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and the perfect gas law follows. Equation (3.2'/) may
now be eliminated on the basis that TI'"' does not corre-
spond to the momentum-energy tensor for the particles
(see Sec. 5) and hence the resulting equation of state
can be discarded. Finally we can also discard Eq. (3.29)
since the momentum and energy of the particles and
of the field are separately conserved at equilibrium, the

consequence of which is that we have to consider only
T~„t ""and hence Eq. (3.25).
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An earlier study of variational solutions of the Liouville equation for simple fluids is extended to include
high-frequency thermal excitations. In the long-wavelength limit, variational eigenvalues are determined
in correspondence with dispersion relations derived from linearized Navier-Stokes equations which contain
frequency-dependent viscous and thermal transport coeSlcients. Two distinct sets of high-frequency longi-
tudinal excitations arise. In the limit that mechanical moduli are much larger than thermal moduli, one of
these excitations simpli6es to a quasiphonon composed only of velocity fluctuations and associated time
derivatives. On the other hand, in the case of vanishing viscosity, the excitation is seen to be composed only
of energy Quctuations and time derivatives of energy fluctuations and, as such, may be the classical analog
of high-frequency second sound in liquid He II. The various eigenfunctions are discussed in relation to re-
sults of recent neutron-scattering experiments.

I. INTRODUCTION AND REVIEW

~~

~

VARIATIONAL solution of the Liouville equa-
tion has recently been applied to obtain collective

coordinates for simple classical fluids (monatomic
liquids with pairwise interactions). ' The variational
procedure consists of choosing various functionals of the
Fourier transforms of the mass, momentum, and energy
density operators of the fluid, and then adjusting coeK-
cients to provide approximate eigenvalues and eigen-
functions of the Liouville operator (see Sec. III below).
In this way, we have previously determined microscopic
analogs of the usual low-frequency hydrodynamic mo-
tions. Further, to the extent that rapidly varying energy
fluctuations might be rieglected, high-frequency collec-
tive motions have also been studied. ' The present in-

vestigation is a continuation of the latter study, in that
we now consider excitations which arise when rapidly
varying energy fluctuations are included among the
variational trial functions.

In Sec. II of this paper, dispersion relations are ob-
tained from a set of linearized Xavier-Stokes equations
which have been modified to include the frequency de-
pendence of all transport coeKcients, including thermal
conductivity. These results are then used, in Sec. III,
as a guide for solution of the Liouville equation, and we
obtain microscopic collective excitations which corre-
spond to the macroscopic eigenvalues deduced from the

' R. Nossal and R. Zwanzig, Phys. Rev. 157, 120 (1967).

hydrodynamic equations. A discussion of results appears
in Sec. IV, where we calculate the coherent scattering
function S,(k,&u) and compare our results with disper-
sion relations obtained from neutron-scattering experi-
ments. The calculation also serves as an example of the
application of the variational eigenfunctions to the
evaluation of transport coeflicients. Finally, in Appendix
A, we discuss the notion of thermal moduli and their
relationship to the high-frequency thermal conductivity
of an isotropic medium.

In certain cases, the eigenvalues and eigenfunctions
which we present in Secs. II-IV will reduce to those aris-
ing when energy fluctuations are neglected. Thus, in the
remainder of this Introduction and before discussing
the new work, let us briefly summarize some results of
prior application of the variational scheme. Several of
these expressions are the basis for calculations discussed
in Sec. IV but have not previously been presented in ex-
plicit form.

It has been shown in. Ref. 1 that trial functions, when
chosen only as linear combinations of the Fourier trans-
forms of the mass, momentum, and energy density
operators, provide eigenvalues and eigenfunctions cor-
responding to solutions of the usual low-frequency lin-
earized Xavier-Stokes equations. Thus, a trial furiction
composed of the mass and momentum fluctuations is
found to correspond to the set of hydrodynamic equa-
tions obtained when energy transport is neglected and,
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when energy Quctuations are included, correspondence
with the complete set of usual Navier-Stokes equations
is achieved. ' On the other hand, it has also been shown
that, when time derivatives of velocity fluctuations (but
not time derivatives of energy fluctuations) are included
among trial functions, collective coordinates are de-
termined analogous to solution of a modified set of
hydrodynaInic equations and appropriate to high-fre-
quency excitations. Dispersion relations are obtained
which are identical to those obtained from a set of
linearized Navier-Stokes equations in which thermal
conductivity has been neglected and, for viscosity
coefficients, one inserts high-frequency limits as deter-
mined from time correlation function formulations. '

Specihcally, for a single component Quid whose in-
ternal potential energy has been assumed to be the sum
of symmetric pair potentials, one may show the follow-
ing": Let g„(k) and X„(k) represent generalized high-
frequency shear and bulk moduli. With this designation,
the previously derived high-frequency transverse and
longitudinal eigenfrequencies may be written, respec-
tively, as

co„(k)=a 1k1(p
—'g„(k))'~s

and

~~(k) =+ Ik16 '[sB-(k)+X-(k)j)'" (1 2)

where p is the mass density of the Quid. Molecular ex-
pressions for the moduli are as follows:

where, in the latter, the pair correlation function gs(r)
is de6ned as

VfdRs dR„exp[—Py(R~) j
J'dR~ exp(—Pq (R"))

(1.5)

oo is the interparticle pair potential, P= (kT) ', and c is
the number density of the Quid.

The collective excitations corresponding to the fre-
quencies given by Eqs. (1.1) and (1.2) are as follows:
The transverse phonons associated with or~, (k) are

q ~"(k)~(A g, s (k) Woo„,
—'(k)LA ~, s (k) ), (1.6)

and the single sel, of longitudinal phonons associated
with &o&(k) may be expressed as

o~o'( k) {As(k)Woo( '(k)LAs(k)) . (1.7)

In the above we have defined Ai, ~, 3 as

and

N

A),s= V-' P p; 5~,se-*' "
j=l

2V

=V—1 Q p. .Q e-tt Rg

j~l
(1.9)

II. RESULTS FROM HYDRODYNAMIC
CONSIDERATIONS

where, in turn, s4 is defined as 4s=—k/1k1, and 4~ and
8g (@QJ s4 4sJ 'Qg) are two arbitrary mutually per-
pendicular unit vectors. R; and p; are, respectively, the
position and momentum of the jth partic1e, V is the
volume of the assembly, and E the number of particles.
I. is the Liouville operator, having the property that,
if A is an arbitrary dynamic variable, LA =sdA/dt.

Note, once again, that the results presented in Eqs.
(1.1)—(1.7) arise when trial functions are constructed of
velocity fluctuations and their time derivatives. If, in
addition, density and energy Quctuations are added to
the trial functions, identical eigenvalues and eigenfunc-
tions are obtained. On the other hand, including time
derivatives of energy Quctuations leads to quite diferent
results. In particular, we obtain hvo sets of high-fre-

quency longitudinal excitations.

' In the erst case one finds the usual isothermal sound velocity
as dispersion relation {eigenvalue) whereas, in the latter, the adia-
batic sound velocity is obtained. Also, there is demonstrable cor-
respondence between the variational eigenfunctions and the eigen-
solutions of the hydrodynamic equations.

'1 R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(1965).

~ R. Zwanzig, Phys. Rev. 156, 190 (1967).

(2 1)~ps+spoks7ss= O,

~ These dispersion relations may be derived directly from Hamil-
ton's principle PR. Nossal (to be published)g. Similar results have
also been obtained by application of various sum rules; see R. D.
PufF, Phys. Rev. 137, A406 (1965).

1 (sinkr cosrk q Boo
(1 4) When the high-frequency limits of the viscosity and

r ((rk)s (rk)s) Br thermal conductivity coefficients are inserted in the
Fourier-Laplace transforms of the linearized Navier-
Stokes equations, the latter may be written as
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(2.3) III. VARIATIONAL SOLUTION

The variational solution is performed as follows.
Suppose we start with the trial function of the form

Note that Kq. (2.10) is an expression for the square of
the frequency and, in eGect, there are four eigenvalues.
We shall Gnd a similar result from the variational pro-

(2.2) cedure, corresponding to four distinct eigenfunctions
(i.e., two distinct sets of excitations).

where p is the mass per unit value, U is the internal en-

ergy per unit mass, and e&,& and u3 are, respectively, the
transverse and longitudinal Quid velocities. Equations
(2.1)—(2.3) pertain to longitudinal disturbances,
whereas Eq. (2.4) describes the propagation of trans-
verse phonons. ' In the above, we have written the vis-
cosity coefficients in their familiar form

9

4= Q ec,I3;, (3.1)

where the o;i are to be determined by the variational
procedure, the Bi are given as

lim i~ja= —G„,
Czz ~00

lim i&ajr= —(X„—Ez),

(2.5)

(2.6)

Bg——Ag,

B4——LAg,

B7=A4,

B2——LA g,

Bg——A3,

B8 Asy

B3=A2,

Ba——LA 3,

Bg——LA5,

(3.2)

where Xp is given by

I 0= V(aI'/aV—)s, (2.7)

and G„and IC„are the long-wavelength limits of g„and
X„Lsee Eqs. (1.3) and (1.4).)

At this point we have chosen, simply, to write the
thermal conductivity as

lim ical(co) =—

N

Az ——V ' Q zzze '"'Rc,
j 1

(3.3)

(2 g) and

and L is, once again, the Liouville operator. The dy-
namical functions A» . A5 are the following: A~,~,3 are
defined as above in Eqs. (1.8) and (1.9); A4 and Az are,
respectively, the density and energy Quctuations, viz. ,

although in the next section (see, also, Appendix A) we

see that there is good reason to represent the high-fre-
quency limits of the conductivity by a function having
structural form similar to that of the viscosities, viz. ,

Az=V ' P (Pz'/2zzz+zz P P i)e '" ~ '(3'4)

Eigenfunctions are obtained from solution of the fol-
lowing characteristic equation

—hm zcoR= 0" —00 (2.9)
)e—u)N[=0, (3.5)

k2

My
2pp

tt'8
4sG„+If„+"„i

(aU ~

From Eqs. (2.1)—(2.4), dispersion relations are found
to be the following: The (transverse) eigenvalue ob-
tained from Eq. (2.4) is clearly not affected by changing
the form of the thermal conductivity, and is still given by
the long-wavelength limit of Eqs. (1.1) and (1.3). On
the other hand, in contrast to Kqs. (1.2) and (1.4), the
longitudinal eigenvalues are now given as

where O~ and N are matrices de6ned as'

and

e;,—=(8, LB;)r

N;;= (8,*8;)r.

(3.6)

(3 7)

Although 0 and N are 9X9 matrices, the 6rst four
(transverse) elements of the characteristic determinant
do not couple to the remaining (longitudinal) excita-
tion components, so that we need only solve a some-
what simpler equation involving a symmetric SX5
determinant.

However, before attempting a solution, let us make

—4(-,'G„+Z„—Z,)=-„
8U p

(2.10)

6 Note that damping terms have been neglected in Eqs. (2.1)-
{2.4). The high-frequency expressions used for the transport co-

efBcients are but first approximations which, strictly speaking, per-
tain only to infinite frequency excitation. Equations {2.1)—(2.4)
are the long-wavelength limits of more general nonlocal hydro-
dynamic equations. For a derivation of the latter see, e.g, , B.
Robertson, Phys. Rev. 160, 175 (1967).
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the foHowing observations. DC6ne, as before, '

A —= (A,*A4); B=—(As*As); C=—(Ag*A g);

U=—(A,*LAg); W=—(Ag*Ag); . W—= !k!W; (3.8)
X=—(A *L'A ) Z=—(A *L'A )

Qg„- ——X, Qgl ———W, Qgg
——U, Qgg ——F, (3.15)

Qrg= ! k! U Qgg=Z Q'q,''=Q'

and, furthermore,
F—= (A g*L'A g) . (3.8')

N55 ——8', N59 ——U, Ref}——X, Keg ———8,
¹g——U, Ngl ——A, Nrg ——C, (3.16)

Flom previous work» oQc CRQ now ldcnflfy Eo Rs

k'po-'Ko= [U'A+BR'+2CU~/W(AB C') —(3.9)

and, also, the in6nite frequency mechanical moduli ac-
cording to

kgp I[-,'g„+X„]=X/W. (3.1O)

Further, as shown in Appendix A, the thermal conduc-
tivity coeflicient may be written as in Eq. (2.9), with
O„and Og defined as

(ciT
kgp IO„! =ZA/(AB —C')

(BU,
(3.11)

t X UgA+BM+2CUN"p

&W W(AB—C') )
X (Z—Ug/W)A (AB—C') ' . (3.13)

l9

k'p 'Og = U'A/W(AB —C').
BU p

Thus, the dispersion relation obtained from. hydro-
dynamics (Eq. (2.10) may be expressed as

2m =tX/W+A{AB —C')-'(Z —U/W)j

—orS"I
U

I

—~U

x
CtPX

—o)U
I

—CdU

F 0 (3.17)
Z
MZ

Further, the second of the above results suggests that
we identify I' as

X U' Zq
Y= —+—!U

W WB B)
(3.18)

in which case Eq. (3.17) is satisfied by the eigenvalues
given by Eq. (3.14).

It follows thRt Rssoclatcd clgcnfuQctloQS Rlc given Rs

¹g=B, ¹g=Z, N;, =N;;.

Since it appears in Kq. (3.15) and, therefore, in Kq.
(3.5), we must now identify the matrix element Y. This
has proved a dificult problem and its resolution has re-
quired application of two important results which arose
in our previous work: (1) When trial functions are
formed of linear combinations of Ag, Ag, and LAg (or,
even, A i, A g, LA g, and A g), the density fluctuation term
A 4 does not appear in the eigenfunctions associated with
nonzero eigenfrequencies; (2) in all previous work we
hRvc foulld ldcntl6ablc corrcspondcncc between varla-
tional solutions and hydrodynamic dispersion relations.
Consequently» Rs R 6rst approxlmatlon» wc consider thc
density fluctuations to be a negligible component of the
eigenfunctions currently under consideration. In this
case the characteristic equation may be written as

U((Ug/WB) (Z/B))—
Ag+-- LAg

M(—N U+F)

((Ug/WB) {Z/B))(X mgW—)—
cu(—aIgU+ Y)

Furthermore, we note that if density fluctuations are
negligible, s the above expression has yet R simpler form,
VIz.

»

2~+'= P/W —U'/WB+Z/B3
~(P'/W —U'/WB+Z/B3' —4(X/W —U'/WB)

y (Z/B —U'/WB) }I". (3.14)
LA . 3.19)X g+ g (

I.et us now return to the solution of the characteristic (U'/WB) —(Z/B)
eqllatloli. In telIlls of tllc qllaIltltlcs glvell by Eqs. (3.8)
and (3 8') the nonzero matrix elements of e and N are

& See Ref, t, especially Eqs. (2.4) and (A3) and Appendix 3.
8 It is known from prior work (see Ref. I) that, for an "almost

incompressible Quid, " k~p '(8I'/Bp) 8-U~/5 8; This result arises, U Z U& X
for example, when trial functions are formed only of Ag and gg. toy(Y —oiygU) =agF —— ——— U. (3,21)
I See, also, Appendix A, below and especially, Eq. (A12).g HB a na
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cop5"8
Ab+

(O'—WZ)

Thus, 0'„+ may also be written as
—U2 gag- 1/2

A 3+— LA I
O' —BX

U2 gfg 1/2

X
O' —BX

where co+ is either the positive or negative square root of

(X ~ kW) cv'(+), the polarity of the root being consistently ap-
plied. In other words, the sign of co~ must be the same as~U that of {0+ Lsee Eqs. (3.20), (3.21)j. Upon replacing

/3 22) U, W, 8, etc. by their thermodynamic definitions, Eq.
(3.22) may be written in more familiar terms as

1 BP -'{' (A I*A 1)
A,+—(e„-o,) ~

(-;b„+x„—z,) IA, — (k,—L--g +z j-, )
BU), (A I*LA $)

1/2

x (o„—o,)~ I (-;b„+x„-x,)
{,BV),

{0y / BT
A $+ —

i
LA, . (3.23)

p-'k'(O~„—00) &BU p

IV. DISCUSSION

Direct verification of these high-frequency excitations
depends upon experiments involving scattering of low-

energy neutrons. Thus, let us now calculate the coherent
cross section for scattering of neutrons from simple
fluids. The coherent scattering cross section' is propor-
tional to the scattering function S,(k,k&) which, in the
classical limit, is simply the Fourier time transform of
the density-density correlation function, viz. ,

If we integrate Eq. (4.1) by parts, an alternate expres-

sion is obtained which relates the scattering function to
the current-current correlation function

S.(k (0) =2k'V'(m'co'X) ' dt coscof

)& (A {&*(k)ea iLA
{&(k)). (4.3)

S,(k,co) = dt e ''x. (k t)

where X,(k,t) is defined as

N N
X (k ()—)lr—1 g p (aa

—ak Ri(0){a+at Ra'(a&)

s,j=l
—Q—

1(~ @Lai{L~ )

In the above, the current-current correlation function
4.1

has been expressed in terms of the velocity fluctuation

functions A» as de6ned by Eq. (1.9).
A useful approximation to the current-current correla-

tion is obtained as follows. First solve for A {& in terms of

the four excitation functions given by Eq. (3.22). Thus

A, = 2 (e+(„+)+e „(+&)
OJ

1— (X—k&+'W)/(X —(u 'W)

+ (++ (-)++- (-)) 1— (X—
&v 'W)/(X —co~'W) (4 4)

(0+2

(A {a
8' As) =6+ cos{a&+3+{1 $ {a&{a&

9 L. Van Hove, Phys. Rev. 95, 249 (1954).

(4.6)

and the current-current correlation function may be ex-
pressed in terms of the P's as the sum of sixteen terms of
the form (4';~eaaL%';). Then, for example, consider
(4+ (+)~e"L@+ (+&) and maIM the following approxima-
tion:

(4'+ (+)*e" +~„(+))=(e„{+)*e„(+))e*'"+)'.(4.3)

)Note that the exponential appearing on the right-
hand side of the above equation is obtained when one
neglects coupling between@+„(+)(k) and other excitation
states. g If the other of the sixteen terms are evaluated to
the same approximation, one obtains an expression of
the form

where a+ and e are time-independent functionals of
thermodynamic variables and kinetic moduli. Thus, it
is seen that to a first approximation, the coherent peaks
of the scattering function are identi6able with disper-
sion relations given by Eqs. (2.10) and (3.13)."

In recent neutron-scattering experiments, only a
siege phonon branch has been discerned for each of
various liqui6ed rare gases. "These data may be recon-
IThere is also a peak at zero frequency, arising in the varia-

tional solution when density fluctuations are taken into account.
An explicit expression for the eigenfunction is given in Appendix
8, below."S.H. Chen et a/. , Phys. Letters 19, 269 (1965);K. Skold and
K. E. Larsson, Phys. Rev. 161, 102 (1967). However, Larsson
(private communication) expresses the view that a second excita-
tion also exists in liquid argon, but at frequencies somewhat below
those examined in his experiments.
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ciled with our results, which predict two branches, if
high-frequency thermal disturbances propagate much
more slowly in such Quids than do mechanical distur-
bances. In this case there would be two types of excita-
tions: one group composed primarily of velocity Quctua-
tions (and time derivatives thereof) with propagation
frequencies of the order of 10I2—10'3 cps; and a second,
more slowly propagating, being a relatively complicated
function of all the Quctuation variables. The former
would give rise to the measurable wings" of the co-
herent neutron-scattering cross sections, whereas the
latter would not be discernible due to their being masked
by the zero-frequency "quasi-elastic peak. "

Speci6cally, one would have

—ks hm i~A(k, ~)~
~

«f-;ksg (k)+k'X. (k)3 (4.7)
(aUi,

Cl
CP

N

CO-
Cl

I

R
(k-I )

I'IG. 1. Dispersion relation for liquid argon at 85'K as deter-
mined from Eq. (4.9). Data are from Chen ef si. (Ref. 11).Note
that the analytic curve has not yet been corrected for lifetime or
quantum e6ects.

or, alternatively,

f(Z/B) (Us/WB)—+&X/W. (4.8)

Thus, the eigenvalues fsee Eq. (3.14)) would be written

Is+1=f(X/W) (U/WB)+—(Z/B) j=X/W
=k'p Ifsstr„(k)+X„(k)) (4.9)

f(U'/WB) (XIW)jf(U—'/WB) (~/B)j—
2~ (4.10)

f(X/W) —( U'/WB) +(~ /B)j

=[(Z/B) —(U/WB) j= k'p I(r)T/BU) p—
glim irA(k, rs) . (4.11)

The excitation associated with the higher frequency
would reduce to

++ +-l~s+(k'p 'fsB (k)
+X (k)—Xs]) I"LAs] (4 12)

although no such simple form would ensue for the lower
frequency excitation.

Note that the eigenvalues and eigenfunctions given by
Eqs. (4.9) and (4.12) are s11111lal' to tllose wl11cll Rl'ose 111

our earlier work' in which energy terms were not con-
sidered fsee Eqs. (1.2) and (1.7) abovej. The only
difference between these and earlier results is the spuri-
ous appearance of the adiabatic bulk modulus EQ ln tile
coupling term of the eigenfunction as given by Eq,
(4.1,2). (The latter probably arises due to neglect of
density fluctuations in the present calculation. )

It is difftcult to determine a priori whether Eq. (4.7)
is indeed satisfied for simple classical Quids at normal
temperatures and densities. Because data are not avail-
able for the high-frequency moduli, it is necessary to
extrapolat;e from low-frequency values of transport co-

e6.cients. "For liquid argon, the low-frequency values of
the thermal conductivity, heat capacity, and viscosity
are, respectively, " X=18&t,'10 ' cal/sec cm'K, Cr& &

=0.15 cal/g'K, and r)=2.5&t,'10 ' poise. With these
values we 6nd &Cr '= 1.2X10 ' g/sec cm, which Is to
be compared with 211,=5&10-s g/sec cm."Thus, from
these considerations alone, it is hard to conclude that
thermal modes totally decouple from the higher-fre-
quency eigenfunction.

To demonstrate the feasibility of these considerations,
we have calculated a dispersion relation for liquid argon,
as given by Eq. (4.9) face also, Eq. (1.21)j.A 12-6 po-
tential has been assumed with e/E=118'K, o=3.4
X10 ' cm 5=85'K, and p= 137 gm/cm'. Results are
presented in Fig. 1. In order to simplify our calculation,
we have used an analytic approximation to the pair
correlation function (see Fig. 2.) It is interesting that
this calculation, which does not include corrections for
either lifetime or quantum eGects, yields a dispersion
relation in fairly good agreement with available data. "
A more extensive computational study is currently in
progress.

It is also tempting to interpret observations of
"phonon excitations" in liquid metals in terms of our
resujts. For liquid metals~ a number of lnvestlgatol's
have recently reported neutron-scattering data from
which two phonon branches are deduced. In each case
one of these excitations is ascribed to "transverse
modes. "'4 "However, if we assume that high-frequency

~ At low frequencies, Eq. (4.7) is equivalent to Xc& '&(3q,+y,
=2y„vrhere q, is the shear viscosity. Another vray of making this
estimate is to assume that R~p"„rr'j/(1+iorrr), rIs pG„rs j/
(1+~re) and, also, the Euken relation lim~o X(co)C, '—2
Xlim~f) y, (co). It then follows that „C 2G„~g/rg &2G„
vvhich is to be compared vrith 43G„+E'„BG„."S.A. Rice, J. P. Soon, and H. T. Davis, in Simple Desse
Iileids, edited by H. L. Frisch and Z. Salzberg (Academic Press
Inc.,¹wYork, to be published); J.P. Boom, J.C. Legros, and G.
Yhomaes, Physica N, 54/ (1967).

'4 P. D. Randolph and %'. R. Myers, Bull. Am. Phys. Soc. 12,
556 (1967); S. J. Cocking and P. A. Egelsta6, Phys. Letters 16,
130 (1965).

Is U. Dahlborg and K. E. Larsson, Arkiv I'ysik 33, 271 (&9&6).
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lated that second sound waves in He II are formed of
energy fluctuations and their time derivatives. Also,
GrifEn" has obtained similar dispersion relations for the
propagation of second sound in crystals.

Cg
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FzG. 2. The pair correlation function used in calculations of the
curve given in Fig. 1.The latter was chosen primarily to simplify
calculations, with the proviso that max(gp~&" ) =max(g2 '~'d)
and, also, that oscillation about the axis g~ ——1 be similar to that
actually observed. The solid line is the approximate g&(r), whereas
the data points (note: T=91.8'K) are from A. Eisenstein and
Ã. S. Gringrich, Phys. Rev. 62, 261 (1942).

Quid motion may be described by constitutive relations
similar to the usual hydrodynamic equations Le.g. , Eqs.
(2.1)-(2.4), above] then, for isotropic fluids, density
Quctuations can couple only to longitudinal distur-
bances. Transverse excitations will not be seen as a 6rst-
order effect in the scattering process (similar conclu-
sions arise from a study of the matrix elements of the
Liouville operator). Thus, the experiments must be
probing tao longitldieal excitations, similar to those
which we are currently proposing. "

Finally, l.et us brieQy consider what happens if the
converse of the inequality Eq. (4.7) were to hold, i.e.,
if

8T—k' lim i(ak(k, &e) —))P34kng (k)+k2X (k)]. (4.13)
ot~co gU P

In this case the higher-frequency eigenvalues would be
given by Eq. (4.11) and, according to the present analy-
sis, the associated eigenfunctions would be the following:

APPENDIX~A: CALCULATION OF HIGH-
FREQUENCY THERMAL MODULl

We should now like to show that Eq. (2.9) seems to be
a natural form in which to express the high-frequency
thermal conductivity. Also, it shall be demonstrated
that O„and 0~0 are given by Eqs. (3.11) and (3.12)
These relationships shall be proven in the long-wave-
length limit, although they undoubtedly have general
validity.

The time-correlation function definition of the ther-
mal conductivity is the following"

X=P(3VT)-' dt exp(ia&t)(S(0) S(t))
0

=—P(3VT) 'L(' ) '(S(0) S(0))+ ], (A1)

where 8 is a heat current defined as

S(0)—=—g (II,—(k;))R;.
dt '

(A2)

(k;) designates the enthalpy per particle, P= (k&T) ', T
is the temperature, and k~ is Boltzmann's constant.
V is the volume of the assembly, R; the position and H;
the energy of the ith particle Lsee Eq. (3.4)].

Term by term evaluation of (S(0) S(0)) according to
Eq. (A2) is straightforward and may be shown to yield

a
A5& k'p '

BU p

Xlim icoR(k, co—)
1/2

I.A g, (4.14)

1 P d
R(s))= —— —Q II R"

no 3VT dt

c(k)' t'1 )—P HtRt — +Oi —i, (A3)
dt mT

i.e., would be composed primarily of energy Quctuations
and related time derivatives.

It may be that quantum analogs of such excitations
constitute high-frequency second sound in liquid He II.
In this regard, our suggestions are similar to those of
Kawasaki and Mori, '7 the latter authors having postu-

'6To describe the microscopic kinetics of liquid metals it is
probably necessary to consider the movement of two mutually in-
teracting charged fluids (the electrons and ionized metal atoms).
The details of our analysis would have to be modiied before quan-
titative results could be proposed."K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
28, 784 (1962); see, also, H. Mori, ibid. 33, 423 (1965), especially
footnote p. 441.

where c—=S/V is the number density and m is the par-
ticle mass. Notice that the 6rst term on the r.h.s. of the
above equation may be identified as

—Q 8;R; —Q IItRt = V2k ' lim ((IA5)*(I.Ag))
dt ~ dt k-+0

Lsee Eq. (3.10)].

= V'k 'lim Z(k)
I~O

(A4)

' A. GriKin, Phys. Letters 17, 208 (1965).See, also, J.B.Brown,
D. Y. Chung, and P. W. Matthews, i'. 21, 241 (1966).

"See, e.g., R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).
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Thus, in. analogy with our prior definition of G in
terms of molecular quantities, we may associate Z with
0"„according to

kzO. „=VPT 'Z. -
(A5)

Consequently, in order to derive Eq. (3.11) we must
show

B—C'/A =poT(PV) '(aU/aT)„. (A6)

In this regard, let us consider the evaluation of
B=—(h&, *h&,), where, in terms of previous notation,
hl, =—A5. Note that hI„which is the fluctuation in energy
per unit volume, may be expressed in terms of Quctua-
tions per unit mass according to

h p zg( )mQV( )m+p Qg(m) '

(A7)

In the above, 8&") is the energy per unit mass, 6V™is
the fluctuation in volume per unit mass, etc.

Also, express the energy Quctuation in terms of tem-
perature and volume Quctuations by

Qg(m) (ag(m)/aV(m)) QV(m)+ (ah(m)/aT) QT (Ag)

Thus, because ((AT)(AV(m&)) =0, we have, using (A7),

['p zg( ) mp (ag(m)/aV( )) m]2((QV(m))2)

+..[(»(-)/aT).j ((~T) ) «9)
Suppose one were to neglect density fluctuations. Then,
because ((AT)') may be given as"

((~T) )=p'm/(as(-&/aT-) „
we would have

(A10)

B-po'P-'TM(a~(")/a T)v. (A11)

In this case, Eq. (A5) would be identical with [see, also,
discussion following Eq. (3.13)j

k'po '0 (aT/aU) v=z/B. (A12)

However, using similar arguments, one may show that
the terms which have been neglected on the r.h.s. of
(A9) are identifiable as

[po &g(m& —
p (a&g(m&/a V(m&)r]z((A V(m&)z) =Cz/A (A13)

Including these terms indeed yields (A6), from which
Kq. (3.21) then follows.

Referring again to Eqs. (2.9), (A3) and (A5), we see
that it is proper to identify 0+p as

Q&0 ——g(zzzT) &(h)z= pT [H(m) gz (A14)

where the enthalpy per unit mass H& ) is related to
2 See, e.g., L. D. Landau and E. M. Lifshitz, Statistical Physics

(Addison-Wesley Publishing Co., Reading, Mass. , 1958), p. 352.

(h, ) as (h, )=zzzH("). But, as pointed out in Ref. 1 [Eq.
(A7)j, H( ' is related. to U (Az*LAz) by

U= —lklp(pV) 'H( '. (A15)

From Eqs. (A14), (A15), and the arguments encom-

passed in Eqs. (A7)—(A13), one may now also easily
prove the identity Eq. (3.14).

The key point in the above discussion has been the
identification made in Eq. (A4), which has been argued

by analogy with identifications arising for G„and IC„.A
more direct demonstration of Eq. (2.9) may be accom-
plished by adaptation of arguments used by Meixner"
and De Groot and Mazur" in their discussions of the
mechanical moduli E(~) and 'G(a&). The essence of this
derivation is to start with the linearized energy conser-
vation equation of hydrodynamics

coppH= z),(—k k)T+a)p (A16)

and define a thermal susceptibility X(co) by X=H/T.
Then, identify O~p with the high-frequency limit of

poC Xo(~), where C is the sound velocity and Xo(co)
the part of X(ra) which does not vanish as &o-+ 0. The
derivation is rather involved and not really germane to
the present investigation, so we shall not discuss this
point any further at the present time.

APPENDIX B: EIGENFUNCTIONS OF
THE 5XS MATRIX

The characteristic equation arising when density
fiuctuations are considered [see Kqs. (3.5), (3.8), and

(3.17)j is

—(dW X —lkl W U —(AU

X —&oX (ulklW —orU Y
(B1)

U —o)U —AC —(oB Z
—(0U V —lkl U Z —&oZ

It is easy to see that co= 0 is a solution, with associated
eigenvector

[LAz+{lkl(U' WZ)} '

X{(UV—ZX)A4+(WY —XU)A,}j. (82)

In other words, density fluctuations are a constituent of
the zero frequency excitation.

A similar zero frequency eigenfunction, formed of a
combination of A4 and LA 3, was found in the previous
study' when energy fluctuations were not considered.

"J.Meixner, Z. Naturforsh. 4a, 594 (1949);9a, 654 (1954).
"S. R. DeGroot and P. Mazur Son-EqlilibriN7n Ther'. ody-

numics (North-Holland Publishing Co., Amsterdam, 1963).


