. We have found a simple micro-
scopic derivation of bonding charges that shows that
fi, (K) is isotropic, as assumed in (3.3), and that its
characteristic wave number is indeed 2k~. This deriva-
tion appears in a forthcoming monograph to be pub-
lished by the University of Chicago Press.

x=g/2kr. (4.1)

From the survey of fourteen semiconductors carried out
by Cohen and Bergstresser, one can see that this

' H. R. Philipp and E. A. Taft, Phys. Rev. 136, A1445 (1964).

IV. COVALENT BOND—MICROSCOPIC
EFFECTS

The metallic form factors calculated by Animalu and
Heine (AH)" are compared in their Table V with
experiment for elements in a metallic environment (Al
and Pb) and in a covalent environment (Si and Ge).
The agreement is quite good for the metallic case, but
there is a significant discrepancy of 0.03 Ry in Si and
0.04 Ry in Ge at the value @=0.55, where
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discrepancy is a genuine one, caused by the covalent
environment, and is not an artifact of the semiempirical
method of determining values of the form factor. (The
empirical values of v|r for E=(220) and (311) on the
other hand, are probably not signi6cant to better than
0.01 Ry; at such large E valence eGects are small and
the empirical and model values agree within 0.01 Ry,
as expected. )

The crystalline pseudopotential is

tv.t(q) =S.(q) "(q)+S~(q)»(q) (4 2)

so that the apparent atomic pseudopotential values are

v (E)=v.(E)+LS (E)/S. (E)]v (E). (43)

For E=(111),S«(E)/So(E)=2-'~'. In Si the param-
eters are

E,=4.8 eV, Er = 12.5 eV, A&ov= 17 eV (4.4)

and using these values in Penn's formulas for «r(q) and
«, (q) we obtain

«r(0.55) = 2.01 «, (0.55) =1.60. (4.5)

Using AH's value of v (0.55) =0.18 Ry for Si, as well as
(2.9), (2.10), and (4.5), we obtain

cal pseudopotential) has been used" to calculate «, (q) in
Si for q along (100) and (111)directions. The results
show almost no anisotropy, in agreement with Penn's
model and the assumption of this paper. In fact, the
calculated curves" are in excellent quantitative agree-
ment with Penn's results; both exhibit a small peak in
«(q) near q=0 due to umklapp effects.

&v= Ex+Em+Ea+E4+&«,

where E~ is the sum of the single-particle energies

(5 1)

V. GROUND-STATE ENERGY

%e have indicated in Secs, II and III that both the
energy gap E, and the strength Z& of the covalent charge
can be estimated directly from the macroscopic dielec-
tric constant «(0). This is certainly a remarirable result,
but from a microscopic point of view it places too much
emphasis on the macroscopic region (q=o), whereas
the region of structural interest is q& 2k~. In this section
we therefore compute the valence energy in order to be
able to minimize the ground-state energy of the crystal
with respect to E and E~, thereby determining both
these quantities self-consistently.

The energy per atom of the valence electrons is
given by

v, (0.55) = —0.225 Ry, (4.6) &a= Q (&a++c«) (5.2)
hv, = v,—v =—0.045 Ry. (4.7)

On the other hand we calculate va(E) «om»isson's
equation to be

and E2 represents a correction to the energy of the
covalent atoms arising because potential energies are
counted twice in (5.2). This is

vg(0. 55) = (8/3v) (Zge'/a)

which gives (using Zq=~~ and a= 10.25a«)

(4.8)
oo

2 0

p, (r)v, (r)4~r'dr. (5 3)

t s,(o.ss)/s. (o.ss)].,(o.ss) =o.o1o Ry.

Combining (4.6) and (4.9) we obtain

v (E)=—0.215(—0.21) (4.10)

Avv(E)= —0.035(—0.03). (4.11)

The semiempirical values' are shown in parentheses.
The obtained agreement provides a check on our a
posteriori model.

The arithmetical details of this calculation are of
interest because they show explicitly how the separation
of the valence charge density into covalent atomic plus
bonding components represents a rather small change
from metallic atoms. It is this small change which is
decisive in determining the structural properties of the
crystal. The strength of the method lies in the fact that
the changes are computed entirely in terms of the crystal
structure and the universal function «, (x; X,E,) which
manifestly reduces to «r(x; /q) in the limit E,=o.

To close this section we discuss the assumed isotropy
of «, (q) which is essential to the separation of atomic
and bonding charge densities. A realistic model (empiri-

The energy E3 arises because E& and E2 do not describe
a system of neutral atoms. Because Z& is small and
because the bonding charge density is well localized at
the bonding sites, we can express E3 as the sum of two
terms. The 6rst is the Madelung energy of a system of
point charges +4Zq~ e

~
located at each atomic site, and—2Z«~ e~ at each covalent site. Thus

+31= s (Z«e) @sr/a & (5.4a)

&«2= L
—xZ~(Z —Z«) e'(as«/a)] f,

"H. Nara, J. Phys. Soc. Japan 20, 778 (1965).

(5.4b)

where nM is the Madelung constant for this system, u is
the lattice constant, and the factor of 2 normalizes the
energy per atom, assuming two atoms per unit cell.

The second contribution to the Madelung energy
arises from the Coulomb, exchange, and correlation
energy between the valence electrons screening the
atom and the bonding charges —2Zb~e~. In obtaining
E3~ we have counted this energy twice. Thus we must
add the correction term
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where v;(r) is the Fourier transform of v;(q). Then in
the Hartree approximation

where f is the average value of the Hubbard factor"
f(k,q) = [&—q2/2 (q2+k2+k, 2)] for this interaction. With
q=kr, k=kr, and k, =kr, we have f=

The single-particle energies (Eb++C&) are given by
Penn's expression (P,2.6) for Eb+, plus the constant Cb.
The origin of the latter can be seen by inspection of our
model secular Eq. (2.6). The constant Cb appears on the
diagonal and is given by the expectation value in a
plane-wave state of the electrostatic energy of the
neutral covalent pseudoatom,

7'vg(r) = 47r—p, (r) . (6.2)

We can use (6.2) to compute p, (q), which is

gl2 qQ

p. (q) =~i(q) =— -I v;(q).
4v. 4v. e, (q)

(6.3)

The relation (6.3) determines p, (q) in terms of v;(q), &
and Eo.

VVhen the effects of exchange and correlation are
included in the screened atomic potential, (6.2) is no
longer valid. A number of different procedures have
been proposed to modify the dielectric function to in-
clude the eGects of screened exchange. We prefer the
discussion of exchange and correlation in terms of a
local potential given by Heine and Abarenkov. "When
the discussion is extended to calculate the many-
body corrections to (5.3), one obtains the result de-
scribed by Heine and Weaire" in an Appendix. The
further corrections due to nonlocal many-body effects
have been discussed by Animalu. "They are small and
attain a maximum value of about 3% for q=kr.

We therefore conclude that in calculating the ground-
state energy E„ it is sufhcient to treat exchange and
correlation by local dielectric screening techniques,
although the crystalline charge density is very far4 '
from being uniform. If it is desired to include very small
corrections for the orthogonality hole in the region of the
atomic cores, or the accumulation of charge in the
covalent bond, this may be done by the methods used
for metals. "Otherwise E5 represents the exchange and
correlation energy of a uniform electron gas of density
E with interactions screened by Penn's dielectric
function.

If we accept (6.3), then (5.3) becomes by Parseval's
theorem

(5.5)Cb ——— — v, '(r) 47rr'dr,
0 p

where 0 denotes the atomic volume and v, '(r) is the
neutral atomic potential

v, '(r) =v, (r)—(4Zb~e~/r). (5.6)

00 —LI-'(q) jl'(q) I'4 q'dq. (6.4)
4x

E2=
2(2v)'

VII. COMPARISON WITH T-MATRIX THEORY;
GOLDSTONE'S THEOREM

Evaluation of the ground-state energy E„as a func-
tion of E and of E„for a given ionic pseudopotential
form factor v, (q), requires detailed numerical calcula-
tions that lie beyond the scope of this paper. The
numerical tests discussed in Secs. III and IV can, how-
ever, be compared with the results of Bennemann's
T-matrix calculations. The comparison shows why it is
desirable to use the covalent spectrum and the covalent
basis states (2.5) from the outset.

Bennemann divides his calculation' of the charge
density in diamond into three stages. The first stage

VI. EXCHANGE AND CORRELATION ENERGIES

In the Hartree approximation in (5.3) p, (r) and v, (r)
are related through Poisson's equation. We write

'(r) = v'(r)+v (r), (6 &)

'8 W. Cochran and R. A. Cowley, in IIandbuch der Phys&4

t,'Springer-Verlag, Berlin, 1967},Vol. XXV 2a, p. 59.
'~ J. C. Phillips, in Proceedings of the International Conference

on Semicondgctor Physics, 1MO (Czechoslovakian Acadamy of
Sciences, Prague, 1961},p. 41. ~ V. Heine and D. Weaire, Phys. Rev. 152, 603 (1966).

The term in Zb arises in (5.6) because we count the
Madelung energy in E3.

Finally, the energy E4 arises from the overlap of the
neutral covalent atomic charges described by the
potentials v, '(r). It can be calculated using methods
developed by Ewald, as discussed, e.g., by Cochran. '8

Here again E4 contains a term arising from not counting
valence energies twice. The energy E& is defined in
Sec. VI.

There is one feature of the expression (5.1) for the
ground-state energy which deserves further discussion.
From a semiclassical point of view it may be surprising
that the bonding charges contribute the potential
energy (Madelung) term to E„, but at the same time
there is no explicit kinetic-energy term corresponding
to the anisotropic accumulation of valence charge at
the bonding sites. The reason for this has been discussed
previously. ' The accumulation of bonding charge
arises, as can be seen explicitly in the Fourier synthesis'
of the valence charge density from OPW's, from con-
structive interference of the covalent basis functions
(2.5), centered on nearest neighbors, at the bondmg
sites. This interference (called crystal hybridization)'b
cannot be described in a semiclassical framework
(Thomas-Fermi method) using a lumped charge density.
The interference arises from the crystal structure itself,
and the accumulation of bonding charge requires no
additional kinetic energy beyond what is already
implicit in Ey, .
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corresponds to linear metallic screening —our Eq. (2.9).
The second stage. correspondh to nonlinear metallic
screening, in which v (q) is replaced by t„(q). At this
stage pz for E=(111)=0.55kF is increused by the non-
linear theory by 10%%uo over its metallic value, corre-
sponding to a compression of the atomic charge density.
We have seen in Sec. IV, however, that p, (g), as given
by Eq. (6.3), actually decreases by 20%%uo on passing
from the metallic atom to the covalent atom. This con-
clusion agrees with the intuitive feeling that, because
of lower E, smaller coordination number, or no "pres-
sure" from the electron gas in open or "antibonding"
directions, the covalent atom should expand relative to
the metallic atom. The t-matrix method arrives at the
opposite conclusion because the boundary conditions
implied by the free-electron dielectric function do not
provide a realistic description of the geometry of the
covalent atomic cell.

Ke may summarize the results of nonlinear metallic
screening when applied to a covalent structure as
follows. The results produced for the covalent bonding
charge density itself are reasonable. However, because
of the absence of an energy gap in the spectrum of the
medium, the good results for the bond are achieved at
the price of worsening the atomic charge density. Such
a situation can easily arise by perturbation theory when
it represents an asymptotic rather than an absolutely
convergent series.

It is interesting to consider the presence of an energy
gap in our model from the viewpoint of the axiomatic
symmetry theorems discussed by Goldstone" and by
I ange. 22 These were stimulated by the observation that
the BCS theory of superconductivity (to which Penn's
model of an isotropic semiconductor bears certain
resemblances) is a case of broken symmetry (like a
Heisenberg ferromagnet), yet there are no macroscopic
excitations (like spin waves) whose energy vanishes in
the long-wavelength limit. Anderson showed" that
finite-energy plasma oscillations obliterate the corre-
sponding mode in the superconductor. I.ange has
shown" that a long-range (Coulomb) interaction must
be present io the system for this to happen.

In our case the connection between the energy gap
and the long-range interactions is contained simply in
(2.4a) and (3.1).The absence of broken symmetry in our
model suggests that (as a sort of converse to the Gold-
stone theorem) long-range forces are implicit in the
model, and that the covalent atom should sot be neutral.
The GoMstone theorem is amusing because it is most
interesting in situations where it fails to apply.

In closing this field-theoretic discussion, we ask
whether the Madelung energy E3 should not be derived.
(rather than postulated). In fact it is only through Es
that the crystal structure itself appears explicitly in the

"J.Goldstone, Nuovo pimento 19 154 (1961)."R. V. Lsnge, Phys. Rev. Letters f4, 3 (1963);Phys. Rev. 146,
30& (&966).

~ P. W. Anderson, Phys. Rev. 112, 1900 (1958).

present theory. From the point of view of economy, it
seems no worse to assume the existence of E3-than to
postulate a. given structure factor for the crystal. In
this sense the theory is as close to being a "bootstrap"
theory as one could expect for a crystal.

The expressions (5.4a) and (5.4b) illustrate the
character of our model which divides the valence charge
density into two components (analogous to two particle
fields). The electrostatic term (5.4a) is corrected by
(5.4b) because the two components both consist of
electrons. This means first, that the interaction energy
must not be counted twice, and second, that there is
exchange and correlation between the two fields, as
described by f Els.ewhere in the theory f is implicit,
because it has been incorporated into e, (x,X,E,).

In the present theory Ã and E, are both regarded as
parameters of the medium, If the theory is used in an
u posteriori manner, both are taken from the observed
crystal structure and macroscopic dielectric constant.
On the other hand, in self-consistent form both are
determined from minimizing E,. One may contrast our
approach, which treats S and E, on an equal footing,
with the approach of conventional Bloch energy-band
theory. There E is given its observed value, but E, is
determined by calculating the optical excitation spec-
trum from a given crystal potential (which is ordinarily
not self-consistent). Thus conventional band theory
mixes the a posteriori and self-consistent approaches in
an unsymmetrical way dictated by considerations of
computational convenience. The present microscopic
model is computationally simple and therefore it is pos-
sible to treat both medium parameters symmetrically.

VIII. INTERNAL STABILITY

The positions of the bonding charges in elemental
covalent crystals (such as diamond or graphite) can be
determined in equilibrium from symmetry considera-
tions alone. As soon as the symmetry is perturbed Le.g. ,
by a lattice wave propagating along a (111)axis, or in a
heteropolar semiconductor), we require a general
prescription for determining the bonding sites.

An obvious prescription is the classical one that the
forces on the bonding charge vanish, so that the sites
are positions of mechanical equilibrium. This describes
the sites in the symmetrical cases. It cannot be correct,
however, as a moment's thought tells us that the sites
are positions of unstable equilibrium.

The correct condition is variational and quantum-
mechanical in character. Define the overlap function of
local potentials V (r=R ) as follows:

Then the covalent sites are the places where O„(r)
attains its maximum value. It is easy, if it is so desired,
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to extend the prescription (8.1) to include nonlocal
potentials.

If we neglect bond-bond interactions, (8.1) can be
simplified by determining the location of each site in
terms of the two nearest screened ion potentials. This
gives

1
I
V (r)+V.(r—)I'

O, (r) =-
2

I Vr(r) I'+
I
V (r-~) I'

(8.2)

According to Schwartz's inequality, 02(r) &1. The
maximum value 02(r) = 1 is attained when

V, (r) = V, (r—~). (8.3)

Note that (8.1)—(8.3) involve potentials, not fields,
throughout, which reQects the quantum-mechanical
character of covalent bonding. Because (8.2) is maxi-
mized by (8.3), the locations of the covalent sites
derived from 02 are manifestly gauge invariant. This is
not the case for 0„, which involves long-range forces.
Since covalent forces are short-range, we fix the gauge
to be used in calculating O„by requiring that in general
it shift the covalent sites by as little as possible com-
pared to 02. This is equivalent to choosing the constant
in V (r—Z ) so that

lim V (r') =0. (8.4)

VIII(q) V' III V/II(g) j~ s(tt) (9.1)

(9 2)V (~)= V.'= V (g)i . (~).

"D.F. Gibbs and G. J. Hill, Phil. Nag. 9, 367 {j964)."J.C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (i954).

IX. APPLICATIONS) EXTENSIONS,
AND LIMITATIONS

The foregoing formalism should yield quite satis-
factory quantitative results for any property of mon-
atomic covalent crystals which depends on the valence
electron gas as a whole. This includes the phonon
spectrum (in particular the second- and third-order
elastic constants) and the pressure dependence of the
dielectric constant. It is interesting to note that the
latter has been found'4 to satisfy a universal relation in

diamond, Si, and Ge.
The theory may readily be extended to crystals

where neutral bonding'~ is predominant, such as the
III—V and II—VI semiconductors. Because there is no
longer a center of symmetry in the unit cell, it is con-
venient to divide' the ionic potential into symmetric
and antisymmetric parts, e,' and e; . The purely
covalent crystal is generated by v, ', which determines

X and E, self-consistently. This gives e, '(q) and from it
(e.g. , in a III—V crystal) in the approximation of
homopolar screening,

From (9.1) and (9.2) one can obtain by Fourier trans-
form V,"'(r) and V, (r) T. he charge in the covalent
bond is still 2Zq, and it is still concentrated on the line
connecting nearest neighbors at R~ and R~+s. The
equilibrium position along this line is determined
approximately by

V' (r—Rq)=V (r R—r ~). (9.3)

In cases of large ionicity, the equilibrium position,
together with 1V and E„must be determined self-
consistently by iteration. Again V,rrr(q) and V,v(p)
determine all the parameters of the theory.

It is an interesting question whether the theory can
be generalized further to treat molecules. We recognize
at the outset, of course, that the spacing of the molecular
energy levels must be small compared to the energies of
interest (such as the binding energy) before a continuum
approach is appropriate. Granted that the molecule is
suQiciently large, we have already seen in Sec. VII the
importance of boundary conditions (or the pressure
of the electron gas) in determining atomic size. If each
molecular calculation required the determination of a
separate dielectric function for that molecule, little
would be gained by this approach. Nevertheless, as the
discussion of III-V crystals indicates, the theory is so
simple as to be quite Qexible, and it may be possible at
a later stage to generalize the theory quantitatively to
certain classes of large molecules. Such a generalization
could be described as qguetum eLectrostutics. By this we
mean that the potential energy of the electron screening
cloud is calculated (apart from known correction factors
for exchange and correlation) by means of classical
electrostatics. The kinetic energy (which has no classical
electrostatic analogue in terms of rnultipole moments)
is determined by phase space (quantum) considerations.

In conclusion we add, by way of caution, some re-
marks on the limitations of the theory. Because of the
large anisotropy of the energy gap in real semicon-
ductors, the theory will not give accurate results in
situations which involve only a few valence electrons.
Such a situation, e.g., would be the temperature
dependence of E,. Other examples will readily occur to
the reader; in these cases recourse must be had to
complete band calculations. '
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