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High-Field Transport in n-Type GaAs
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%le have solved the coupled Boltzmann equations for the electron distributions in I'& and XI minima of
GaAs under a set of approximations that are fair for fields around the beginning of the negative-
differential-resistance region, but should be quite good at higher fields. Intervalley, polar and other
relevant intravalley scattering processes have been included. Nonparabolicity of the central minimum has
been taken into account. The effect of space-charge scattering has also been considered. From the distribu-
tions, we have calculated as functions of field the average drift velocity, the variation of the valley popula-
tions, diffusion constants, and mobilities in each of the valleys, etc. The validity of the principal approxima-
tions made, such as neglect of the L1 minima, is discussed. The present experimental situation is examined,
and some tentative explantations are offered for the large differences between the various measurements of
drift velocity versus field.

1. INTRODUCTIOÃ

HE discovery of the Gunn eGect' has stimulated
great interest in the high-field transport of n-type

GaAs. A sizable number of investigations, both theo-
retical and experimental, have been carried out. It is the
purpose of the present paper to describe in detail our
calculations of the distribution functions and, from
these, the drift velocity and other transport properties
as a function of field. Preliminary accounts of some as
pects of this work have been published elsewhere. ' '
We shall also compare our results with other theoretical
results and with experimental results insofar as is
possible.

We begin with a summary, comprising Secs. 2—4, of
what is known about band structure and transport in
GaAs and of the model we have used in our calculations.
In Sec. 5 the Soltzmann equation for the central valley,
with nonparabolicity included, is set up for the energy
range in which transitions to the upper valleys are not
possible and its solution obtained. The Boltzmann equa-
tion for the upper valleys is then set up in Sec. 6 and
the coupled equations solved. From the distributions
are calculated drift velocity, valley populations, mo-
bilities, di6'usion constants and average energies of the
carriers in Sec. 7, and some comparisons with experi-
ment are carried out. In the final section the validity
of the principal approximations made, both in the model
and in the calculations, is discussed. Comparisons are
made with other theoretical calculations, and the pres-
ent experimental situation is discussed.
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In the limit e-+0, the right-hand side of (2.3) must
approach etrsi/siss, where mi is the mass at the bottom
of the band. Taking this mass as 0.072 tno, and @0=1.5
eV, Ehrenreich deduced that e„=20 eV, ' Using the
fact that eg/(eg+es) =ttsi/isis, we may write, finally,

(tris''/2tisi) =—y(e) =e[1+ue+Pes+ .], (2.4)
7 M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
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conductors, Kyoto, 1966 $J. Phys. Soc. Japan Suppl. 21, 20
(1966)g. This paper will be referred to as PHC. We are indebted
to Professor Cardona for a copy of this paper (unpublished).'H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
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2. BAND STRUCTURE OF GaAs

Information about the band structure of GaAs has
been obtained from many experiments and, recently,
from theoretical calculations by the pseudopotentiaP
and k p' methods. Experiment' and theory agree that
the conduction-band minimum is at the center of the
Brillouin zone, spherically symmetric at not too high
energies and nonparabolic. %ith the approximation that
the band gap eo is much larger than the spin-orbit split-
ting energy, the dependence of energy c on wave vector
k in the central minimum may be written'

e(ir) = (yeas/2rris)+ (eg/2)[(1+4e $sPs/2rlse s)i&s —1]
(21)

where toss is the free-electron mass and e„ is 2/ttss times
the square of the momentum matrix element connecting
the conduction, light mass, and splitoff valence bands.
For later purposes it is useful to rewrite (2.1) in the
form

(0'ks)/2tiss

=e+(eg+e, )[1—(1+4ee„/(eg+e, )'l'"]/2. (2.2)

For small c. the radical may be expanded, giving
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where n=e~'/eg(eg+e~)', p= —2e„'/eo(so+a, ).' For
GaAs, a=0.576/eV and p= —0.050/(eV)'. It is seen
that the contribution of terms in p and beyond in the
series (2.4) may be neglected even at energies as high
as 1 eV. It must be noted also that the accuracy of the
relations (2.1) through (2.4) should begin to diminish
at c. 1 eV because they neglect the e6ect of higher
minima.

It was established by Ehrenreich' from a consider-
ation of several different kinds of data —variation of
resistivity with pressure, Hall effect at high tempera-
tures, and the behavior of the band gap in Ga(As, P)
alloys —that the next higher minima are along the (100)
directions, 0.36 eV above the (0,0,0) minimum. These
experiments do not, unfortunately, give the location of
the minima along (100). According to the theoretical
calculations~ 8 these minima appear to be at the edge
of the Srillouin zone and to have X& symmetry. The
next minima above the (100) ones were expected to be
along the (111) directions, ' and Hilsum" suggested,
from experimental evidence, that they are 0.5 eV above
the bottom of the conduction band. From further con-
sideration of their photoemission data, " Eden and
Spicer" have concluded it is likely that these minima
are within 0.2 eV of the X~ minima. At 0.5 eV above
the band edge they would be only about 5kpT at room
temperature above the X& minima. If they were per-
ceptibly closer than this it should not have been possible
to make a clearcut distinction between (100) and (111),
as was done by Ehrenreich. ' Thus it seems reasonable
that the (111)minima are no lower than, say, 0.45 eV
above the band edge. This order of the minima, it is to
be noted, is in contradiction to the theoretical calcu-
lations, which place the (111)minima, which have I.q
symmetry, either a tenth of a volt below~ or at about
the same energy' as the (100) minima. The theoretically
calculated energies are not expected to be reliable to
more than a few tenths of an electron volt, but this
certainly provides additional evidence that the I.~

minima are very close in energy to X&.
The calculations show another set of minima at the

zone edge along the (100) directions, not too far from
the X~ minima. These higher minima have X3 sym-
metry. According to the PHC' calculation the X~-X3
distance is about 1 eV, while in the BC' calculation it
is only a few tenths of an eV. Since in any case the
density of states appears to be much smaller in X3 than
in X~, neglect of this set of minima is justihed.

For both X& and 1.& minima the constant energy sur-
faces in the neighborhood of the band edge are ellipsoi-
dal. PHC have calculated the transverse mass m& for the
X& minima to be 0.23mp. They could not, unfortunately,

"C. Hilsum, in I'hysics of Semiconductors (Academic Press Inc. ,
New York, 1964), p. 1127."R. C. Eden, J. L. Moll, and W. E. Spicer, Phys. Rev. Letters
18, 597 (1967).

~R. C. Eden and W. Spicer, Stanford University (private
communication).

3. TRANSPORT IN THE CENTRAL VALLEY

Low-held transport, i.e., transport of carriers in the
(0,0,0) valley, has been studied extensively for GaAs.
Ehrenreich has shown that, of the possible scattering
processes, polar optical scattering predominates at room
temperature and low helds. ' To determine which proc-
esses are important at high fields it would be useful to
compare the relaxation times and rates of energy loss
for the different processes. For the polar optical scatter-
ing a relaxation time exists only for carrier energies large
compared to A~~, the longitudinal optical phonon en-

ergy. This relaxation time for the simple model of the
band structure with band edge at energy cp is given by"

(1/r, .) = eEO(21V, ~+1)/L2m(e —ep) 1'", (3.1a)

while for a nonparabolic band with spherical symmetry
and cp=0 it is shown in the Appendix to be

(1/r, .) = eEO(2', ~+1)(dy/Ch)/(2m, y) '" (3.1b).
In these expressions e is the charge on the electron, E,~

the number of longitudinal optical phonons, p the quan-
tity de6ned by Eq. (2.4), m& the mass at the band edge,
and Ep an effective electric held that determines the
strength of the electron coupling to the polar modes.
Specihc ally,

me' 1 1 mme'e*'
eEp—= Aorg ———

A.' ~ g M ho)gv.
(3.2)

"D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953). See also the Appendix of this paper.

obtain the longitudinal mass mg for these minima. For
the (100)minima in silicon, m&= 019mo and en~ =098mo,
while for those of QaP the calculations of PHC give
m&=0.28mp, m~=1.5mp. Thus m& of GaAs is inter-
mediate between m~ of Si and GaP, and, expecting that
m& is similarly placed, one might guess that m~1.3mp.
This would give a geometric mean mass m= 0.41mp, and
a density of states mass m& ) of 0.85mp for 3 minima.
Kith the m~ and m& values of PHC for the L~ minima
we obtain a geometric mean mass of 0.24mp and a
density-of-states mass 0.59mp. For the present calcu-
lations, m&~& for the (100) minima in GaAs was taken to
be 1.2mp, the value estimated by Khrenreich from high-
temperature Hall data. This would appear to be high
for the case of 3 minima, and could, of course, mean that
m~ and m& are larger than estimated above. However, if
the (111)minima are as low as 0.5 eV, which is only
about 2kp T at the temperatures for which the Hall data
were taken, it is to be expected that they also would
have been populated and have contributed to the den-
sity-of-states mass attributed to the (100) minima. The
total density-of-states mass for X& and 1.&, according to
the numbers above, is 1.4mo. The (111)minima were
neglected in the calculations that follow. If the masses
of PHC are correct, however, the use of m& )=1.2mp

should go a long way toward compensating for this
neglect.
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TAM,z I. Numerical values used in calculations.

Putt =0.036 eVs
&p=5 95X10' V/cmb
m1= 0.072mp'

Z (r )=6 eV'
a =0.576/eVb

p2=0. 36 eV
co12=0.8 o)t'

co2y =0.7 ceto
2(N) —1.2mpa b

m2 =0.36mpb
L:~(X ) =692 eVb

p= 5.31 g/cmg
Ni =5.22X10' cm/sec'

H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
b See text for discussion.
& G. Dolling and J.L. T. Waugh, in Proceedings of the 1963International

Conference on Lattice Dynamics, Copenhagen, Denmark (Pergamon Press,
New York, 1965), p. 19.

P. Aigrain and M. Balkanski, Selected Constants Relative to Semi-
conductors (Pergamon Press, New York, 1961).

& E. Haga and K. Kimura, J.Phys. Soc. Japan 19,658 (1964).

where Kp and K„are the dielectric constants for 0 and
frequencies, respectively, e* is the effective ionic

charge, M the reduced mass of the two ions in the unit
cell, and e, the volume of the cell. Kith the constants
in Ehrenreich's paper, ' which are listed in Table I,
one obtains Ep=5.95X10' V/cm, corresponding to
e*=0.186e. In more recent measurements values diBer-
ing by as much as 10'Po have been obtained for the vari-
ous constants, "but these lead to about the same value
for Ep.

It should be noted that the treatment of polar modes
that leads to (3.1a) or (3.1b) is correct only for wave
functions with s symmetry and therefore becomes less
accurate for energies some distance from the band edge.
The admixture of p functions that occurs causes a de-
crease in the matrix element and therefore in the eGec-
tiveness of the polar scattering. ' This e6ect has been
neglected here. The neglect will lead to an overestimate
of the e6ect of polar scattering for large e, but since, as
will be seen, polar scattering is not predominant at
large c, this is not serious.

A plot of r&p from (3.1b), evaluated using the con-
stants of Table I, is shown as a function of e/Ace'=x in
Fig. 1. As compared with its value for the parabolic
case, "r&p ls somewhat reduced, by about 20% at x= 10,
35/o at x=20. It continues to increase, however, with
increasing energy, at least within the range where y is
described by the constants valid for the edge of the
conduction band.

The rate of energy loss to polar modes for a non-
parabolic band can be derived by the same procedure
as used in the Appendix to calculate the collision oper-
ator. In fact, the probabilities per unit time of emission
and absorption of an optical phonon by an electron with
wave vector k are given by the last two terms, respec-
tively, of Eq. (A1) after division by —f(k). Since f(k)
is a constant for the integration, the rates of emission
and absorption are just the coeKcients of —f&'I(e) in
Eq. (A7), the expression after integration. This gives
for the rate of change of electron energy due to polar
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FIG. i. Relaxation times for scattering of electrons in fIM {p,p 0)
valley of GaAs, corrected for nonparabolicity, as a function of
energy.

mode interactions in a nonparabolic band

eEPAO)l

(
de) (dy)~',Pr(e+W~)] —

I

dt&„p $2mry(e)7"s kdpJ

where

de—(A,'+ 1)n,(e)—
~Au) t

y'"(e Puo()+y't'—(e)—
Qr(e) =ln

—[y'ls(e —keg) —7'ts(e)
(

(3.3)

(3.4)

When &(e) is replaced by e the expression (3.3) goes
over to that given earlier for the parabolic case

Under the assumption of parabolic bands the rate
of energy loss of electrons to polar modes in QaAs was
found to increase initially as c increased reach a maxi-
mum at about 5A~l, and then to decrease slowly as the
energy increased beyond that. "It was commented that
the decreasing e6ectiveness of polar scattering, evi-
denced by the increase in r„p and decrease in

~ (de/dt)sp~
with increasing c, was responsible for the relatively large
number of high-energy electrons at low' 6elds, i.e., for
the relatively low threshold for the Gunn eGect. Nu-
merical evaluation of (3.3) shows that, although
(de/dt)„p is much the same as for the parabolic case up to
p= 5Azl, it does not decrease afterward but remains es-
sentially constant. (Perhaps if decrease of the matrix
element with increasing c were taken into account it
would still decrease in the range 10Aau'&e&5A"'. ) It is

"H. Ehrenxeich, I. Phys. Chem. Solids 9, 129 (1959).
For a plot of this see Ref. 2. E. M. Conmell, Phys. Rev. ].4$, 657 (1966).
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L. R. Weisberg, J. Appl. Phys. pp, &8)7 (p962)"L.R. Weisberg, F. D. Rosi, and P. G. Herkart, Properties of
F/cmental and Compound Semiconductors (Enterscience Publishers,
Inc., New York, 1960), p. 25.

clear then, as pointed out by Matz" and Dykman and x=20. However, the acoustic scattering remains rela-
Tomchuk, "that the distribution is expected to be cooler tively ineffective for momentum relaxation below x= 10.
when nonparabolicity is taken into account. As will be Above x=10, v, comes closer tobeing comparable to T&0,

seen, this was indeed found to be the case. but, as will be seen, is still unimportant compared to in-
The proportionality to e'" or p'" results in v~0 of tervaBey scattering. Since the acoustic scattering is also

(3.1a) or (3.1b) getting very small as e-+0, and use of much less effective than polar optical scattering for
these relations undoubtedly overestimates greatly the energyrelaxation, itwasnotincludedin the calculations
eGect of polar scattering on slow electrons. In actuality, for the central valley.
however, such electrons are predominantly scattered by Piezoelectric and nonpolar optical scattering may also
ionized impurities for which the rel.axation time ~& de- be dismissed from consideration for the central valley. '
creases as c decreases. For slow electrons, because of It would appear then that polar and impurity scattering
the logarithmic term, " ~q increases with e less rapidly are the only processes of importance for energies below
than e'", and an e'" dependence should provide at that for which transitions to the (100) valleys become
least a fair approximation. (It must be remembered that possible. However, as pointed out earlier, "' the very
such slow electrons will make little contribution to the considerable scatter in room-temperature mobilities,
current in any case.) Thus use of ri, s from (3.1a) or with ps typically 5000 to 6000 cm'/V sec in samples
(3.1b) as a relaxation time over the entire energy range for which a combination of polar and impurity scatter-
would have the effect of simulating some impurity scat- ing would predict ps 8000 cm'/V sec, combined with
tering in addition to the polar scattering. The calcu- the fact that the scatter in po js less at 78, point to the
lation using r„o as the relaxation time for all gave a operation of another scattering process. From an anal-
low-field mobility ps of 6200 cm'/V sec, whereas for pure ysis of the temperature dependence of ps, Weisberg has
GaAs, using a variational method, Ehrenreich obtained concluded that the additional process, termed by him
93pp cms/V sec.s The 6200 cms/V sec is the value that a "mobility killer, " has a characteristic mobility p,
wpuM. be obt»ned for an impurity concentration of proportional to T—'" or T '"." In InP, where similar
5 X 10"/cm', a fairly typical value for GaAs samples phenomena have been found, they have been connected
use/ in Gunn-effect investigations. It should be n«e~ with the presence of an impurity. In the case of GaAs,
that impurity scattering is unimportant for high elec- Weisberg suggests that the "mobility killer" consists of
tron energies and therefore for high 6elds. Thus, begin- large intrinsic regions arising from compensation pf the
ning at 6elds npt far past the Gunn threshold, the v«&- majority impurity, a shallow donor, by a randomly
atipn of current with heM should be in~epen~e&t «distributed deep-lying acceptor. It is npt unlikely that
impurity concentration. such acceptor impurities are present in typical boat-

Intravalley acoustic mode scattering has a rela»tipn or melt-grown samples in concentrations as high as
tiIne given for simple band structure by" 10"/cm'. "The intrinsic region will include not only the

portion of material that is compensated, but a space-
r2 2%~~ T' 8—8

(3.5a)
~' ™lr2

charge region that forms around it to provide the ap-

$4pg&2 $ propriate potential difference with respect to the un-
compensated material or matrix. For samples with car-

the last equality defining l„ the mean free path for rier concentration sr~10"/cms and greater, this dif-

acpustic deformation potential scattering. Here E& is the ference in potential is almost one-half the energy gap.
reformation potential, p the density of the crystal, and The size of the intrinsic region, including the space-
g& the velpcity pf longitudinal acoustic waves. For a charge, varies from close to that of the compensated
npnparabolic band of the type we consider, with @0=0, region itself in material with high e, to many times

it is found that larger in material with low n. A size of 200 A or more is
not unreasonable in samples with rs 10i~s/cms Despite.
the very large size that such regions might attain in

A plot of r from (3.5b) as a function of energy for the high-resistivity material, their scattering effect would

central valley, with the numerical values of Table I, ls not be large there because the potential step or barrier

shown jn Fjg. $. As compared with the parabolic case, " between them and the surrounding material would be

the acoustic scattering is more effective, r, being de- small. Thus the maximum scattering eGect of these

creased by some 3p% at z= 10, by more than 50% at intrinsic regions is expected to be in material with
10"&I&10"/cm'. In samples with n in the range 10"

17 D Ms[z, Sohd State COIIlmun. 4, 491 (1966);I. Phys Che~ to 1pis/cm', for example, due to the large dimensions

"I M D k nd P M Tomchuk Fig Tverd. Tela8 (343 that can reasonably be expected, and a barrier height
(l966) LEnghsh trsnsl. : Soviet Phys. —Solid State 8, &O75 (1966)g."See, for example, P. P. Debye and E. M. Convrell, Phys. Rev.
93, 693 (~954).

20L. Sosnowski, in Physics of Semiconductors (Academic Press
Inc. , New York, 1964), p. 341.

"J.Kolodziejczak, Phys. Status Solidi 19) 23j. (1967).
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almost half the gap, such regions would be essentially

opaque to electrons with @&0.5 eV.
This discussion suggests treating the intrinsic regions

as impenetrable spheres of density E, and scattering
cross section Q. For the simple model of band structure,
one then obtains a relaxation time for the space-charge
scattering, as this process is also called,

r, = (1V,Q~) '= (iV,Q) 'Em/2(e —eo)1'". (3.6)

For a Maxwell-Boltzmann distribution at the lattice
temperature this leads to a mobility p, , given by

p, =4e/3$. Q(27rmkoT) U2

=2.4X10'/X, Q(Tm/mo)'" cm'/V sec, (3.7)

which has a T '"dependence, more or less in agreement
with experimental observations for the mobility killer.
The T '" dependence of p,„or more exactly the e—'
dependence of r„means that, unlike impurity scatter-
ing, as the average electron energy is rasied this process
becomes more important. It is also clear from this that
one need consider it only for the light electrons in the
field range with which we are concerned. To take it into
account in the calculations, one would obtain a typical
value of X,Q by determining the amount of ii, required
to reduce p, o to a typical value, say 5500 cm'/V sec, from
the theoretical value for combined polar optical and
impurity scattering. This procedure has been followed
for some of the calculations to be described here. In
Fig. 1 is shown r, versus e for X,Q=3.2X10' cm ',
which leads to ii~~5500 cm'/V sec for a sample with
10" impurities per cm'. For this plot e has been cor-
rected for the nonparabolicity of the central valley, i.e.,
r, was calculated from

rather than from (3.6).The plot overestimates the efi'ect

of this mechanism for c&0.5 eV, or x&14, since, as
indicated earlier, this is the order of magnitude of the
barrier height. The error will not be signiGcant in the
present calculations, however, for intervalley scattering
is more important at such high energies.

It should be noted, however, that if this is indeed the
mechanism for the additional scattering there would
also be a distortion of the lines of current Qow by these
opaque regions. This would also lead to a reduction in
mobility, and in fact one that could be larger than the
reduction due to the decrease in mean free path. To
determine this it would be necessary to know more
about the size and distribution of the space-charge re-
gions. Incorporation of v, into the calculations as de-
scribed can only be considered a crude attempt to take
this mechanism into account.

When the energy of a carrier is high enough the car-
rier can make a transition from the (000) valley to one
of the (100)valleys. Conservation of crystal momentum
requires that in the process, for the moderately doped
samples considered here, a phonon with wave vector

at the edge of the Brillouin zone, and directed along

(100), be emitted or absorbed. Since the (100) minima
occupied by the electrons have X& symmetry, the selec-
tion rules dictate that the phonons involved must have
this symmetry also. '4 In GaAs this means that they
must be the longitudinal optical (LO) phonons at the
edge of the Brillouin zone. '4 The energy of these phonons
is 0.8 Ace~, corresponding to a characteristic temperature
of 3300 25

Intervalley scattering does have a relaxation time,
the general expression for which is given by Eq. (A.23)
in the Appendix. For the (0,0,0) valley, after the use of
(A.19b), this relaxation time is found to be

1 Dip(m2&~') ai' 1

2'~'xh'pcs» e'» —1

I (e+~12 e02)' '+e*"&e—fuuu —e02)'"], (3.9)

where D» is the coupling constant, co» the angular fre-
quency for transitions between the (000) valley (de-
noted by the index 1) and a (100) valley (denoted by
the index 2) and xi~=A&a&u/koT. As discussed in the
Appendix r~ 2&') is unaGected by the departure from
parabolicity of the (0,0,0) valley. If we take the edge of
the conduction band as the zero of our energy scale,
co&=0.36 eU. The quantities m2& ', ~», and p are known,
so the only unknown in (3.9) is D». It has been sug-
gested, based. on the observation (or supposed obser-
vation) of low-field avalanche breakdown in GaAs, that
Di2~1X10' eV/cm. "'~ In the calculations we used Di2
as a parameter, and results for different D~~ values will
be discussed later. As background for understanding
these results, we show in Fig. 1 plots of the intervalley
relaxation time for Di~ values of 5X10' eV/cm and
5X10' eV/cm. It is seen that for the lower value the
average time required for a carrier in the central valley
to make a transition to a (100) valley would be of the
order of 10 " sec. Since Gunn oscillations have been
seen at frequencies as high as 40 Gc/sec, 5X10' eV/cm
would seem to be close to the lower limit for a~2. It is
noteworthy that for SX10' eV/cm polar scattering re-
mains predominant throughout, while for 5X10' eV/cm
intervalley scattering is predominant over almost the
entire range in which it is energetically possible. D» in
the range 1 to 2X10' eV/cm represents an intermediate
case, with the two processes comparable in importance.

4. TRANSPORT IN THE UPPER VALLEYS

Less is known about transport in the upper valleys
than in the lower. Measurements under hydrostatic
pressure have yielded low-Geld mobility values of 155

' J. L. Sirman, M. Lax, and R. Loudon, Phys. Rev. 145, 620
(I966).

~5 G. Dolling and J. L. T. Waugh, in I'roceed&sgs of the
international Conference on, Lattice Dynamics, Copenhagen, , 1963
(Pergamon Press, Inc., Near York, 1965), p. 19."J.A. Copeland, Appl. Phys. Letters 9, 140 (I966)."E. M. Conwell, Appl. Phys. Letters 9, 383 (1966).
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cm'/V sec (Ref. 28) and 110 cm'/V sec (Ref. 29). A
value of about 170 cm'/V sec was obtained by extrap-
olation to x=1 of Hall mobilities measured on a set
of GaAs, P& alloys. "

At the time most of our earlier calculations were
done, the deformation potential for intravalley acoustic
scattering was not known and we assumed the same
value for the upper valleys as for the lower. Since that
time measurements under uniaxial pressure have yielded
the values" nq= "e+ „=10.3 eV and n. = d=7.0 eV.
From these we deduce ™=3.3 eU. For ellipsoidal con-
stant energy surfaces the relaxation time for intravalley
acoustic mode scattering is no longer independent of
direction, but may, unless the anisotropy is severe, be
represented by a tensor with components in the three
principal directions for a given valley"

AVith the numbers given earlier for "q and „, and
m~= 0.23mo, m~= 1 3m. p, (4.4) gives p,~1400 cm'/V sec.

It is noted that if we allow the many-valley model to
go over into the simple model by setting m& =m& =m,
"„=0,and ~

——E~, l,~ goes over to the mean free path for
the simple model, given by (3.5a), the angular bracket
in (4.4) goes to unity, and p, goes over to the mobility
under deformation potential scattering in the simple
model. To obtain p =1400 cm'/V sec in the simple
model with m=0.36mo, the value we used in earlier
calculations, ' ' would require I~'I' ——72 eV', twice as
large as the value used earlier.

To obtain an estimate of the importance of polar
mode scattering, we assume that the matrix element"
has the same value for the (100) valleys as for (000).
In any case the matrix elenient can be no larger than it
is for that case. An investigation of scattering by polar
modes in the many-valley model" has led to the con-
clusion that a good approximation to the correct polar
mobility p~, may be obtained by replacing the factor
m '" that appears in p~, for the simple model by m '"
X(1/3m~+2/m~) With m. ~=Q 23mo, m~=1 3mp, .the fac-
tor in parenthesis, which is the reciprocal of the inertial
mass, is 0.32mo, while m is 0.41mo. This leads to a p~,
value for an X& valley which is p~. for the F& valley,
10 000 cm'/V sec, multiplied by (Q.Q72)'"/(Q. 41)"o
X(0.32), or 900 cm'/V sec. If the masses are actually
larger, as indicated earlier might be the case, p„, could
be somewhat smaller, but it is still well above the ob-
served upper-valley mobility.

Another scattering process that must be considered
for the X& valleys is scattering of electrons to the F&

valley. The relaxation time v»") for this process is
obtained by inserting (A19a) in the general expression
(A23), which gives

2»2- 2me&2p, y'

(e e )1/2

mh4Cg

(4.1)

where a stands for longitudinal (t) or transverse (t) and

c~ is an average elastic constant for longitudinal waves

(—pu~'). is a deformation potential constant, defined

by
" '=o75LE "e'+n "d +t'; 'j, (4.2)

where $, g„and i' are functions of m&/m~ tabulated

by Herring and Vogt. " Since the ratio m&/m~ should
have about the same value for the (100) minima of
GaAs as it has for these minima in Si, and further since

varies slowly with this ratio, we shall use the values

of $, g, and i calculated for silicon. "These, with the
values of ~ and „given above, lead to gg'=107 eV,

,'= 78 eV. With these numbers we see that the anisot-

ropy is not severe, r& being about 40% larger than rE

The mobility for the many-valley model is given

e ((e—eo)n) 2 ((e eo)r,)—
p= +

3m~ (e—ep) 3m~ (e—ep) +e*"y"'(e—kugo)y'(e —hppgo) j. (4.6)

by
1 D~2'm~3f' 1

Lv'"(e+ h io)7'(e+ hopis)

(4 3) ro r
&'& 2'~'rhpppoqo e*»—1

Using (4.1) for the r's and evaluating the indicated
averages, we obtain the mobility

4el y 1 mg ™g2
j'a=

3(2ormAT)'Io 3 m( ZP
(4.4)

"G. King, J. Lees, and M. P. Wasse, quoted by P. N. Butcher
and W. Fawcett, Phys. Letters 21, 489 (1966).

"A. R. Hutson, A. Jayaraman, and A. S. Coriell, Phys. Rev.
155, 786 (1967)."M. Shyam, Stanford University (private communication).

»,M. Shyam, J. W. Allen, and G. L. Pearson, Trans. IEEE
ED-13, 63 (1966)"C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

where t ~ is a generalized mean free path defined by

xk4c)
(4.5)

Even with the effects of nonparabolicity included, the
density of states in the central valley is so small that
7 2 &

&') is much larger than the v's for acoustic mode
or polar optical scattering, '4 and this process is unim-

portant in limiting the mobility in the X& valleys.
It is seen that a combination of the three processes

already considered for the upper valleys gives a mobility
well above the observed value, and that another scat-
tering process must be operative, in fact predominant.
Since equivalent intervalley scattering is known to be
important in silicon, "it is likely to be so here too. The
relaxation time for scattering between (100) valleys, to

"D.J. Olechna and H. Ehrenreich, J. Phys. Chem. Solids 23,
1513 (1962).

"4 For a plot of the relaxation times in the X& valley versus
energy see Ref. 2. Note, however, that v~, should be reduced by
a factor 2 because E1~ is twice as large as assumed there.

35 D. Long, Phys. Rev. 120, 2024 (1960).
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For the calculations we have taken for D;,' the value
derived from Long's results for equivalent intervalley
scattering in Si, 1&(10P eV/cm. ' It is apparent that even
with the same coupling constant intervalley scattering
would be more important for GaAs than for Si because
of the smaller size of the phonons. ' This is borne out by
thefact that r for this process, with Dy =1X10'eV/cm,
is much smaller than the ~'s considered above, "' and

po for the X~ valleys calculated including r;; came out
145 cm'/V sec.

Because the mobility is already so small, impurity
scattering and space-charge scattering may be neglected
for the upper valleys.

S. BOLTZMANN EQUATION FOR THE
LOWER VALLEY

We consider in this section the solution of the Boltz-
mann equation for c&c02—ko», i.e., energies too low
for electrons in the central valley to make transitions
to the outer valleys. As discussed in Sec. 3, the only
scattering processes that need then be considered are
polar optical scattering and, in material with the ap-
propriate inhomogeneity, space-charge scattering. We
take up first the case of ideal material.

For arbitrary fields the distribution function f may
be expanded in a series of Legendre polynomials:

f=P f (e)P (cos8),
n~o

(5 1)

where 8 is the angle between k and E, the electric6eld.
Insertion of (5.1) into the Boltzmann equation leads to
an ininite set of coupled differential equations for the
f„'s," i.e., an intractable problem. " Fortunately, of

36 G. Bara8, Phys. Rev. 133, A26 (1964)."A neat method for circumventing this has, however, been
found by H. Budd {in Proceedings of the International Conference
ori the Physics of Semiconductors, Kyoto, 1966 $J. Phys. Soc. Japan
Suppl. 21, 420 (1966)j}and applied to the case of inelastic scat-
tering by nonpolar optical modes. This method requires that there

be denoted by r;;, may also be obtained from the
general expression (A23). For the case of the minima
at the edge of the Brillouin zone, transitions between
valleys at opposite ends of the same cube axis require no
phonon at all, while those between valleys on diferent
cube axes require the LO phonon at the zone edge in the
(100) direction. "(In this case the crystal momenta, add

up to a reciprocal lattice vector rather than zero. ) This
phonon, with angular frequency co,, =0.Scan&,

" is the
same as that required for the I'~ to XI transition. De-
noting the coupling for this process by D,.;, we obtain
from (A19b) and (A23)

1 2 D "(mp&"&)"' 1

7&~p 3 2 ~ 7l A pM~&
8' ~~ —1

&&L(e+h~" —e )'"+e~h'(e AM—,, cp'p—)'"j (4 7)

course, the set of equations may be truncated in low
6elds, and in high 6elds for which the scattering is
reasonably elastic and isotropic, by setting f =0 for
e&2. The distribution that results is essentially an
isotropic one with a small drift or streaming term super=
imposed. Such a distribution is not appropriate for high
6elds, however, when the scattering is predominantly in-
elastic. In that case the distribution is quite anisotropic,
with a strong streaming in the force direction. A method
of truncating the ininite set of coupled equations ap-
propriate to this case has been suggested by Hara'. 36

In this method, called the maximum-anisotropy ap-
proximation, f 's for n) S, a value chosen arbitrarily,
are replaced by the values they would have for the
distribution of maximum anisotropy, a distribution in
which all carirers are traveling in the force direction.

In the light of this discussion, the approximation of
dropping all terms beyond. v= 1 in the expansion (5.1),
i.e., taking

f= fp+ fg cos8= fp+k@g(e), (5.2)

x= e/Aco[& (5.3)

exist a generalized low-6eld relaxation time, i.e., that the rate of
change off„due to collisions satisfy the condition (Bf /Bt). = —f„/t ~
for n & 1.Unfortunately, this condition is not satisied by the polar
modes.

3'L. SteIIQo, Proc. IEEE SS, 1088 (1967). Ke are indebted
to Dr. StenAo for a preprint of his manuscript.

'9 L. StenQo, Proc. IREE 54, 1970 (1966).

where k~ is the component of k along the 6eld direction,
should be good for GaAs at low 6elds, and at fields
high enough so that (e)))App~. Calculating with (5.2) we
have found that (e) 3@v~ at a field of 3 or 4 kV/cm,
depending on the parameters used. Thus the polar scat-
tering is certainly inelastic for the majority of electrons
at fields less than 3 or 4 kV/cm. However, there is also
elastic scattering present in the form of impurity,
acoustic, and space-charge scattering. The elastic scat-
tering will oppose the streaming tendency and tend to
randomize the distribution. Impurity scattering would
be the most effective here since it a6ects predominantly
the slow electrons, for which the streaming tendency
would be greatest. Thus in the range of fields for which
A~r( (e)&3A&a~ the correct distribution lies between the
extremes represented by (5.2) and the maximum-anisot-
ropy approximation. As noted earlier, our calculations
have been carried out using (5.2) at all fields. Stenflo"
has carried out some calculations for GaAs using the
maximum anisotropy approximation with %=2. The
results will be compared in Sec. 8.

It is, of course, true that even in high Gelds, (5.2)
provides a poor description of the distribution of the
low-energy electrons. " However, this is unimportant
because these are relatively few in number, and their
contribution to the current is quite small.

In setting up the Boltzmann equation, it is convenient
to work with the dimensionless variable



E. M. CONKE I L AND M. O. UASSELL

and to replace p(e) by the dimensionless function ential equation that must be solved for the lower valley:

r(x) =y(M&x)/h =x+ h x'+ . (5.4) 2e'8' d (r't' afr)
I
=o. (5.1o)

3~,h, r'rrt~dx& r at/.The calculations will be carried out for the nonparabolic
case only. The results for the parabolic case are easily
obtained by setting I'=x, I"=1.To avoid cumbersome
notation in what follows, we shall denote the distribu-
tion for the lower valley by f&'), its spherically sym-
metric part Lfo of Eq. (5.3)] by f&, and its asymmetric
part by kgg~. Kith this notation the rate of change of
the distribution due to acceleration by the 6eld takes
the form

When scattering is by polar modes (and impurities)
only, r&'& is, as noted earlier, given by (A13) and
(af)/at), by (A9) rewritten in terms of x, i.e.,

(af,) eZ,
{Le*'f)(x+ 1)-f)(x)]

E al i „. (2m)h&ytr(x))'i~ e*&—1

XQ( +1)r'(*+1)+Lf (*—1)—'f (x)]

&&Q(x)r'(x —I)}, (5.11)-afu)-

Bt -g

eE ep.
= ——.'(7~f0)=——

h h where
— r'"(x—1)jI'"(x)

Q(x) =ln
I
r)l&(x—1)—r)/2(x) [

(5.12)2 I' h'k)&,

x~lr+- —,c'+ i')(5»,
3 r' m, r'h,

where the prime indicates diGerentiation with respect
to g. An approximation similar to that usually made for
the parabolic case has been made here in replacing
h'ke'/mq by its average, —,'2r, in the second term. The
collision term will be simplified by assuming that a col-
lision time v exists, which makes it possible to write

&t af t')/at], = (af)/at), + (akeg)/at),
= (af)/at), (keg, /r). —(5.6)

Khen scattering is by the polar modes we insert for r
in (5.6) the r~, of (3.1b), or more exactly, (A13). As

discussed in Sec. 3, although this is not correct for the

polar modes unless c»Acing, it does represent a good
over-all approximation for a sample with a moderate
amount of impurity scattering. In any case, it should

be a good approximation for fields of several thousand

V/cm and higher.

The vanishing of oaf'"/at]a+oaf'"/at], implies

that terms in diEerent powers of kz vanish separately.
The Boltzmann equation is then equivalent to the pair
of equations

tr)' 1
&= I —,I f~'+

Er'& e. —1, rb)

&& (Le"f)(r+1)—fr(r)]Qb+1) r'(r+ 1)

+Lf~b —1)—*'f (r)]Qb)r'b —1))4, (5 13)2eE d af)—(r' 'g )+ =0
3hr'r~~2 dx R

(5 7)
where C is the constant of integration and

and

To simplify the solution of (5.10) for this case, we ex
pand f)(x~1) iri a Taylor series about x and drop terms
past f~"(x). Again, this approximation should be good
when (e)))her~. The second-order differential equation
that results must be integrated numerically except for
quite large values of E, to be considered later. This
means that values of f)(0) and f)'(0) must be chosen to
begin the integration. The value of the former is ar-
bitrary since the diGerential equation is homogeneous.
Ultimately, of course, f)(0) will be determined by nor-
malization. Carrying out the integration for different
values of f)'(0), one finds that solutions well-behaved
out to large x may be obtained for a wide range of values
of f)'(0) at each field. The following procedure was used
to determine which value is correct for the particular
boundary conditions of the present problem. If Eq.
(5.10), with (A13) and (5.11) inserted, is integrated
once before expansion of f)(x&1), we obtain

heJi gg

f I 0
mgF'Lrg

(5 g)

+2 gag
a=---

3 E 2e*'+1
(5.14)

he's &'&

gc=- f)'
m~L))r'

(5.9)

When (5.9) is inserted into (5.7) we obtain the differ-

where r~') is the relaxation time for the (000) valley.
From the last equation we obtain

Equation (5.13) is true for all x, hence for x=o. As
x~o, r'(x) and r'(x&1)-+1, Q(x+1)-+2sinh 'x'"
and r'(x) times the quantity in the angular bracket is
well-behaved. I Note that the term in Q(x) is not to be
included unless x&1.]This has the consequence that
the integral vanishes as x —+ 0. Since r(x) -+ 0 and fq'(0)
must be 6nite, we conclude that C=O. In the absence
of an analytic solution of (5.13) this condition cannot



n —TYPE GaAs

be used in the usual way to determine the correct fl'(0).
It can, however, be made use of in the following way.
For x))1, Q(x), Q{x+1)and I"(x+1)may be expanded
Rs well Rs fi(x&1} Rlld thc collisloll opcl'Rtol' tRkcs tllc
form (A11). It is easily shown that (A11) may be
written

IO'

E/$0
8.0
4.0

2.0

Bf1 eE 1 d 1e '+1
-(I")'

8~ p. &&' 2m&~)I' '~'I" dx 2e'& —1
IO

0.5

10

When (5.15) is inserted into the differential equation
(5.10) the result can be integrated once to give the equa-
tion valid for large x:

IO'0 4 6
x (~ 8/4g)

O. I

)
10

where a was defined by Kq. (5.14) and d= {e'&+1)/
2(e'I —1).The condition C=0 has already been inserted.
For a given value of x, say x=b, Kq. (5.16) is in the
form

or
~I{b)fi{b)+~~(b)fi'(b)= o

A(b) F{b)=0,

(5.17a,)

(5.17b)

where A l(b) and, 3I(b) are thought of as the components
of the vector A(b), and fl(b) and fi'(b) the components
of the vector F(b). Because fi(x) is the solution of a
second-order linear differential equation, the vector F(b)
is related hnearly to the vector F(a), i.e. ,

F{b)=c(b,a) F{a)

where c is the matrix

c(b u)=W(b) W—'(II) (5.19)

Pro. 2. Distribution functions for electrons in the (0,0,0) valley
~jth nonparabolicity taken into account. The numbers at the
right give the electric field intensity in units of 80=5.95 kP/cm,

although, there too, in principle, the solutions should
not be very good. The solutions of Fig. 3 di8er from
those for that case given earlier' in that the latter were
solutions of the equation obtained by using for all z the
form (5.15) valid for large x (with I'= x, of course). This
resulted in a singularity at small x, which is why those
solutions were presented only for x&0.3.

By colllpRI'18011 of Figs. 2 Rlld 3 I't Is sccll 'tllR't fl ls

E/Eo
8.0
4.0
2.0

W(n) being the Wronskian at x=a. If the relation (5.18)
for a=0 is inserted into (5.1'/b) we obtain

A(b) c(b,o) F(0)=0. (5.20)

IO-' l.o

Since the coefficients A(b) are known and the matrix
c can be determined by numerical integration of the
second-order differential equation obtained from (5.1,0)
for any two {different) sets of initial. conditions, Kq.
(5.20) gives a relation between fi(0) and fi'(0) that can
be used to select the correct fi'(0).

The results of numerical integration of Kq. (5.10) with
(Bfi/Bf) glvcI1 by (5.11) Rftcl' I'cplRclllg fl(x&1) by
f1&fl'+(1/2) fl" are shown in Fig. 2 for the nonpara-
bolic case and in Fig. 3 for the corresponding parabolic
case, i.e., for I'(x) replaced by x, all other quantities
remaining unchanged. The values of the various con-
stants used are shown in Table I. The solutions have
been plotted down to x=o although a,ccura, cy should
not be good for small x. Low 6elds have been included

2

IO
"3 0.5

Io «Q

Io'0 Io

FIG. 3. Distribution functions for electrons in the (0,0,0) valley
vrith nonparabobcity neglected, i.e., at=0. The soHd lines are for
E~'0= 5.95 kV/cm, the dashed Hnes for Eo=1.06X5.95 kV/cm. The
numbers at the right give the electric field intensity in units of
5.95 kV/cm for both cases.
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the same for parabolic and nonparabolic cases at small

x, where F(x) x, and that at higher x the nonparabolic

f& lies below the parabolic one. This is the anticipated
cooling of the distribution, and it is particularly large
for fields in the range 0.3 to 1.0 Eo. The non-Maxwellian
character of the solutions, manifested by their departure
from straight lines, is still apparent in the nonparabolic
case at fields of 0.3 Eo and above. As remarked earlier
for the parabolic case, ' the deviation is such as to give
relatively fewer low-energy electrons and more high-

energy electrons than a Maxwellian of the same (c).
Although this tendency is less marked in the distribution
for the nonparabolic case than for the parabolic, that
will be oGset, so far as actual electron populations in the
diGerent energy ranges are concerned, by the higher
density of states at high energy in the nonparabolic
case.

Beyond E=0.3Eo the differences between the non-

parabolic and parabolic distributions are seen to de-
crease as E increases. This can be understood as follows.
From (5.15) we obtain4'

f&
——exp

(F') 4 ln(4I'/I")
dx . (5.21)

aF2+d(F') 4 ln(4F/I"')

f Np~a(1/4) 6'(2:) (5.23)

where G'(x) is a function of x and n, but does not depend
on E. Since frP and frNP differ only at large x, where

they are relatively small anyway, the normalization
constants may be assumed to be the same, and we con-
clude that

P
~f( (&I) I6'(&)—g'(&)l

NP
(5.24)

It is readily seen from this that as E increases and there-

"This equation was obtained earlier for the case T&&O~, the
Debye temperature, by Dykman and Tomchuk, Ref. 18 and D.
Matz, Ref. 17. It was obtained earlier for the parabolic case by
R. Stratton, Proc. Roy. Soc. (London} A246, 406 (1958}.

For the parabolic case, i.e., F=x, the term aF'))d(F')4
&&ln(4F/F') for large x and large E and the latter term
may be neglected. Equation (5.21) may then be inte-
grated to give2

f P e (1/a) 0 (z) = a (1/a) [()/g)+on4x/z)l (5 22)

where the superscript P indicates parabolic. It can be
checked with the use of Fig. 3 that this is actually quite
a good approximation for x&6 when E= &ED, for g&4
when E=EO, etc. The dropping of the second term in
the denominator for large x is not generally permissible
in the nonparabolic case because of the rapid increase
of (F')' with x. However, it is still a fair approximation
in the present case in the neighborhood of @=10and
for E)EO to neglect the ln term in the denominator.
When this is done, (5.21) for the nonparabolic case takes
the form

fore a increases the ratio f(P/f(NP at a given x must
decrease.

In Fig. 3 there are shown also, in dotted lines, the
results of calculating with an E4 that is 6%%uo higher than
that taken for the other calculations. This decreases f)
at high x, or cools the distributions, as expected because
an increase in Eo means increased coupling to and scat-
tering by the polar modes.

6. COUPLED BOLTZMANN EQUATIONS
AND SOLUTIONS

A convenient way of treating a valley with ellipsoid'il
constant energy surfaces is to perform a transformation
of coordinates in momentum space that makes the el-

lipsoids spheres. In the transformed space the distribu-
tion may be expanded in the form (5.1) with 0 repre-
senting the angle between the transformed k and E
vectors. "With the use of this transformation solutions
of the Boltzmann equation have been found for the
(111)valleys of Ge in high 6elds with the series (5.1)
terminated at n = 1."These solutions were based on the
assumption that intervalley scattering is weak. For field
directions other than (100) the solutions were in general
diferent for diGerent valleys. The differences among the
n =0 terms signify diGerent average energies or diGerent
temperatures for the diGerent valleys. The temperature
is found to depend on the angle between R and the major
axis of the ellipsoids, as expected, because the size of
the mass in the 6eld direction is important in deter-
mining how eGectively the valleys are heated. The e= I
terms were also found to be diGerent in magnitude, and
were directed diGerently for the diGerent valleys, in
general. When the current density j is calculated by
adding the contributions of the various valleys, in low
fields the anisotropy washes out and j is parallel to K,
but in high fields some eGect of anisotropy remains and

j is found to be at an angle to E.
The problem has not been solved in high fields for

the case of strong equivalent intervalley scattering, as
apparently exists in GaAs. It is evident that strong
intervalley scattering will tend to wipe out the charac-
teristic features of the many-valley solutions mentioned
abov"- different fo's or 1's for different valleys, and

j at an angle to E.This suggests that it would be a better
approximation for this case to assume the distribution
to be the same for each valley, and this is what was done.
There is an additional reason for this approximation to
be good in the present case. A substantial part of the
carrier heating in the upper valleys, as will be seen, is
due to transfer of hot electrons from the (0,0,0) valley,
for which the distribution over most of the range of
fields is expected to be essentially spherically sym-
metric. (Even if this were not so the asymmetry would

4' See, for example, H. G. Reik and H. Risken, Phys. Rev. 124,
777 (1961}.

42 H. G.~Reik and H. Risken, Ref. 41.
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bear no simple relation to that expected in the (100)
valleys due to a high field. )

For the reasons discussed in Sec. 5 in connection with
the lower-valley distribution, the series (5.1) for the
upper valley will be terminated also at m=1. This will
be a better approximation for the upper valleys since
the low mobility means that high fields, greater than
12 kV/cm, are required for carrier heating to occur. The
m= 1 terms for the difFerent valleys cannot be expected
to be the same even when all valleys are at the same
temperature. Since we are concerned ultimately only
with the sums of contributions of all the valleys, how-
ever, and most of this anisotropy cancels out, it should
be a good approximation to calculate for an "average"
valley with spherical constant energy surfaces. In
any event, no efFects of anisotropy nor dependence
of the Gunn efFect on orientation have been found

experimentally.
As discussed in Sec. 4, the scattering processes that

must be considered for the upper valley are the intra-
valley acoustic, polar optical, and intervalley ones. For
large e.—cp, where the relaxation time for polar scatter-
ing given by (3.1a) applies, polar scattering is found to
be much less important for momentum relaxation than
equivalent intervalley scattering. '4 For small c—ep,

T~p ~ 0 as (e—eo)'". As discussed earlier for the lower
valley, despite the fact that it is not valid for small
e—ep, incorporation of v.„,is useful because it simulates
the effect of impurity scattering. For the (0,0,0) valley
its eGect on p, was seen to be equivalent to that of 5&(10"
impurities per cm'. For the (100) valleys, because of
the larger mass, 7„,is smaller, and for a given impurity
concentration 7.q would be larger. Use of v„, here would
therefore have the effect of a considerably larger im-
purity concentration. Since the mobility in the upper
valleys is already so small that 5X10" impurities per
cm' would hardly afFect it, it appeared a better approxi-
mation to omit v„, altogether in calculating the relax-
ation time for the (100) valleys.

With the dropping of v„, a relaxation time exists for
all c for the upper valleys. Since the upper valleys are
parabolic, at least within the range of energies with
which we are concerned here, we may use Kqs. (5.5)-
(5.10) developed for the lower valley by setting r= x,
I"=1.For the upper valleys, however, we must take
into account the fact that c is being measured from the
minimum of the (0,0,0) valley, while lr is conveniently
measured from the minimum of the (100) valley in
which the electron is located. With this, and the no-
tation f2 for the spherically symmetric (m=0) term in
the upper-valley distribution, we obtain the differential
equation to be solved for the (100) valleys

where

xp= cog/AM[. (6.1a)

As discussed above, we take the upper-valley relaxation
time to be given by

1 1 1

r(R) 7. SR +1 Tj~j'
(6.2)

r, being given by (3.5a), r& & by (4.6), and r;;.by (4.7).
The collision operator is given by

(Bti, at). &Bti„EBt/, & Bt&, ;

The collision operators for acoustic and polar mode
scattering must also be modi6ed to take into account
the fact that the bottom of the valleys is at s=sp.
This gives for the intravalley acoustic mode scattering

Bfz 4m2ut (2ho)t/tnt) (x xo)—
R kpT l.

(x—xp) /x —x, 1)
x f~-+~ +—

~

f2'+ f2, (6.4)
xt&

where t, was defined in (3.5a). Actually (Bf&/Bt), was
omitted in the 6nal calculations since its efFect was
found to be very small. The collision operator for the
polar scattering is found to be

It is easily verifed that, for xo ——0, (6.5) is obtained from
(5.11) and (5.12) by replacing r(x) by x and m& by tw&.

From (A20) the collision operator for nonequivalent
intervalley scattering is

/Bfg ( mg 't' 1
{r't'(x+xg) r'(x+x, )

E Bt 2~+1 Em2 T12xO

XLe*»fz(x+xz) —f2(x)j+I"I'(x—x~)

Xr'(x—x&)Lf&(x—x&)—e'»f&(x)J}, (6.6)

where

(
Bf~) 2' 2eEO (x—xo) ' '

{sinh-'(x —x,) 't'
Bt )„. (m2hcot)"' e~' —1

XLe &f~(x+1)—f2(x) j+sinh '(x—xo—1)'t'

X)f2(x—1)—e"f2(x)j} (6 5)

2g2+2
xy =M»/coty (6.6')

3m2ha t (x—xa)
Bf2't

X{(x x0)'t'r&'&f2'}+ —
~

=0, (6.1)
Bt i.

i

x» ——hcog2/koT, (6.6")

and r» is defined by (A21). From (A18) and (A19b)
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we obtain for the equivalent intervalley scattering

(8f2 1
((x+xg—xg)'t'

(Bt,~; v;j xo't'

X [e*j~'fl(x+x,)—fl(x)g+ (x—x2—x,)»'

X [f2(x—xg) —e jj'f2(x)j), (6.7)

where, from (A23),
x2=& jj'/~lp

x,y =k(o,y//t pT,

(6.'/')

(6.7")

1 2Djj [jitg&"&g'tne '" 1

3 2'~'eh'po) ~ '
the various symbols here having been defined in Sec. 4.
The factor aa appears in (6.7), as in (4./), because tran-
sitions to the valley at the opposite end of the same cube
axis do not require a phonon.

For the (0,0,0) valley the differential equation (5.10)
remains valid, but r&'& and (8fi/Bt), must be modified
to include intervalley scattering. The former is now
given by

~go 71~2(1)

where from (A21), (A23), and (A19b),

(6.8)

—[(x+xi—xo)"'le*»(x—xi—xg)'t'j. (6.9)
7 1~2 &12&0

Similarly,

+I
(~f~& (~fil (~f~)

&at&, &at&,. &at&i 2

(6.10)

where, from (A22),

(afi 1
((x+x,—x,) it2

E Bt i+-2 7'»xO 1/0

X [e*»f,(x+x,)—f,(x)j+(x—xi—x~) 't'

As noted in the Appendix, this is unaffected by the non-
parabolicity of the central valley.

If it is desired to include space-charge scattering,
1/r„with r, given by (3.8), is added, to the right of
(6.8). The collision operator is unaffected, since this
scattering is elastic.

To summarize the discussion carried out so far in this
section, the distribution functions f, and fs for x)9.2,
i.e., for the energy range in which intervalley scattering
is possible, are to be determined by solving a pair of
coupled equations. One of these equations is (5.10) with
rn& given by (6.8), (A13), and (6.9) and the collision

operator by (6.10), (5.11), (5.12), and (6.11).The other
equation is (6.1) with r "& given by (6.2), (3.5a), (4.6),
and (4.7) and the collision operator by (6.3) through
(6.7). The various numerical quantities required are
summarized in Table I.In order to make these equations
tractable, Taylor-series expansions of f;(x&x ) were
made about the point x and terms of higher order than
f;" dropped. This leads to difficulty for x(10 since
f2(x) is undefined there. It was therefore decided to
neglect intervalley scattering in the interval 9.2(x&10.
The error that results should be insignihcant both be-
cause the interval is small and because the density of
states in the (100) valley is very small near x= 10, the
valley bottom. The coupled equations are then linear
second-order differential equations, and they could be
integrated numerically. This again raised the problem
of initial values. Integration of the central-valley equa-
tion gives fi(10) and fi'(10), leaving f2(10) and f2'(10)
unknown. It was found possible to obtain solutions that
were well behaved out to very large values of x for a
wide range of values of f2(10) and fs'(10). Fortunately,
for large x, where various quantities could be expanded,
it was possible to carry out a single integration of the
differential equation obtained by adding F'1"'/'2 times
Eq. (5.10) and (m&&~&/mi)'"(x —xo)'i' times Eq. (6.1).
This provided a linear relation between fi, fi', f2, and
f2' at large x that could be used in a manner similar to
that described earlier for the lower-valley equation to
derive a linear relation between fi, fi', f2, and f2' at
x=10. Since fi(10) and fi'(10) are known, this actually
leaves only one unknown parameter, say f2(10). With
the use of the linear relation for large x, plus the con-
dition that fi and f2 must remain positive, it was possi-
ble to limit the acceptable fi(10) values to a very narrow
range.

Solutions have been obtained in the manner described
for a wide range of Gelds and different values of the
important unknown parameters. One of the most critical
has been found to be D12. Since the solutions of the
Boltzmann equation describe a steady state, D» af-
fects the distributions mainly through its effect on
7 &'& and thus essentially on how long a time is available
for the 6eld to heat the light mass carriers. This effect
can be seen in Fig. 4, showing the distributions at a
field of 2.4 kV/cm for Di2 values of 5X10' and 5X10'
eV/cm. In the former case fi(x) above x= 10 is a simple
continuation of the distribution below x=10, while in
the latter fi(x) changes behavior abruptly at x=10,
dropping so that it becomes essentially parallel to the
Maxwell-Boltzmann distribution for E=O. As can be
seen in Fig. 1, the two cases differ in that for 5)&10'
eV/cm intervalley scattering is ineffective and polar
scattering remains dominant above 10, while for 5)(10"
eV/cm intervalley scattering dominates over almost the
entire range where it is energetically possible. The inter-
valley scattering is so strong, in fact, that above 10 the
light electrons are no longer heated by the field, as
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evidenced by this part of the distribution being parallel
to that for E=0. So far as fs is concerned, it is easily
verified that for E&Eo, v &'& is too small for any direct
heating of the electrons by the Geld, i.e., the terms in-
volving E in Eq. (6.1) for the upper valleys are negli-
gible. For the larger Dts value, where fr~fr, the effect
of the ft terms in (6.1) is also small. Thus, for E(Es,
as noted earlier, ' Eq. (6.1) states essentially, over most
of the energy range, (8fs/Bt), =0. The solution of this
equation, whatever the scattering mechanisms, is, of
course, the Maxwell-Boltzmann distribution at the lat-
tice temperature T, as is indeed observed in Fig. 4.
For the smaller D», fs just above @=10 is not much
different from a Maxwellian at temperature T, but as x
increases, because ft is much larger in this case, the
terms in (6.1) become important and fs is raised sub-
stantially above the lattice temperature Maxwellian,
i.e., heating of the carriers in the upper valleys arises
from intervalley transfers.

Calculations of the fraction of the electrons in the
upper valley, to be discussed in the next section, in-
dicate that for Drs—-5 X10' eV/cm 30%%uq of the electrons
are in the upper valleys at this Geld, while for SX20'
eV/cm 78'P~ are in the upper valleys. The latter figure
is unreasonably high; it would indicate a threshold Geld
for the Gunn effect well below 2.4 kV/cm, which is in
contradiction with experimental results. We therefore
rejected this value of a~2 as too low.

Since it has not been established conclusively that
low-Geld avalanche" exists, we have carried out the
remainder of our calculations for D~~ values in the range
1 to Sv2&&10' eV/cm. If the low-field avalanche does
exist, a D~~ value near the lower end of this range ap-
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FxG. 4. Distribution functions for electrons in the (0,0,0) and
(100) valleys, denoted by f& and f2, respectively, for 8=0.4
Eo=2.4kV/cm, D;; =1X10 eV/cm, a=Oand DI~=SX10'eV/cm
(solid lines) and 5X107 eV/cm (dashed lines). The line labeled"0"is the Maxwell-Boltzmann distribution for zero 6eld.
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pears likely, '~ while if it does not exist, a value near the
upper end is likely.

It is implicit in the above discussion that the effect of
nonparabolicity is not large. This is shown in Fig. 5,
where distributions are plotted for several di6erent
fields for n=0 and for a=0 576/eV o. r nA&ut

——0.02, the
latter, as discussed in Sec. 2, describing the nonpar-
abolicity of GaAs up to 2 eV at least. D» was taken
as 5X10s eV/cm for all cases. It is seen that for the
nonparabolic case the electrons are consistently cooler
than for the parabolic. Quantitatively, the same trend
exists as was described earlier for x&2D, e.g., that as
the field increases the ratio ftP/ftNP at a given x de-
creases. Not surprisingly, the upper-valley distributions
are less affected than the lower ones, the values of fsP
and fsNP being generally closer together than those of
ft and fP So far as the .variation with field is con-
cerned, for either the parabolic or the nonparabolic
case ft and fs increase monotonically with E, of course.
When the Geld is not too high, above x= 20 both remain
parallel to the E=O line. %hen the Geld gets high
enough so that the light mass electrons above x=20
are heated, the slope of f~ changes, it crosses fs and lies
above it at large x. For cx =0 the light electrons are suN. -

ciently heated. at E/E 1sfor this crossing to occur,
while for the nonparabolic case the light electrons are

Pro. 5. Distribution functions for electrons in the (0,00) and
(100l valleys for E=0.4, 1.0 and 2.0 Zo, Es being 5.95 kV cm, for
parabolic and nonparabolic bands. Dn=5 X10' and D;;.=1X10'
eV/cm for all plots.
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FrG. 6. Distribution functions for electrons in the (0,0,0) and
(100) valleys for E=2.0 Ep, Ep being 5.95 kV/cm, for u=0, D,;.
=1X10'eV/cm and Dn= 592)&10' eV/cm (dashed lines), (5/V2)
X10' eV/cm (solid lines).

less heated and the crossing does not occur at this field.
At E/Es 2 the cross——ing occurs in both parabolic and
nonparabolic cases, although it is clear that the light
electrons are more heated in the former case.

Typical high-6eld behavior is shown more clearly in
Fig. 6, which is also designed to illustrate the eQect of
varying D». For the smaller D», where heating of the
light mass electrons is greater, f& crosses fs and stays
well above it. fs drops rapidly at 6rst and then turns
around to become parallel to f~ at large a, showing the
heating of the heavy mass carriers through intervalley
transfer referred to earlier. This behavior of f~ and fs
is typical of what is seen at higher Gelds also for this
value of D» and at high enough 6elds for all D~2's

investigated, for both parabolic and nonparabolic cases.
For the larger D» heating of the light electrons is seen
to be much less at this Geld. Thus even a change by a
factor 2 in Drs can have a large effect on f~. The eRect
on fs of this change in D» is considerably less.

Distribution functions at diferent Gelds for D» ——1
XIOs eV/cm are shown in Fig. 7. As anticipated, f~
falls oB much less rapidly with x for -this value of D»
than for 5X10' eV/cm. At E/Es=1, or 6 kV/cm, f,
is down by only a factor 10' at x=44, corresponding to
1.6 eV, the energy required to create an electron-hole
pair. It is not unreasonable, therefore, that for this
value of D~s avalanche could be sustained at 6 kV/cm
or somewhat lower, as suggested by Copeland. "Apart
from the very long tails to high energy, the general be-
havior of these curves is qualitatively similar to that
observed for the other cases. Substantial heating of the
light electrons above x=10 occurs at lower Gelds here
than for most of the other cases shown because of the
smaller D».

Ke have investigated also the effects of varying Eo

and D;,'. Increases in Eo, predictably, increased the
Geld required to heat the light mass electrons for x& 10,
or, alternatively, decreased this heating at a given 6eld,
the general shapes of the distributions being similar to
those already shown. The eGect of decreasing D;;, or
the rate of equivalent intervalley scattering, is shown in
Fig. 8 for a 6eld of 36 kV/cm. Very high 6elds are re-
quired for this eBect to be sizable. For 6elds up to 12
kV/cm the effect of changing D,,' by as much as a
factor 2 is quite small since the upper-valley mobility
remains small and carrier heating above x= 10 is small
for the parameters used here. It is seen that decreasing
D,y raises both f& and fs, presumably because the higher
mobility of the heavy mass carriers permits more direct
heating by the 6eld. For D,y 5X10—s—eV/cm the close-
ness of the light and heavy electron disbribution func-
tions is a consequence of their mobilities being com-
parable at this 6eld.

Distribution functions were also obtained for cases
in which space-charge scattering was included. Again,
the shapes of f~ and fs were similar to those shown
above. The main eGect of the incorporation of v-, was
that higher 6elds were required to produce a comparable
amount of electron heating.
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FIG. 7. Distribution functions for electrons in (0,0,0) and (100)
valleys for E=0.4, 1.0, and 1.4 Ep, Ep being 5.95 kV/cm, for a
nonparabolic band with D12=1&(10'eV/cm, D;; =1&10' eV/cm.

'7. VARIATION WITH FIELD OF nj/(nq+ns),
vq& p& p2& ETC

The functions fq and fs obtained from the numerical
calculations described are unnormalized. The normal-
ized functions may be taken as Qf& and Qfs, the nor-
malization factor being the same for both since the dif-
ferential equations are coupled. To determine 8, we use
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2m3(e —eo3)/3A3 for (100), we obtain

Z0

K

IP "I

X
O

D
6)
~ I02=
V)

O

IO 8.—

DII = I x lo

DII'= 5x 108

DII= 7.5 x lo

dfi (e—eo)r&'& df3j=—s3e3E Q +p
-&&'& mi(dy/de) 3 de &&'& m3 de

(7.g)

2 nl'g 712+&j = /3ret/d = —— — ($1+ /I3),
3 mi(81+ 83)

(7 9)

Changing the summations to integrations with use of
(A19a) and (A19b) for the densities of states, and in-

corporating the value of 8 obtained from (7.2), we find
finally

8 I2 I6

ENERGY (ntuI)
20 24

FIG. 8. Distribution function for electrons in the (0,0,0) and
(100) valleys for E=6.0 E&, Eo being 6.31 kV/cm, a=0& D»
=SNX 10' eV/cm and D;; values of 5/10' eV/cm (dashed hnes),
7.5 &&10 eV/cm (dotted lines) and 1X10' eV/cm (solid lines)

where " I'/'(x) 7 "&

fi dx
3 I"(x)

(7.10)

~ (2)

(x—xp) 3/3 f3' dx, (7.1.1)

the condition that the total carrier concentration n~ is
given by

r/r=r31+333=& f1+& f3,
Q(1 ) Q(2)

(7 I)

where the 6rst summation is to be taken over all states
in the (0,0,0) valley, the second over all states in the
(100) valleys. Carrying out these summations, taking
into account the nonparabolicity of the central valley,
we obtain
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g, being the number of equivalent (100) valleys. The
first term of (7.9) represents the current contribution
of the (0,0,0) valley and the second that of the (100)
valleys. The drift velocity calculated from (7.9) repre-
sents, of course, an average over the two sets of valleys.
By combining (7.9) and (7.5) we may deduce the mo-
bility of electrons in the (0,0,0) valley:

where

—g~21/2m 3/3(fg33 )3 /Q3L &I+ y ]/k3 (7 2)
2er13 gxP1=-
3m1 81

(7.12)

I"/3(x) I"(x)fidx Similarly, we may deduce the mobility of electrons in.

the (100) valleys:

d3 ——(m3& &/mi)'/' (x—x»)'"f3dx. (7.4)

2er13 ga
P2=

3m1 82
(7.13)

It is clear that the first term of/(7. 3) corresponds to
n1, the second to n2. %e therefore deduce

Ni/(Ni+r32) ~1/(~1+~3) ~ (7.5)

For calculations of domain dynamics it is necessary
to knovr also the diffusion constant D of the carriers.
By solving the Bo1tzmann equation under the usual
assumption that the distribution function varies little
over a mean free path, one finds"

Since we have taken the distributions in the form
f"'=f;+kzg;, we may write the current density D= 3(r"). (7.14)

j= eLQ vkr/gi+Q vk&3g3), (7.6)

where again the 6rst summation is over all states in

(0,0,0), the second over all states in the (100) valleys.
For spherical constant energy surfaces only the com-
ponent of v along E will contribute to the current. In
a nonparabolic band a component of v, v, is related
to the corresponding component of k, k, by

2 '7
D=

3mi (dy/de)'
(7.15)

Inserting the density of states (A19a), we obtain from

This shouM be valid for diffusion perpendicular to the
current direction, approximately so for diffusion along
the current direction. 34 With the use of (7.7) we find
for a nonparabolic band

3&.= &M /mi(dy/de). (7 7)

Using (7.7) and (5.9), and replacing k+3 by its average
over a constant energy surface, 2m'/343 for (0,0,0) and

4' See, for example, E. M. Conwell, Phys. Rev. 127, 1493 (1962).
44 P. J. Price, in Fluctuationsin Sol@'s, edited by R. K. Burgess

(Academic Press Inc. , New York, 196S), Chap. 8.
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(7.15) "I''I'(x) r"&
fi dx.

3mlirl e F (x) Ti2

2hru2rgg
(7.16)

Comparison of (7.16) with (7.12), using (7.10) for gi,
shows that if fi were a Maxwell-Boltzmann distribution
the Einstein relation w'ould be satisfied, as of course it
should be. From (7.14) and (A19b) we deduce for the
upper-valley electrons

2hco)v» my& &-'I'
D2-

35$2 8g 15$ gp

~ (2)

(x—xo)'" fl dx, (7.17)

where ns&&1& is the inertial mass of the upper-valley
electrons. 4' In this case the Einstein relation should be
reasonably weQ satisfied over much of the Geld range
of interest because the upper-valley distribution is close
to Maxwellian. It is also useful to calculate an average
diGusion constant, D, for the two types of carrier, de-
fined by

pected from the fact that this caused the distribution
to be cooler, the beginning of the negative differential
resistance (ndr) region or threshold comes at a higher
Geld in the nonparabolic case, 2.9 kV/cm, as compared
with 2.1 kV/cm, Dii being 5X10' eV/cm in both cases.
Correspondingly, for this value of D» the minimum is
at 12 kV/cm in the nonparabolic case as compared
with 10 kV/cm in the parabolic case. The differential
mobility in the negative differential resistance region is
quite similar in the two cases, about —3000 cm'/V sec
in the steeper region of the characteristic. For D»=1
X10' eV/cm the threshold is lower, about 2.4 kV/crn,

I2

IO
O

~ 8
E
V

o6

f22
D= Di+ D2.

'rii+ ri2 iii+ +2
(7.18)

Another quantity of interest is the average energy of
the carriers. For the lower-valley electrons this is given
by

(ei) = (hs&$/8i) I'"'(x) I"(x)xfi dx, (7.19)

I I I I
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FIG. 10. Average drift velocity versus Geld for D» values of
(5/v2) and SvTX10' eV/cm, and for D12 ——5X10' eV/cm with
space-charge scattering as described in the text. For all plots
F0——5.95 kV/cm, Djj 1X10' eV/cm, and ca=0.

while for the upper valley

(eq)= (hanoi/d2)[m2& &/mij'~2 (x xo)'"f2dx. —(7.20)

The integrals gi, $2, si, 82, and those of Eqs. (7.16),
(7.17), (7.19), and (7.20) were evaluated. numerically.
Some results for the average drift velocity versus Geld
are shown in Figs. 9-11. Figure 9 shows the eGect of
including nonparabolicity in the calculations. As ex-
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FIG. 11. Average drift velocity versus Geld for Djj values of
1X10, 7.5X108 and 5X10 eV/cm. For all plots D1~=5~X10s
eV/cm, To=6.31 kV/cm, and 0.=0.
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FIG. 9. Average drift velocity versus field for D»=5X10'
eV/cm for both parabolic and nonparabolic bands and for D12
= 1X10 eV/cm for the nonparabolic band. For all plots F0= 5.95
kV/cm and D;; =1X10 eV/cm.

as expected because the smaller D» permits the elec-
trons to get hotter. For the same reason the drift veloc-

ity comes down more steeply beyond threshold for this
D». The eGect of varying D» is also shown in the next
figure, where it is seen that for Di2=5v2X10' eV/cm
the threshold is at 2.2 kV/cm, while for (5/V2)X10'
eV/cm it is at 2.0 kV/cm. This figure shows also the
e6ect on the characteristic of space-charge scattering,
to the crude approximation employed here. For the
latter calculations iV,Q was taken to be 3.2X10' cm—',
which, when the other scattering processes are included,
leads to a low-held mobility of 5500 cm'/V sec for s.
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sample with 10" impurities per cm'. Incorporation of
this amount of space-charge scattering raises the thresh-
old from 2.1 kV/cm to 3.3 kV/cm and the minimum
or valley from 10 to 12 kV/cm. It also decreases the
magnitude of the differential mobility in the ndr region
somewhat. In Fig. 11 we show the effect of varying

D;; . When D;; is decreased p in the upper valleys in-

creases, with the consequence, shown in Fig. 8, that
both (0,0,0)- and. (100)-valley electrons are heated more.
This leads to the threshold and valley fields decreasing
as D;; decreases, the former effect being relatively small,
however, because heating of the upper-valley electrons
is small for any of these D;;. values at Gelds around
threshold. The fact that current is higher beyond the
minimum for the lower D;; is, of course, due to p2 being
higher. For D '=SX10' eV/cm, in fact, p~ is high
enough to allow perceptible electron heating and con-
sequent decrease of mobility at the highest 6elds shown,
as evidenced by the Battening of the characteristic there.
This is shown more directly in Fig. 12 where p, 2 is plotted
versus field for various different values of the parameters.
It is clear, as indicated earlier, that p2 is quite sensitive
to the value of D,y, 1X10' eV/cm giving the value in

best agreement with experiment. Changing the value
of the deformation potential from 6 to 6%2 eV has
relatively little effect on p2 because the deformation
potential scattering is relatively unimportant.

It is noteworthy that changes in a~2 have little effect
on p~ even when the effect on f2 is considerable, as in
the case shown in Fig. 6, for example. The reason for
this is that, since v &" decreases as x increases, the part
of the distribution that makes the greatest contribu-
tion to p, ~ is that in the neighborhood of x= 10.Thus any
heating at large x has little effect on p2. In the neighbor-

hood of @=10 the main effect on f2 of change in D&2,

shown in Fig. 6, is a shift with little change in slope.
Since p2 is determined essentially by f2' rather than f2
such a shift causes little change.
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FIG. 12. Mobility versus field for carriers in the (100) valleys
for D;; values of 5&108 7.5)&10 and 1)&10 eV/cm and E1'
values of 36 and 72 eV. For all plots D12=5V2)&108 eV/cm,
Ea =6.31 kV/cm, and n= 0.

The variation of the (0,0,0)-valley mobility with D~~

and field is shown in Fig. 13. For 6elds below threshold
p& shows a slight increase with 6eld, this being only
about 4%, for example, for the nonparabolic case with
D~s ——SX10' eV/cm. This increase might be due to the
(simulated) impurity scattering. Inclusion of space-
charge scattering would make the increase smaller or
cause p, ~ to decrease, depending on the amount of this
scattering included. Measurements below threshold on
samples with n~4X10"/cm', lower than the impurity
concentration for which we calculate, in effect, gave a
Hall mobility that decreased somewhat with increasing
6eld. 4' The mobility, ~'7000 cm'/V sec, was lower than
the theoretical mobility including impurity scattering
for such samples, )8000 cm'/V sec, suggesting the
presence of space-charge scattering. It may therefore

IO4

D~si(5lJ2) x IO, P

FIG. 13. Mobility versus field for
carriers in the (0,0,0) valley for the
DIg values specified. For all plots
80=5.95 kV/cm, D;; =1X10'eV/cm.
The dashed line shows a —1 slope for
comparison. 2-

5
0.8 I.O 2.0 4,0 6.0 8.0 IO

E (kV/em)
20 40 60

4' A. Zylbersztejn and J. B. Gunn, Phys. Rev. 157, 668 (1967).
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FIG. 14. Fraction of carriers in the

(0,0,0) valley as a function of field for
the D1g values specified. For all plots
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Fio. 15. Variation with Geld of diffusion constant Dj for the
(0,0,0) carriers and of average di6'usion constant 8 for the D1~
values shown. For all plots E0=5.95 kV/cm and D,, =1)(10''
eV/cm.

46 H. G. Reik and H. Risken, Phys. Rev. 126, 1737 (1962).
47 Z. G. S. Paige, in Progress in Semiconductors, edited by A. F.

be the case that the drift mobility, which is what we
calculate, and Hall mobility vary in the same way with
field although, of course, in principle they need not.
Since in any case the calculations need not be accurate
in this range of fields we can only conclude that changes
in p& below threshold are small. Beyond threshold p&

decreases with increasing E due to the inQuence of inter-
valley scattering, the more rapidly the larger D». It is
seen from the plot that for the cases of stronger inter-
valley scattering, or larger D», p, & shows a region of —1
slope, or drift velocity independent of field. It is interest-
ing to note that this occurs in about the same field range
for which drift velocity is found to be independent of
field in Ge at room temperature. An explanation has
been presented for this so-called saturation in Ge in
terms of a combination of intravalley deformation po-
tential and nonpolar optical scattering. 4~ This expla-
nation has been challenged, however, on the grounds
that it neglects intervalley scattering, which must have
a considerable e6ect in this Geld range. 4~ 48 We note also

that D» for scattering between the lower valleys L(111)
in Ge] and upper valleys Lalso (100) in Ge] is 5&&10'
eV/cm. 4'

The variation with Geld of the valley populations is
shown in Fig. 14, where mi/rir is plotted versus field. ft
is seen that once the transfer of carriers has begun, a
little below threshold, it proceeds very rapidly. At the
threshold about 20% of the carriers have transferred to
the upper valleys. The fact that the transfer is larger at
a given field the smaller D» is again a consequence of
the greater carrier heating for smaller D».

The results of Fig. 14 for low Gelds may be compared
with the data of Zylbersztejn and Gunn mentioned
above. From their experiments" they concluded that
the fractional change in Ni at a field of 2 kV/cm was
small, less than 2%%uo. For the parabolic case this
change, according to Fig. 14, is 14 to 20%. For the non-
parabolic case, however, the change at 3 kV/cm is 5%.
With space-charge scattering taken into account the
calculated change would be less than 5%. Thus the
results with nonparabolicity taken into account are in
good agreement with these experimental data.

Figure 15 shows the variation with field of the diGu-
sion constant for the (0,0,0) carriers and of the average
diffusion constant. The diifusion constant for the (100)
carriers is not shown, because it stayed almost constant
through the Geld range shown, as expected. For low
fields Di for the case n=0 is 206 cm'/sec, whereas the
value calculated from the Einstein relation is 160 cm'/
sec. The poor agreement is not unexpected since, as
noted earlier, the approximations made are not particu-
larly good at low fields. The initial increase in Di with
increasing E reflects the rapid increase in (e) with field,
shown in Fig. 16, which more than counterbalances the
decrease in v with E due to increasing mass and inter-

Gibson and R. E. Burgess (John VMey Bz Sons, Inc., New York,
1964), Vol. 8.

8
¹ I. Meyer and M. H. Jorgensen, J. Phys. Chem. Solids

26, 823 {1965).
49 S. M. de Veer and H. J. G. Meyer, in Proceedings of the Inter-

national Conference on Physics of Semiconductors, Exeter, 1962,
edited by A. C. Stickland {Institute of Physics and The Physical
Society, London, 1962), p. 358.
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valley scattering. For the upper valleys the Einstein
relation is expected to hold quite well over most of the
Geld range shown because the distribution is essentially
Maxwellian. The calculated D2, with m~ taken as the
value in Table I, was 4.8 cm'/sec, while the value ob-
tained from the Einstein relation with p=150 cm'/V
sec was 3.7 cm'/sec. In this case the discrepancy arises
from the fact that the masses have not been handled
correctly, i.e., the many-valley model has not been
used. consistently. In calculating D therefore we used
for D2 the value obtained from the Einstein relation.
It is seen in Fig. 15 that starting from threshold the
upper-valley carriers dominate D, the value being lower
for Dts ——1X10' than for 5X10' eV/cm because more
carriers are in the upper valley at a given field for the
former value.

The variation with Geld in average energy of the
(0,0,0) carriers is shown in Fig. 16. As remarked earlier,
the initial increase is fairly rapid. An (e) of 4A&o&, where
the approximations of the present calculations should
begin to be good, is attained by about 4 kV/cm. At
the lower fields the nonparabolic case lies below the
parabolic for the same 0~2, but the difference becomes
very small. at higher fields, as expected from the small
differences in the distribution functions there. In all
cases but that of Dts ——1X10' eV/cm the rate of in-
crease is not as rapid at the higher Gelds because of the
greater inhuence of intervalley scattering. For the upper
valleys the energy does not begin to increase until fields
well above threshold are reached and then increases
only slowly. At 20 kV/cm the increase in the average
energy of the upper-valley electrons is only about 25%.

8. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENT

The principal approximations made in the present
calculations are: (1) choice of the (0,0,0) valley distribu-
tion in the form (5.2), i.e., the assumption that the
distribution is approximately isotropic, and (2) keeping
only terms quadratic in Ato/e in expansions of quantities
such as f(e&Aa&). Stenflo" has contended that the first
approximation is responsible for the difference between
our calculations and the experimental results, which at
that time consisted of the Gunn and Elliott" measure-
ment of vq versus E. This was his motivation, in fact,
for carrying out the calculations using the maximum
anisotropy distribution referred to in Sec. 5. Using the
same parameters as we have, with Dis= 5X10' eV/cm,
and neglecting nonparabolicity, StenQo found that at
2.4 kV/cm the fraction of electrons in the upper valleys
according to the maximum anisotropy calculation
would be 60%, as compared with 30% for calculations
he did using our approximation, which he calls the dif-
fusion approximation. The latter value agrees fairly
well with our results, as can be seen in Fig. 14. The 60%
would correspond to a threshold well below 2.4 kV/ cm.

' J. B. Gunn and B.J. Elliott, Phys. Letters 22, 369 (1966).
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The fact that the maximum anisotropy distribution
gives more carriers in the upper valley at a given field
would appear to result from the enforced streaming of
the carriers causing them to be hotter. StenQo has also
done the maximum-anisotropy calculations including
nonparabolicity for the central valley. For this purpose
he assuzned

(8.1)

where e~ is a parameter. The calculations were carried
out for c~ values of 40 and 100, 0 being 418 K. For small
e/ei the relation (8.1) is similar to what would be ob-
tained by differentiating (2.4). To obtain correspon-
dence with GaAs an c& value lying between 48 and 100
would be required. %ith this nonparabolicity, StenQo
obtains the results that for 2.4 kV/cm the fraction of
carriers in the upper valleys is 30% for et= 40, 50% for
@~=100. Thus the calculated threshold with this ap-
proximation would lie below 2.4 kV/cm even with non-
parabolicity included. Although the experimental values
scatter greatly, as will be seen, the preponderance of
evidence is for a threshold above 2.4 kV/cm. Thus the
assumption of an approximately isotropic distribution
would seem to be the better one over all. It should, in
any event, be reasonably good at fields past about 4
kV/cm, where (e))4 As&~.

An approximation quite different from ours has been
made by Butcher and Fawcett, who assumed that fi(e)
and fs(e) are displaced Maxwellians. In their original
calculations, "Butcher and Fawcett took into account
only polar and nonequivalent intervalley scattering.
This resulted in a predicted threshold 6eld of 3,2 kV/cm
and a minimum of 5.8 kV/cm followed by a fairly rapid.
rise in e~. Since these latter two results were in obvious
disagreement with experiment, they" repeated their

~ P. N. Butcher and W. Fawcett, Proc. Phys. Soc. (London)
86, 1205 (1965)."P. N. Butcher and W. Fawcett, Phys. Letters 21, 489 (1966).
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FIG. 16. Variation with Geld of average energy, measured in
units of %or, of the (0 0,0) carriers for the D&s values shown. For
all plots Es= 5.95 kV cm and D,,'= 1&C10' eV/cm.
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calculations taking into account for the upper valleys
intravalley acoustic scattering with E~= 7 eV and equiv-
alent intervalley scattering with D,@=1)&10'eV/cm.
The other numerical values used were quite similar to
those assumed here, with D~~ ——6X10' eV/cm. In the
new results the threshold remained at 3.2 kV/cm, but
the minimum moved out to 25 kV/cm. Nonparabolicity
was not included in their calculations. As compared with
our own calculations for Dq~ ——5)&10' eV/cm omitting
nonparabolicity, both threshold and minimum are much
higher. This was to be expected from the fact that the
correct distribution has relatively more high-energy car-
riers and fewer low-energy carriers than permitted by
the Maxwellian form of the same (e).

The e6ect of the second approximation, that of re-
placing quantities such as f(e&Aco) by Taylor-series
expansions carried out to terms quadratic in 6v/e, is
less clear. One would guess that it amounts to assuming
that the scattering is more elastic than it really is. The
consequence of this would be increased heating of the
carriers, thus a lowered threshold. In any event, this
e8ect, like the first discussed, should no longer be signi6-
cant at fields for which the scattering is reasonably
elastic, i.e., past about 4 kV/cm.

So far as the physical model used is concerned, the
main question is the location of the (111) valleys. If
these valleys are 0.45 to 0.5 eV above the conduction-
band minimum, corresponding to x=12.5 to ].4, and
the 1.2mp includes most of their contribution to the
density of states, as speculated earlier, then the present
calculations have to a fair approximation taken their
effect into account. Ke may speculate further that,
correctly incorporated, they would not have much eGect
on the location of the minimum but w'ould have the
e6ect of raising the vq versus E curve past threshold,
decreasing the peak-to-valley ratio. The latter effect
would occur because the mobility in the (111)valleys
is expected to be higher because of the smaller mass.
Some examples of the effect of higher mobility in the
upper valleys were shown in Fig. 11.The effect of elec-
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Fro. 17. Experimental drift velocity versus Geld determinations
of Gunn and Elliott (G and E) (Ref. SG); Thim (T) (Ref. 53);
Ruch and Kino (R and K) (Ref. S4); Acket (A) (Ref. SS); Hama-
guchi, Kono, and Inuishi (HEI) (Ref. 56); and Braslau (B)
(Ref. 57).

trons populating the (111)minima is not, expected to
be large, however, because less than half the electrons
would be in these minima in any case and there is no
reason to expect their mobility to be very much higher
than that in the X~ minima.

So far as parameters to be put into the calculation
are concerned, the really important missing one is D».
Its effects are clearly not minor, and it must be known
in order to get conclusive results. It should be possible
to determine it by careful studies of transport in GaAs
under sufficient hydrostatic pressure to make the sepa-
ration between X~ and Fi small. This technique has the
additional advantage of removing the I.I minima from
the vicinity.

It had originally been hoped that measurements of
vg versus E would give an indication of the value of D».
This hope has had to be abandoned, a,t least for the
present. The determination of v~ versus E in the ndr
region is not straightforward because of the tendency
for the potential drop to be nonuniform there. Never-
theless, a variety of experimental determinations of v&

versus E now exists, with an approximately equal vari-
ety of experimental results. These are displayed in Fig.
17."—"The results of Acket and of Hamaguchi, Kono
and Inuishi are shown dashed because they did not give
their results in the form of drift velocity versus field.
Drift velocities have been calculated from their re-
ported results by assuming in the former case that pp
for the reported samples was the same as that for the
Gunn and Klliott sample, and in the latter case that
Nz ——2&(10"/cm' for sample ME-2, shown here as HKI-
2, and 1&&10"/cm' for sample ME-1, shown here as
HKI-1.

Kith the exception of the R and K sample, which was
semi-insulating, and HKI-1, which had a resistivity of
0.5 0 cm, all the samples measured were in the 1—20-
0 cm range. The measurements of Acket, Hamaguchi
et ul. , and Braslau were done with a microwave tech-
nique in which it was presumed that the time the field
was in the ndr region was too short for appreciable
field inhomogeneities to build up. The same presumption
underlay the measurements of Gunn and Elliott, done
with very short dc pulses. The measurements of Ruch
and Kino and of Thim, on the other hand, were made
on samples in which the product of eq and sample
length l was too small to allow domain formation. In
the Ruch and Kino case the potential redistribution
could be neglected, and v~ was obtained from the time
required for an injected pulse of carriers to drift a
known distance. Thim used very short semiconducting
samples and deduced. e~ from measurements of the
potential distribution along the sample by means of

"H. W. Thim, Electron. Letters 2, 403 (1966).
'4 J. G. Ruch and G. S. Kino, Appl. Phys. Letters 10, 40 (1967).
I" G. A. Acket, Phys. Letters 24A, 200 (1967).
~8 C. Hamaguchi, T. Kono, and Y. Inuishi, Phys. Letters 24A,

SGG (1967).
I'7 N. Braslau, Phys. Letters 24A, 531 (1967).
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Poisson's equation and the current continuity condition.
Measurements of Chang and Moll, made also on semi-
insulating material, are not shown here. Their published
results, s' taken out to 9.5 kV/cm, had almost exactly
the shape of the curve labeled SX10', P in Fig. 9,
with a threshold of 2.2 kV/cm. These results were based
on the assumption that the trapping time for carriers
in their sample was independent of field. It has since
been discovered'4 that this trapping time varied with
field, decreasing initially. This would have the effect
of raising the threshold somewhat, "and of course other-
wise modifying their curve.

The differences shown in Fig. 17 are not yet explained»
Indeed, some may be due to experimental error or limi-
tations, as yet not understood, of the experimental tech-
niques. It is dificult to escape the conclusion, however,
that at least some of the differences are due to diBer-
ences between the samples. For example, the two sam-
ples of HEI were measured with the same technique,
whatever its limitations, differed in p by only 0.5 0 cm,
and yet have thresholds of 2.1 kV/cm and 3.4 kV/cm,
respectively, and quite different characteristics. Sras-
lau's determination, made by precisely the same tech-
nique as HEI and Acket, on a sample from the same
crystal as the G and K sample, gave results essentially
identical with those of G and E.Yet these results give a
much lower differential mobility, —300 crn'/V sec, than
obtained in any of the other vz versus E determinations.
A determination of differential mobility by McWhorter
and Foyt" from a study of negative conductance ampli-
fication gave a value in the range —2500 to —3000
cm'/V sec, more or less in agreement with most of the
other experimental determinations and the theoretical
calculations.

It has been suggested by Copeland and others that
the differences between the G and E results and others
might be due to generation of carriers in their samples
by impact ionization of the lattice. "In fact, according
to the published n versus E,26 all samples investigated
shouM have shown carrier multiplication above about
5 kV/cm. It has been demonstrated, however, that there
was no increase in carrier concentration in the G and E
sample. "The only determinations in which any impact
ionization was observed are those of Thim" and HKI-
1." It was not determined in these cases whether the
ionization was that of impurities or of the lattice. It is
significant that these two determinations show the
steepest decrease of v& with E beyond threshold, in-
dicating the greatest heating of the carriers. We shall
return to the discussion of this point later on.

'8D. M. Chang and J. L. Moll, Appl. Phys. Letters 9, 238
(1966).

O' J. G. Ruch and J. L. Moll, Stanford University (private
communication).

'0 A. L McWhorter and A. G. Foyt, Appl. Phys. Letters 9,
300 (1966).

6' J. A. Copeland, Phys, Letters 24A, 9 (1967)."B.J. Elliott, IBM Laboratories (private communication).
+ C. Hamaguchi, University of Osaka (private communication).

So far as agreement with our theory is concerned, the
experimental thresholds are all high except for those of
HEI-i and R and K. A threshold matchixig the latter,
3.2 kV/cm, could be obtained by increasing D&s to

SX10s eV/cm. The thresholds found by G and E,
Thim and Acket, are 3.6—3.8, 3.9, and 5 kV/cm, respec-
tively. Drift velocity at threshold is higher for the ex-
perimental curves, except for HEI-1, but this is not
particularly signilcant. Partly this is due to the fact
that yo of the experimental samples was substantially
higher than p, o used in the calculations, which was 5 to
6)&10' cm'/V sec, and partly, since p changes very little
below threshold, to the higher thresholds. More signifi-
cant is the fact that, except for Thim and HEI-1, the
fields at which the minimum or valley occurs are all
higher than the calculated values. In the cases of Thim
and HEI-1 the valley location may have been obscured
by the generation of carriers referred. to earlier. Also
significant is the fact that most of the experimental
curves lie above the theoretical curves at the higher
fields.

If the experimental determinations were all correct,
and the different results due to differences in the samples
(other than relatively obvious ones such as macroscopic
inhomogeneity), the existence of the different ed versus
E curves would signify different heating of the carriers
in different samples for a given Geld. One source of such
differences is the formation, discussed earlier, of space-
charge regions due to compensation. This operates to
cool the distribution in two ways, First, by causing a
nonuniform voltage distribution in the sample, with the
higher voltage across the space-charge regions which are
depleted of carriers, it reduces the field experienced by
the carriers below the average GeM. Second, the reduc-
tion in mean free path of the light electrons, described
quantitatively by the introduction of v„also results
in cooling, as seen earlier. There is some evidence that
space-charge scattering is playing a role in the experi-
mental results. The thresholds observed in semi-insulat-
ing material, in which space-charge scattering should
not play an important role, are lower than those gen-
erally observed for samples with 10"(e(10ts/cm'.
There is also evidence" for a low Gunn threshold in
samples with very low p, 0.01 0 cm, where again the
effects of space-charge scattering should be small.

Another type of effect that would cool the carrier
distributions, particularly in semi-insulating and high

p semiconducting samples, is preferential trapping of
high-energy carriers. It has already been indicated that
the trapping time decreased with increasing energy in
Chang and Moll's sample. In the data shown by Ruch
and Kino, '4 for a field of 1.2 kV/cm the trapping time
r~ ~15 nsec, while at 5.75 kV/cm, well past the maxi-
mum in v~, ~&, is clearly smaller since the same decrease
in current occurs in about half the time. It must be

"K.K. N. Chang, S. G. Liu, and H. J. Prager, Appl. Phys.
Lqtters 8, 196 (1966).
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pointed out, however, that v&, 's very much smaller than
10 nsec would be required to a6ect the shape of the
distribution. Since electron-electron collisions are unim-
portant, the shape is clearly independent of the number
of carriers and would only be affected by a rt,, of the
order of the relaxation time, i.e., 10 " sec for high-
energy light electrons. Thus v~, for high-energy elec-
trons would have to be much smaller than rt,, for ther-
mal electrons, by a factor of 104 for the Ruch and Kino
sample, more like 10' for the usual semi-insulating sam-
ple. Such a factor is not implausible. For example, calcu-
lations show that the probability of tunneling through
the Coulomb barrier" of a triply charged repulsive
center in GaAs increases by a factor of 3&10' as the
electron energy e goes from the thermal average 0.025
eV to 0.58 eV. This factor is expected to predominate
in the cross section Q, although the actual e dependence
of Q will depend also on the (unknown) mechanism by
which the carrier gives up its energy. Since r„~ 1/Qz,
the e dependence stemming from Q will be enhanced by
the factor 1/v. Still steeper e dependence of Q and r„
might be obtained due to capture at charged disolcation
lines. "

Any source of inelastic scattering would also result
in a depletion of high-energy light electrons. A clear
source of such scattering in semi-insulating GaAs is
ionization and excitation of electrons bound to impuri-
ties. There is a suggestion of such ionization in the data
of Ruch and Kino. At 3.3 kV/cm there is no change in
current, or perhaps a slight increase, during the transit
time of the carriers, but there is a long tail at the end
of the pulse, presumably due to trapped carriers. At
5.75 kV/cm apparently trapping predominates over
generation.

A decrease in the population of high-energy light
electrons, due to whatever cause, will necessarily result
in a decrease in the heavy-electron population. We can
estimate this as follows. In a steady state the rate of
transition from the central to the upper valleys must
balance the reverse rate. Since only light electrons with
e&0.36 eV can make the transition (we neglect the
phonon energy, which is small), the steady-state con-
dition is

zzz/(rz z)=zzz(e&0. 36)/(rz z). (8.2)

The ratio of the average transition times (rz„z)/(rz z)
is the product of the ratio of density-of-states masses,
70:1, and a factor depending on the average energy
which is somewhat less than unity. For a field of 6
kV/cm, for example, our calculations for Dzz ——5X10'
eV/cm give a ratio zzz/zzz(e& 0.36 eV) of 44: 1.This ratio
was found to be relatively independent of field, diBering
from 44: 1 by less than 10% in the range 3 to 9 kV/cm.
Thus a small decrease in the number of light electrons
with c)0.36 eV is expected to lead to a decrease about
40 times as large in the number of heavy electrons.

"V. L. Bonch-Bruevich, Fiz. Tverd. Tela 6, 2047 (1964)
f English trans]. : Soviet Phys. —Solid State 6, 1615 (1965)j.

To illustrate that the eGect of this on e& may be quite
large, we shall again use some of the results obtained for
Dzz=5X10' eV/cm. According to these, at a Geld of
6 kV/cm, 12% of the electrons are in valley 1, one-sixth
of these having e&0.36 eV, and the remaining 88% are
in valley 2. Because of their lower mobility, the elec-
trons in valley 2 contribute only 20 jo of the current,
while 80 jz is due to the light electrons, 54'%%uz to those
with e(0.36 eV, and 26% to those with e&0.36 eV.
To simplify our estimate we shall assume that trapping
results in a cooler distribution characterized by only
half as many light electrons with e&0.36 eV, while the
number of light electrons with c,(0.36 eV is unaffected.
Reduction of the former group by -,'will, as discussed
earlier, cause a reduction of the heavy electrons by the
same factor. The proportion of light electrons in the
distribution has thus increased from 12 to 20/~, with a
corresponding decrease in the percentage of heavy elec-
trons. The ratio of the drift velocity for the cooler dis-
tribution to that for the normal distribution is given by

nd'/vd ——{[zzz'/(zzz'+zzz')]vz+ I zzz'/(zzg'+zzz')]vz)/

{Lzzz/(zzz+zzz)]vz+t zzz/(rzz+zzz)]vz}, (8.3)

where the primes denote quantities relating to the
cooler distribution and e, is the drift velocity of carriers
of type i. With the numbers given above for relative
current contributions and numbers of carriers, we obtain
vz/zz =30. This and the other numbers given above lead
to vd'/vd = 1.5. It is clear that such cooling of the distri-
bution can considerably increase the measured drift,

velocity.
The conclusion to be reached from the above discus-

sion is that defects may play a profound role in modify-
ing the high-field distribution function in GaAs samples,
and therefore the properties dependent on it, such as
drift velocity and multiplication rate n. The latter, de-
termined by the high-energy tail of the distribution,
would be particularly sensitive to effects of the type we
have been discussing. A decision as to whether, in fact,
defects are playing such a role awaits further clarifi-
cation of the differences found experimentally and the
availability of material with fewer defects.
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APPENDIX: COLLISION OPERATORS FOR
ÃONPARABOLIC BANDS

None of the interactions dealt with here are strong,
and the required collision operators may be obtained by
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the use of ordinary time-dependent perturbation theory.
%ith this the collision operator may be written

8f(k)- 2m
=—P [!(&,+1!&'!X,) I

'b(e e—'+») f(k')Bt, h~

+ I (&,—1I &'I &.) I
'~(e—e' —»)f(k')

—IPV,+I!a'!X,) I»8(e' —e+h )f(k)
—

! (~V,—1I~'!~,) I'8("—e-»)f(k)3, (A1)

where H' represents the perturbing potential, c and e,
'

the energies of states with wave vector k and k', re-
spectively. The first two terms of (A1) correspond to
scattering from k' into k by emission and absorption,
respectively, and for these the summation over k' is
to be taken over all possible initial states. The last two
terms correspond to scattering out of k into k' by emis-
sion and absorption, respectively, and here the sum-
mation is to be taken over all possible 6nal states.

For polar scattering the absolute square of the matrix
element between states k' and k is'4

2m h»eFp Ar, +1
! (k'I &. 'Ik)I'=, (A2)

Vm, !k' —k!» X,
where Eo is de6ned in (3.2), V is the volume of the crys-
tal, and the upper factor in braces is to be used for emis-
sion, the lower for absorption. Note that the matrix
element is not dependent on mass because Ep is pro-
portional to ms~. There is, however, as discussed in Sec.
3, an additional dependence on k not shown here, which
takes the form of a factor that is unity at the bottom
of the band and decreases somewhat as k increases due
to the admixture of p-type wave functions. "This factor
is omitted in the present calculations.

Inserting the matrix element (A2), converting the
summation to an integration, and making use of the
fact that the 8 function is an even function of its argu-
ment, we obtain

(
8 2m

R y p 2Ãszg Q~ —Q g~=p y ~p
{8(e'—e—h(at) [(1V«+1)f(k') —cV«f(k) ]+8(e'—e+ h(ot)

k'2

X [iV,tf(k') (Ã»t+1)—f(k)g) sin8'd8'd p'dk'. (A3)
Ik' —kI'

The quantity 1/ I
k —kI ' may be expanded as a series of Legendre polynomials in cosn, where n is the angle between

k and k', e.g. ,
1 k"+kg

P (2m+1)Q„ IP„(cosa),
2k'k -=. 2k'k

the Q„being Legendre functions of the second kind. "It will be convenient to take the s axis in the direction of E.
Then, by the addition theorem,

(e—m)!
F (cosu)=F (cos8)P„(cos8')+2 P F "(cos8)F "(cos8') cosm(p —p').

t (tt'+m) t
(AS)

The only dependence on 8' and p' in the integrand of (A3), apart from 1/Ik' —k. I', is in f(k') which, as discussed
in Sec. S, takes for the lower valley the form f&(e')+k' cos8'g&(e'). The 8' and p' integrations are then readily carried
out, with the result

(
8f"& heEO

(b(e' e ha&t) {(lV, —+«—1)[Qttf~(e')+k'Q~ cos8g~(e') j—Ã«Qttf &'&(e) )+!t(e'—e+»t)
Bt „. nzgk p

X {&«[Q,f,(e')+k'Q, cos8g, (e')g —(&,t+1)Qof ' (e) &)k'dk', (A6)

where, as earlier, f'"(e) denotes fq(e)+k cos8gt(e). The arguments of Qtt and Qq have been omitted in (A6) for
the sake of brevity. When the integration variable is changed from k' to e' with the use of Eq. (2.4) and integration
over e' is carried out, we obtain

(
8fot eP»- ( [2m,y(e') g'&' ) (dy

! (~V«+1) pod(e')+ Qzcos8gg(e') —.5'„tQttf~'&(e) II—
hk h J &de' e. ~.»„,,

( [2m,y(e))'&' dy
+! &'«Qttfz(e')+ —

Q& cos8+(e') —(3 «+1)Qof (e)
de 8' p»rot

(A7)

"See, for example, P. M. Morse and H. Feshbach, Methods of Theo' etical Physics (lgcGraw-Hjll Book Co., New York, 1953),
p. 75$„
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where, in terms of c',
pk "+kg v'"(e')+v"'(e)

Qa!—
E, 2k'k ) !y»s(e') —y'Ii(e)

I

(
k"+k ~ v(")+v(e) - 7'"(')+v'I'(e)-

ln —1.
2~i/s(e&)chili(e) I

oils(e&) oils(e)
I

(Aga)

(A8b)

Separating out the terms in fi, we obtain

(
Bfi eEO 1 dy)

{e*if,(e+h, )—f,(e))Q,(e+h &)
—

IBi,o (2miy(e)) '"e*i—1 ~@ e+aai

(dy)+{fi(e—
hanoi)

—e*'fi(e) )Qi(e) I

(de/ e-a(gi-
where Qi(e) is defined in Eq. (3.4). From the remaining terms we obtain

(A9)

(
Bksgi(e) l eEO cos8

!
Bi ~ ~, h(e*i—1)

y(e+ hindi)
'" y(e+ ha&i)+y(e)

e'ig, (e+hc)oi— Qi(e+ Puli) —1 I—
y(e) 2y'I'(e+ Aevi)y'I'(e) &de e+i.,

7(e—haii)
—'~'- q(e —h~ei)+y(e)

+g, (e—Wi) Q, (e)—1
y(e) 2y'~'(e hcei—)y»'(e) de~ e i„,

)dvl /dv—gi(e) Qi(e+ hali)
I

—
I

—e hagi(e) Qi(e)
I

— . (A10)
&de& e+i„, (de e—ig(

For a parabolic band, where y(e) = e and dy/de=1, (A9) and (A10) are easily shown to be identical with the
expressions derived by Howarth and Sondheimer" for that case.

It is useful to have expressions for (A9) and (A10) foi the limit e»Aevi. Expanding fi(e~ha&i) and y(e+h~i)
to terms of order (hcoi/e)', and writing the results in terms of a = e/hanoi and I'(x)~(e)/hcoi, we obtain from (A.9)

(
Bfi) clio 1 e*&+1 4I'

1 ' ln —fi"
Bi / ~. &&' (2mihieil') '" 2 e*&—1 I"

e +1 41" 1 &+I ~r' I'" — -
/41'y ~l" I'"q

+ I"» —,I+ I""» —+-
I —,I" fi'+»" »I —,I+I —,Il" fi (A11)I"/ e*&—1 I" 2 e*&—1 El' I" &r' f ki' I"&

where a prime indicates d/dx. From (A10) to lowest order in ha&iy e we obtain

(
~~ega ~+0 & ~+1~ —&zg~

2mqhor~ 'I' e*'—1 F'I~

matrix element~~ is
(A12) D; h DT,+1

!(ko&, 1V,a1III; Ik&o, sV,) I'=—
2Vp(o;; 2V~

where

In this limit therefore a relaxation time exists for the
polar mode scattering given by (A14)

gyp

(2mi&i)»' e*&—1 I'I'

e*'+1 I" (A13)

Expressions similar to (A11)—(A13) have been obtained
for the high-temperature limit, i.e., T»0~, by Kolo-
dziejczak "and Dykman and Tomchuk. '8

To obtain the collision operator for intervalley scatter-
ing when one or both of the valleys is nonparabolic we
may again start from (A1). For scattering from a state
with wave vector k(') in valley i to k(&' by absorption
o~. emission of a phonon, the absolve&te square of the

(A15)

and D;; is the coupling constant, co;; the angular fre-
quency of the phonon connecting valleys i and j. 3,~,
here is, of course, the number of phonons with angular
frequency ar;;. It is advantageous in this case to consider
separately from the beginning the contributions of the
spherically symmetric term f,(e) and the drift term
keg;(e). We shall calculate first (Bf;(k)/Bi);~;, the rate
of change of f;(k) due to transitions between the ith

6" (". Hurling, Bell System T&h. J. 34, 237 (1955).
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and jth valleys. The 6rst two terms of (Ai) for this
case correspond to electrons scattered from k' in j into
k in i, while the second two correspond to electrons
scattered from h in i into k in j. Since the matrix ele-
ment is independent of k' and the argument of the 8

function and f;(k') depend, on k' only through e.', the
summation over k' may be replaced by a summation or
integration over e'. Thus, for the first two terms of (A1),

where 802 is the minimum of the upper valleys. Inserting
(A19a) into (A18) and expressing A/~ in terms of
xiq—=A(e)2/koT, we obtain for the collision operator of
the (100) valley distribution due to intervalley scatter-
ing involving the (0,0,0) valley

X [e*»fi(e+ h(e») —f~(e)j+y' '(e—h(e»)y'(e —h(eim)

X [fi(e—h(aim) —e*»fm(e)g}, (A20)
g f (k')b(e —e'wM")= f (e')t)(e —e'+h(d;)p (e')de'
k'

where
= f,(ea h(eg) p;(ea h(e), (A16) D 2[~ (x)jS/2e „1/2

2'I'g h'pa)gg g&IS—$

It can be shown by the principle of detailed balancing
that D2j =Dgg.

For the rate of change of fi due to intervalley scatter-
ing involving the (100) valleys, we obtain after sum-
mation of (A18) over the equivalent (100) valleys

Q f,(k)8(e' ea—h(e;/) = f;(e) b(e' —

each(e;/)p,

(e')de'

where p, (e) is the number of states per unit energy
range in the jth valley. By similar arguments the last
two terms of (Ai) give, for this case,

= f;(e)p;(e+h(e;;). (A17)

Thus from (A1) with the use of (A14)—(A17) we obtain

It is clear from (Aig) that nonparabolicity of the ith
valley does not aGect its collision operator, which de-
pends only on the density of states in the jth valley.
So far as intervalley scattering is concerned, the only
modification required due to nonparabelicity will be
in the contribution to the collision operator for the
(100)valleys of scattering to the (0,0,0) valley. Denoting
the (0,0,0) valley by index 1 and the set of (100) valleys
by index 2, we have for the respective densities-of-states
of either spin

((tf;(k) mD;/2
[(~'a+ 1)ft(e+ h '/) p;(e+ h;;)

i~~j Vp&ij

+(V,f;(e h(e;;)p; (e—/us;;), —
—(X +1)f;(e)p (e—h;)

—-i'af'(e) pt(e+h~'/) j (A18)

(()kgg,

E at

keg xa;
[(&a+1)

Ti j.(&) v Pdgj

Xp;(e—h(e;t)+X,pt(e+h(e(/1 . (A23)

((tf &i
{(e+h~»—«,)'/'

&at)i~. ~,:e,''
X[e*»fg(e+ h(eig) —fi(e) j+(e—h4)» —e()g) '"

X[fq(e—hcoi.)—e'»fi(e) j}. (A22)

%e consider now the remainder of the intervalley
scattering collision operator, ((lk///g;/(tt);~; It is readi. ly
seen that the first two terms of (A1) make no contribu-
tion because kg' —=k' cos8', and this causes the integral
to vanish when integration over 8' is carried out. This is,
of course, expected because a relaxation time is known
to exist for intervalley scattering. The summations re-
quired for the second pair of terms of (Ai) are again
given by (A17), and we may write down directly

and

mi'/' Vyi/'(e) dy
pi(e) =—

2'"x'h' de

p2(e) (ig (N))8 2 /(Ve e ) 1/2/21/2~2AB

(A19a)

(A19b)

It is to be remembered throughout that terms of the
form (e+A(e —e02)'" or y'"(e+A(0) are to be included
only if the argument of the square root is positive. This
is required in order that energy be conserved in the
process concerned.


