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Wave-Function Expansion in the Brillouin Zone: Silicon

A. JAMEB HUGHEs

(Received 21 September 1967)

Wave functions are required throughout the Brillouin zone for the treatment of many problems in solid-
state physics. It therefore is of interest and considerable importance to develop analytical representations
of the k dependence of wave functions throughout the Brillouin zone. In this paper the momentum wave
functions b (k, K,) in the plane-wave expansion of the Bloch function P (k,r) are considered. An analytical
representation for the b„(k,I,) based on a set of symmetrized polynomials is proposed. The specific poly-
nomials, although they pertain to general points in the Brillouin zone, are somewhat analogous to the
Kubic harmonics employed in the cellular method. A primary distinction, however, is that while formerly
one was concerned with space-group operations in the group of the k vector, here we are concerned with
operations in the group of the I, vector for which K, in b„(R,K,) is left invariant.

I. INTRODUCTION

NO%I EDGE of wave functions throughout the
HriHouin zone is required for the treatment of vari-

ous problems in solid-state physics, For instance, in
studying the optical spectra of solids one requires den-
sities of states and matrix elements which depend. upon
the variation of the wave functions over the Brillouin
zone. Historically the calculation of the density of states
has received the most attention. UsuaHy the variation
of the relevant matrix elements over the Brillouin zone
has been ignored and the matrix elements replaced by
suitably chosen constants.

Brust' has investigated the matrix element which oc-
curs in the imaginary part of the complex dielectric con-
stant for silicon and germanium. He found tha, t the
matrix element connecting bands four and Ave (band
four is the highest valence band and Ave the lowest con-
duction band) varied by about a factor of 2 over the
BriHouin zone. The matrix element between bands four
and six was found to vary by a much larger factor.

The calculation of nonlinear optical constants in-

volves an order of complexity greater than for the linear
optical constants. It is believed' that for the nonlinear
optical absorption the relevant matrix element may
vary strongly over the BriHouin zone arid might even
change sign. It may be that for this problem the wave
functions and derived ma, trix elements will have to be

explicitly considered.
The treatment of localized defects in semiconductors'

by mea. ns of solid-state scattering theory using a Wan-
nier function basis -is a further example of a situation in
which wave functions throughout the BriHouin zone are
required. A strong point of this approach is that it in-

corporates detailed information concerning the energy-
band structure and wave functions of the perfect crystal.

*Present address: Theoretical Physics Departn|ent, Research
and Engineering Division, Autonetics, Anaheim, Calif. 92803.' D. Brust, Phys. Rev. 134, A1337 (1964).

~ N. Bloembergen, R. K. Chang, and J. Ducuing, in Physics of
Qecn4um E/ectronics, edited by P. L. Kelly, B. Lax, and P. E.
Tannewald (McGraw-Hill Book Publishing Co., Inc. , New York,
1966), p. 67.
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Associated with this advanta, ge, however, is the dis-
advantage that much numerical calculation is required.

It is apparent that in attempting to treat either
optical properties or localized defects, it would be very
desirable to have analytical representa, tions of the k
dependence of wave functions. Such representations
would enable us to decrease the required numerical
labor and to increase the accuracy of the solution.

In this paper, we consider the momentum wave func-
tions b„(k,K) which occur in a plane-wave expansion of
the Bloch function 4„(k,r). Integrais involving the

' Sloch function may be readily expressed in terms of the
b (k,K), and it is of interest to consider an analytic
representation for them. We propose such a representa-
tion here, based on a set of symmetrized polynomials.
The specific polynomials which are presented are ap-
propriate for the diamond lattice although the general
approach is applicable to other lattices. These poly-
nomials, although they pertain only to general points
in the BriHouin zone, are in a sense analogous to the
Kubic harmonics employed by Von der Lage and Bethe'
and Bell' in the context of the cellular method for sym-
metry points in the BriHouin zone. While formerly one
was concerned with space-group operations which left
the k vector invariant, we are here concerned with
operations which leave K invariant in the momentum
wave functions b„(k,K) for band n, point k in the Bril-
louin zone and for reciprocal lattice vector K.

The plan of this paper is as foHows: Symmetry prop-
erties of Bloch functions are discussed brieQy in Sec.
II. The symmetry polynomials are generated in Sec. III
and the results presented. The momentum wave-
function expansion is developed in Sec. IV, and discus-
sion and conclusions are contained in Sec. V.

rr. svMMETRv PRopERTrzs oz
BLOCH FUNCTIONS

In this section we shall discuss certain symmetry
properties of Bloch functions. Symmetrized polynomials
will be constructed and employed in the foHowing sec-

4 F.C. von der Lage and H. A. Bethe, Phys. 8ev. 71, 612 {1947).
~ D. G. Bell, Rev. Mod. Phys. 26, 311 (1954).
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In Eq. (2.1) {n
~
t,) is a space-group operation which for

the diamond lattice may include a nonprimitive trans-
lation t . $„0)(u) is the character for operation n in the
one-dimensional representation j which is appropriate
to band e. The particular representation j is chosen to
ensure smoothness in the wave function P„(k,r) as the
argument k goes across the interior planes which bound
the various 1/48th subzones of the Brillouin zone. For
an isolated band, only one-dimensional representations
can arise, and only these will be considered.

Let us consider a plane-wave expansion of the Bloch
function

p.(k,r)= Q b„(k,K,)e'&"+x )'
(2z)3)' s

(2.2)

in which K, is a reciprocal lattice vector. The function
b (k, K,) is the momentum wave function for band e.
Plane-wave expansions are important not only in formal
analysis but arise naturally in the pseudopotential
method of band-structure calculation.

For the diamond lattice we choose the origin of co-
ordinates for the energy-band calculation in such a way
that the perfect-crystal Hamiltonian is represented by
a real symmetric matrix on a plane-wave (or orthog-
onalized-plane-wave, OPW) basis. Then it is.possible
to 6nd eigenvectors b„(k,K,) which are real for all k.
The indeterminancy of phase of the Bloch function
therefore reduces to a question of algebraic sign which
can be settled by requiring that the b (k, K,) be smooth
functions of k Throughout this work, we employ a re-
duced zone scheme. Therefore we write b„(k,K,) in-

stead of b„(k+K,),
Since the b„(k,K,) contain the nontrivial variation

in wave function over the Brillouin zone we wish to de-
termine the equations which they obey. Proceeding as in
Ref. 3, we consider the effect of {u ~

t ) on P (k,r) when

tions. %e shall here be primarily concerned with only
isolated energy bands; that is, energy bands which do
not touch or cross other bands.

For our purposes, it is necessary to specify the com-
plete k dependence of a Bloch function. It is always pos-
sible to multiply a Bloch function by a phase factor
e'&&" "& which depends both on the band and on the
wave vector. It has been found possible to formulate
a convention for specifying the phase factor, apart from
a constant which is the same for all states in a given
band. This was done in Ref. 3, in which a prescription
was given relating the 48 wave functions f„(k',r) in the
star of k so that the wave function P (k, r) is as smooth
as possible as the argument k goes over the Brillouin
zone. This can be accomplished if we require that
f„(k,r) transform under the operations of the space
group according to Eq. (2.1):

{u~t )P„(k,r)=x„&t)(u)e—' " 'P„(nk, r). (2.1)

the wave function is given by Eq. (2.2):

{u~t )P„(kr)=(2)r) '"P b.(k,K.){n~t )e""+""

=- (2m)-3)'e-' ""P b„(k,K,)

)(e—iaxs'&aeia(k+Ke) r (2 3)

We next substitute the phase-wave expansion, Eq. (2.2),
directly into the right-hand side of Eq. (2.1) and obtain

X„(i)(n)
{n~t g (k,r)=

(2z)'"

pe—iak ~ ia P:$ (nk Ki)e i(a&+&t) & (2 4)

Comparison of Eqs. (2.3) and (2.4) yields the desired
relationship:

f) (nk, K,)=X &&)(n)b„(k,n 'K,)e '"". (2.5)

For the diamond lattice with our choice of origin, the
factor expL —K, t j is always real. Equation (2.5) is
fundamental to this paper and forms the basis for the
polynomial development to be presented.

Consider b„(k,n 'K,) in Eq. (2.5) and let n range over
the 48 operations in the space group of the diamond lat-
tice. Certain of the operations {n~ t ) are such as to leave
K, invariant if K, is not a general reciprocal lattice
vector. That is, n 'K, = K, for all operations 0. ' con-
sidered. These operations form a group which we will
call the group of K.. Thus we may make use of a stan-
dard. projection technique to obtain functions b„(k,K,)
which form a basis for an irreducible one-dimensional
representation associated with the group of the K, vec-
tor. Viewed in this manner, the analogy between the
group of the k vector as applied to energy-band calcu-
lations at symmetry points in the Brillouin zone and the
present application to the group of the K, vector is
manifest.

For the operations n in the group of K„ it is evident
that Eq. (2.5) may be rearranged to yield.

1
f „(k,K,)=-g' b (nk, K,)& U)(n)e'K'". (2.6)

g a

ln (2.6) g is the number of operations in the group of
K,. ln order to obtain explicit functions b„(k,K,), it is
necessary to insert appropriate trial functions into
b„(nk, K,) on the right-hand side of Eq. (2.6). The form
of trial function we have employed consists of various
powers of k, k„, k,. That is, we consider a trial function
(k,)'(k„) (k,)"where l, m, and n are integers. Although
this is certainly not the only kind of trial function which
might be used, it has considerable advantage for the use

~ R. S. Knox and A. Gold, Symmetry in the SolQ Stute (W. A.
Benjamin, Inc., New York, 1964), p. 41.
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we intend to make of it. The actual generation of poly-
nomials by employing Eq. (2.6) is described in the next
section.

For any n, Eq. (2.5) may be rewritten as

h (kn—'K)=b (ak, K,)x,&&'(n)s'x"' (27)

Let us consider the reciprocal lattice vectors of a given
type, that is, those reciprocal lattice vectors vrhich can
be obtained from any one of them by operation of any
of the 0, in the point group of the crystal. Only one
b (k,K,) of a given type need, be obtained by the
methods of Eq. (2.6}.Having obtained an explicit form
for b (k,K,},we obtain b„(k,K,'), where K,' is any other
vector of that type, by substituting into the right-hand
side of (2.7). This procedure is then carried out type by
type for as many types of lattice vectors as is necessary
or practical to include in Eq. (2.2).

IIL GENERATION GF SYMMETRY
POLYNOMIALS

All reciprocal lattice vectors for the cubic lattice be-
long to one of seven types. These are listed in Table I.
We note for the diamond lattice, e.g. , diamond, silicon,
and germanium, all coordinates of a given lattice vector
are of the same parity, that is, all odd or all even. For
example, a in the set (a,0,0} must be even.

The utility of the polynomial expansion procedure
which is developed here is increased by the fact that it
is frequently possible to obtain satisfactory w'ave func-
tions using plane waves of relatively small

~
K, ~. The

K, which appear belong to the more symmetric types in
the table. For example, in Ref. 3, only types j., 2, and 3
occur.

A comment on notation is in order. %e will employ
the usual Oy, labeling' for the four one-dimensional irre-
ducible representations of interest in the wave-function
expansion. We also employ the same O~ labeling for all

gmups of the K, vector. Since all groups we shall need
to consider are subgroups of O~, this notation is con-
venient and consistent. From Table I we note that the

group of the K, vector for some of the types does not
contain four one-dimensional representations. In these
cases vie vill not obtain four distinct sets of polynomials.
Our O~ labeling of the one-dimensional representations
is therefore homomorphic to the one-dimensional repre-
sentations of the group of the K, vector.

To obtain symmetry polynomials @re begin by apply-
ing Eq. (2.6) for K =0. Fol this vector the group coll-
tains all 48 operations and the translational phase factor
exp(iK, t„) drops out. We thus obtain the same poly-
nomials as given by Von der Lage and Bethe' and Bell. '"

We have extended the polynomials to higher order than

TABLE II. Symmetry polynomials for the (0,0,0) reciprocal lat-
tice vector and the four one-dimensional representations. For this
vector, the polynomials are identical to those derived by Yon der
Lage and Bethe (Ref. 4) for use in an apphcation of the cellular
method.

I'I type

cr0= 1

a4 = -'5 (3X7)'/'(H+y4+z' —-')

~6= l3 X7X11(2X13)'~'(x'y'~'+ (1/22) Ea4]—(1/105))
n~ m~S X 1—3 (3X11X17)i&s(xsXys+as (28/5) L~6]

—(210/143) t n4] —';)

j
I"2' type

P,'= (3X5&7) 'xyz

p, =(11y4)(~X5X7X») '( y (-"+y'+~)-(51»)I ~.'3)

P, ' = 1/24L13 X17(2X11X15X19)'~'](xys(x'+y'+s')
—(3X7/17) LP~']—(5X7/11X 13)LP~'])

I'2 type

Po=-'(2XBX5X7X11X13)I/&(~4(y~—.2)+y4(z2 —~2)+z4~~~ —~y~))

P~o= gg (2X3X5X7X11XUX19)'/'(x'(y' —z')
+y'(z' —x')+z'(x' —y') —(14/17) LP61)

P» ——~~5X 19X23(2X7X11X1g X17)'/'(x" (y' —z')+y»(z' —x')
+s"(x'—y') —(3X15/23) LPi0]—(14X15/17 X19)LPs])

r&' type
ng' =g (6X5X7X11X13X17X19)'/'xyz(x4 {y'—zm)

+y'(z' —~')+z'(~' —y'))
wig'= —,'6 (3X5X23)P2(7X11X13X17X19)]'~'(hays(x'(y'—s')

+y'(~' —*')+~'(*'—y') )—(18/23) L~~'1)

a&a' ——r'r(3XSX29)Lg (SX7X13X17X19X23X31)]'"
X{xyz{x' ( '—z')+y' (z' —x )+z' {x~—ya))

—(11XS/29)f~ia'] —(SX11/SX23)L~Q' )

(0,0,0)
(a,a,a)
(a,0,0)
(a,a,0j
ta, b,b)
(a,b,O)

fa, b,c)

1

8
6

12
24
24
48

' J. Callaway, Energy Band Theory (Academic Press Inc., Neer
York, 1964), p. 23.

Tax,E I. A list of the various types or groups of lattice vectors.
The Grst column lists one member of each group. The second
column lists the number of vectors in the group and the third
column lists the number of operations in the group of the Ivector
for the various vector groups. The number of one-dimensional irre-
ducible representations in the group of the K vector is given in the
fourth column.

was done by these authors. The results are given in
Table II. We have followed the usual procedure of nor-
maliring the polynomials to 4x over the unit sphere. In
the table, x, y, s stand for the direction cosines k,/ t k~,
k„/

~

k
~ &

k,/ ) k
~

and functions within the square brackets
are to be taken without normalization factors.

The next wave-vector type is the set of eight vectors
of the form {a,a,u}. In applying Eq. (2.6), we have for
definiteness chosen to work with the vector (a,a,a) where
all coordinates are positive. The six operations in the
group Cq, of the vector (u, a,a) do not contain any non-
primitive translations. Hence there are no selection re-
quirements due to the parity of the parameter u. %e
obtain Eq. (3.1) as the generating function for this set
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of polynomials:

(x l (ynts n+ yas at) +y i (xnsm~ xmstt)
+sl(xmyn~xnym)) (3 1)

We thus obtain only two sets of polynomials. A choice of
the + sign yields polynomials appropriate to both F&

and F&' wave functions and the —sign yields poly-
nomials appropriate to F~ and F~' wave functions.

Actually to obtain the symmetry polynomials we
proceed as follows: For a given order p=/+m+n, all
possible combinations t, m, n are substituted into Eq.
(3.1). From the resulting collection of functions, various
terms or combinations of terms are selected in such a
manner as to yield the maximum number of linearly in-
dependent functions possible for a given order p. These
are then orthonormalized function by function. The
resulting two sets of polynomials for the (a,a,a) recipro-
cal lattice vector are contained in Table III.We see that
more than one polynomial of a given type may be ob-
tained for some of the orders.

The momentum wave functions b (k,n 'K,) and the
associated wave functions are, however, distinct and
different for each of the four one-dimensional represen-
tations even though they were derived employing only
two different sets of polynomials. This may be seen as
follows: We substitute the polynomials which represent
b (k,K,) into the right-hand side of Eq. (2.7) and let is

run over all 48 operations of the 0~ group. Collecting like
terms we obtain (except for a numerical factor of 6) the
eight different b„(k,n K,) associated with the eight
vectors in the set (a,a,a).

The full group containing 48 operations and four one-
dimensional irreducible representations has thus been
employed to derive the b„(k,n 'K,). The general prin-
ciples of group theory assure us that if nonzero func-
tions can be obtained for the F~, F2, F~', F2' representa-
tions, then these four functions must be distinct.

Before proceeding to the next type of vector, one fur-
ther comment is in order. The reader will note that,
once having obtained functions representing b (k,K,),
only eight suitably chosen operations from 0& would be
required to obtain the eight different b„(k,n K,). This
suggests that a group of order six is needed to obtain the
initial b„(k,K,) followed by a product application of the
elements of a group of order eight. Thus symbolically,
we might write Oq=G&( V where V is the group of the
K, vector and G contains the operations n needed to ob-
tain the different b (k,n 'K,). Thus one might expect
that a direct product, semidirect product, or factor
group decomposition would be useful. We have not ex-
plored this in any detail other than to note that none of
the groups of the K, vectors in Table I are proper in-
variant subgroups of the group O~. Thus product or
factor group decompositions, if possible at all, could not
be obtained straightforwardly in the usual manner.

The next wave-vector group to be treated in detail is
the set (a,0,0) containing six vectors. We again choose

TABLE III. Symmetry polynomials for the set {a,a,a} of eight
vectors of the form (a,a,a). For this set of vectors we have only
two distinct sets of polynomials for the four representations F&,
Fp, Fy', and F3'.

r& and r&' types

O.0+=1
+= (x+y+z)

~2+= (5) / (xy+yz+xs)
- +=-'(7/3)'/'("+y'+z3-!t ~ j)
~3, 3+= (&X3XSX7)'/'xys

~4 &+=5/4(3X7)&/2(x4+y4+z4 —5)

, +=(3X5X7)'" y ( +y+ )
nt, t+ = s (3X7) (3 X 11)ii~((x'+y'+s') —(10/9) [ns, t+P —

3/7[tent+])

, +=-'. (3X5X7X11) '( (y+.)+y'( +.)+~( +y)
—6xyz(xy+ys+xs))

I'2 and F~' types

(x3 ——
2 (5X7)'/'(x' (y —z) +y (z—x) +z (x—z))

~4 =y(3X5X7)'"(x'Ly —z)+y'(z —x)+z'(x —y))
a5 ——4 (5X7X11)~/2{x (y—z)+y'(s —x)+s'(x —y) —q/03 g}

a6 &
——11/4(3X7X13)'/'{x5(y—s)+y'(z —x)

+s'(x—y) —(10/11)Lo. g}
tt6, 2 a (3X5X7 X13)'"(x (y' —s')+y'(s' —x')+s (*'—y') }

tt;=-t(11X13)(7X15/46)'~'(x'(y —s)+y'(s —x)+s'(x —y)—(15/13)[ns, t ]—(5/11)[na g}
o,g l

——~4(5X13)t
-', (11X17)]'/'{x'(y—z)+y'(s —x)+z (x—y)—7/5[ntt, t ]—3X5X7/11X13[tt4 ]}

xi[ymsn+ X(jc )ynxm] (3.4)

(a,0,0) with a positive as the initial momentum wave
function. Carrying out the operations in Eq. (2.6) for
the eight operations in the group of (a,0,0) we obtain
the following two generating functions:

X(J)sittals]&i(ymsn+X(JC )ynsm) .
(3.2)

is even [1+x(j)cittals]xl(ymsn+X( JC )ynsm)

We have selection requirements in Eq. (3.2) due to the
presence of nonprimitive translations in the group of
(a,0,0). We recall that a must always be even for the
diamond lattice. Table IV contains the polynomials for
m and n odd and Table V contains the polynomials for
m and n even. The identifications of the various repre-
sentations are made in the table captions.

Next consider the (a,a,p)-type of vector. The group of
the K, vector contains four operations and four one-
dimensional representations. Using a trial function
x'y z" we obtain a generating function

[1+( )nx(j)][xlym+7r(jcs)xmyij (3 3)

Thus F& and F2 polynomials will be even in z, and F&'
and F2' polynomials will be odd in z. The polynomials
derived for this wave vector are given in Tables VI and
VII.

The (a,b,c) vector has only two operations in the
group of K, vector. The polynomial generating function
for the two one-dimensional representations is
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TA'@LE VI. The I'1 and I'2 types of polynomials for
the (u, a,0) reciprocal lattice vector.

TABLE IV. A list of polynomials for the wave vector (u,0,0) in
which only odd powers of both y and z occur. For @=2, 6, 10, etc.,
the + sign functions are I'1 and the —sign functions are I'2. For
a= 4, 8, 12, etc., the + sign functions are I"2' and the —sign func-
tions are I'1'. I'1 type

0.'p+ = 1

- = {;) (.+y)
, 1+= {3XS)»2xy

0.2, 2+= -' (5)»'(z' —-')

I, 1+—5/4 (3X7)»2((x+y)z2 151 0 1+j)
.+=-.'(SX7)»2(x2(x —3y)+y'(y —»)}

4, 1+=x(3XSX7)(z'—(6/7)E, +j—kr o'j)
4, 2+ —21 (3X7) {5}»2(xyz2 (1/7) t &2, 1+j)

n4 +=-'(SX7)»2(x'+y' —6x'y')

M, Ã odd; g(JC2) = —1

« = (sSX)7'~'(ybs ys')—

~,-=;{SX7X11)1/2x(yz—y~)
1(3X11)(7X13}/ {g2{yez—yz3}—(1/11)t e4 j}

&r =~r(3X13)(SX7X11)'~{xb(y)s ys') (3/13)[«3}
« = —,'g (3XSX13)(7X11X17}'"{x'(y's—ys')

—s[«0—(3/11X13)[«j}
6 (3X17)(5X7X11X13X19)»'{x'(y3z—yz')

—(1O/17)[~T 3—(1/13)[«3

-= {l) / (.-y)
2-=k(3XS)'~'(x' —y')

~» =5/4(3X7)'"((x—y)s' —bs[«3)
ns 2 =

& (Sx7)'/'(x'(x+3y)-y'(y+3x))
4 1- 41 (3x7) (s)1/2((x2 y2)z2 1/7)+2 $)

n4, 2 = 2 (SX7)»2xy(x2 —y')

cording to

M, E odd; y(JC }=+1
~2+= (3XS)'"yz
&,+= (3XSX7)1/'xyz

n4+= —,
' (3X /) (5)'~'{x'ys —(1/7}[«+j}

«+= sb (3X5 X 7X11)'"(*'ys—-'[«+3}
o,6+=-,' (3X11)g (3XSX7X13)j'/'

X (x4ys —(6/11) [«+g—(1/3 X7)[«+g}
07+ g'(3=X11X 13)[z (5X7) ]'~'(x'ys —(10/13)[as+j

—(5/3X11)L +j} I'2 type

The two sets of polynomials for this lattice vector are
given in Table VIII.

The next type, the (a,b,0) vector also has only two
operations in the group of the E, vector. The poly-
nomial generating function is

L1+( )ex(J)si~/2(u+b)jxb3)msn (3 5)

This merely groups the terms as even or odd in s ac-

TABLE V. A list of polynomials for the wave vector (u,0,0) in
which only even powers of both y and z occur. For a=2, 6, 10,
etc., the + sign functions are I'2' and the —sign functions are
I'1'. For a=4, 8, 12, etc., the + sign functions are I"1 and the-
sign functions are I'2.

M, S even; g(JC2) =+1
pp+= 1

p =(3)/"
P2+=-(5}'"(x'—-)

Pa+=s(3XSX7){x' (6/7)l )ss+g —-', }-
p,+= sb (7X9) (11)'~'(x' —(10/9) [Ps+3—(3/7) 94+3}

p6 = 6{3X7X»)(13)"{"-(15/»}D4j- (5/7) I:p"3-(1/7)}
p7+= 1'6 (3X11X13)(15)'/'{x'—(3X7/13)ps+j

—(5X7/3 X11)$P3+j——,'Q1+g}
3II, iV even; g (JC2) = —1

p,-=,(3xsx 7)»2g(y' —z')

p
— 3 (SX7)1/2x2 (y2 z2)

p{; ——3 (3X5X7X11)'/2{x (y2 —z2) ——$93 g}

pe
——11/4(3 x7x 13)»2{g4 (y2—z2) —(5/] 1)Qg4-g}

py =16{3X»XX13)L21(SX7))/ {x5(y —z)
—(10/13)I ps j—(5/3X11.)Lps j}

p&- ~16(13X15)l 2(3X11X17))/ {x (y —z)
—(14/15)[F6 j—(5X7/11X13)$94 j}

]+( )mx(j)six/2 (a+ b) (3.6)

The resulting polynomials are given in Table IX.
The final type of vector in Table I is the vector (a,b,c)

vrhich is a general vector. The group of the K, vector is

trivial, containing only the identity operation. Thus no
simplifications, by the use of Eq. (2.6), are possible. An

/th-order term would be expected to contain all (2t+1)
spherical harmonics. The applicability of Eq. (2. /) is,

however, unaffected and of course does not depend on

the order of the group of the K, vector.

TABm VII. The I'1' and I'2' types of polynomials for
the (u, u, 0) reciprocal lattice vector.

l'1' type

p.-=L-;(3XS)j / (x—y).
p3-=-,'(3X5X7)»2(x2—y2).

p.,
- =-.'{3X7)(5} /'((g-y)" —3/7Lp- j)

P4, 2 ——4 (5X7)'/'(x —y'+3xy (x—y) )z

P» =k{3XSX7X»)»2({"-y')"—'LP.-j)
p5 Q =ss(SX7X11) ~ (x —y)xys

P6 1 ——6 {3X11)(2X3X7X13)'/ ((x—y)z5
—(10/»)fp4, 1 j—(5/3X7}Lp3 j)

I'2' type

p + (3)1/2z

P += t l (3XS) I'"(x+y)z

p3, 1+=5(7)'"(z'—SEP1+j)

p, += (3XSX7)1/2xy.

p4, 1+—g (3X7) (2)'/'( (x+y) z —(5/3 X7) t p 2+))

P4, 2+ = ~ {5X7)'/'(x'+y' —3xy (x+y))z
+= S1 (7x9}(11) / (z~ —(10/9) t p3, 1+$—(3/7) Lp1+])

p5 2+ = 2 (3X5X7X») '/' {xyz3—31 p3 2+))

p5, 3+= 8 (SX7X11)'/ (g'+y —6g'y')z
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To illustrate the polynomials and procedures de-
veloped in this section, the first fear terms in the poly-
nomial expansion of the momentum wave functions
b (k,n 'K,) for the 6fteen lowest plane waves and for a
I'&' band symmetry are presented in Table X. In this
table, x, y, and s stand for the usual direction cosines.
Normalization constants of the polynomials are disre-
garded. The characteristic behavior of the wave func-
tions should be noted. First we see that b„(k,0,0,0)
vanishes on the planes x=O, y=O, or s=O as required
for a F2' function. Those b (k,K,)'s whose K vectors
diGer by operations such as y, x, s, etc. are seen to be
simply related across bounding planes x=y, etc. Thus
rows three and four of Table X are seen to be equal for
a k in the plane k,= k„. Similarily, b„(k,K,)'s whose K
vectors di6er by operations of the form x, y, s, etc., are
simply related across bounding planes x=O, etc. Rows
ten and eleven of the table are thus negatives of each
other for k, =O, etc.

IV. MOMENTUM WAVE-FUNCTION
EXPANSION

The intent of this section is to present an expansion
for the momentum wave functions b„(k,K,) of Eq. (2.2)
employing the polynomials which have been developed.

TABLE VIII. The two sets of polynomials for the
(u, b, b) reciprocal lattice vector.

I'1 and F2' type

np =1
1, 1+= (3)1/2g

, 2+= (')'"(y+z)
n2, 1+=3/2 (5)»'(g' —~)

~» 2+= [1(3XS)7'"x(y+&)

n2, a+= (3X5)1/2yz

n3, 1+——5/4(7)'/'(x' ——,
' fn1, 1+j)

+» & =5/4(3 X7)"(x'(y+x) 5E~» ~' j—)
n, ,+= (3X5X7)1/2gy.

n3, 4 —2 (2X5X7)»2&S(y+Z)

«.1'= s (3X5X7)(x4—(6/7) fn2, 1+1—k)

n4, &+ = r~ (3X /) (5) (x8 (y+s) (3//) [n» &+3)

~4, s+= k (3X7) (5)'"(x'y& —(&/7) [~» 8+3)

n443+(5
X,
7)'~'( ' y' xg'[n4&+ j+—(t/7), [n» g+g —(t/3 XS))

n4, 5+= 4s (SX7)'/'x(y'(y —3s)+s'(s —3y))

I'2 and F1' type

n2, 1-=f)(3X5)j1/2x jy—z)

2, 2 = ~g(3X$)l/2(y2 s2)

n3, 1 =5/4 (3X7)'"(g'(y —s) —~fn1 j)
n3, 2 =

& (3X5X7)'/2X(y2 —S')

n3 2 =&(SX7)'/2(ye —S'+3yS(y —S})
&4, ~ =i(3X7)(5)'"(x'(y—x) —(3/7)[~»~ 3)
n4, 2 ——~4 (3X7) (5)«2(g2(y2 —s2) —(1/7) fn2 2-g)

n4 g g (5X7)1/2yz (y2 s2)

n4 4 =x(5X7)»2x(y'(y+3z) —s'(s+3y))

s even

z odd

np= 1

n1, 1= (3)'/'x

1, 2 (3)1/2y

-. =i(5) '("-l)
n2 2

——2(3X$) /2(g —y2)

2, s= (3X5)'/'xy

a, g ', (——2X-SX7)'~'( x' ', [—n»—g'j)

a» ~=-.'(2XSX7)'"(y' —f [m, ug)

n3 s 2 (3X5X7)1/2g (y2 —z2)

n2, 4= 2 (3XSX7)'/'y(g' —s2)

&4. 1 8 (3XSX7)(x (6/7)[+»&3 r)
n4, p = », (3X7) (5)'~'((x4 —y4) —(6/7) [u» ag)

n4, s =3 (5X7)1/2(x2y2 —~s f«, 13+(1/7) fn2, 1j—(1//15))

e4 4
——p (3X7) (5)'~'(xyx' —(1/7) [0:»3g)

3 (5X7)1/2xy (x2 y'2)

p =(3)'/"
p, ,= (3X5)»2x.

p2, 2= (3X5)»'y.

p2, 1=4(7)»2("--:fp13)

P»s= (3XSX7)'~'xy&

p3 3 2 (3xpx7)1/2z(x —y2)

P4, = -', (3X7) (2X5)'&'(xx' —(3/7) [P» lg)

p4, 2 = 4 (3X7) (2X5)'/'(yz' —(3/7) fp2, Q)
P4, ———,'(2X5X7)»2xs(x2 —3y2)

P4 4
—

4 (2X5X7)1/2ys(y2 —3g2)

Ps, l H7X9)(x' —0o/9)[P»~3 —(3/7)[P~3)

Ps, g=-', (3XSX7X&t)'"(xyx'—l[P»s3)
P5. s = 4 (3X5X7X11}»'(~(x'—y') —3fPs s3)

p5 4
—

g (3X5X7X11}»2gys (x2—y2)

p, = -,' (5X7)'/'s (x'+y' —6x'y')

TABLE X.The form of the polynomial expansion for a F2' band
symmetry and the 15 lowest plane waves. The characteristic be-
havior is illustrated by this table.

2

3

5
6

8
9

10
11
12
13
14
15

K,

000

iii
iii
111
iii
111
iii
iii
iii
200
200
020
020
002
002

bs(k, K,)

A & (xyx)+A&(xys(x'+g+z4) —(5/11)xys}
B,+B,(x+y+s)+B, (xy+ys+xz)
B,+B,(—x+y+s)+B, (—xy+ys —xz)
B1+B2 (x—y+s)+Be (—xy —ys+xs)
B1+B2(x+y—z)+Bi (xy —yz —xs)

—B +B (x+y—s)+B (—xy+gs+xz)
—B1+B2(—x+y+s)+Bs(xy —ys+xs)
—B1+B2 (x—y+s)+Bs (xy+ys —xs)
—B1+B2(x+y+s) —B&(xy+yz+xs)

C +.C x+C (x'—g)+C {x'——,'x)
—C1+C2x—Cs (x2—$)+C4{x3—gx)

C +C y+C (y' —4}+«{y'—fy)—C1+C2y —C3 (r' —')+C4{y gy)
C,+C,z+C, (s2—;)+C4{e—-,'z~

—C +C z—C (z'—~)+C {s'—-'z3

TABLE IX. The two sets of polynomials for the lattice vector
(u, b,0). For the case'in which $(a+b} is even, F1 and I'2 are even
in s and I'1" and I'2' are odd in s. For the case in which $(ii b) is
odd, the labeling would be reversed.
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We expand any particular b„(k,K ) as a sum of ap-
propriate polynomials. Since each polynomial may,
without affecting the transformation properties of the
polynomial, be multiplied by any function of k which
is invariant under all operations of the symmetry group,
the following expression would be an acceptable ex-
pansion for b (k&K,):
b.(k,K*)=ZLZ~~'lkl']B~{1' K)+~(1' K) (41)

P,=P A)(K, (,(x,y,a)R((E,r). (4 2)

In this r space expansion, s denotes the type (transforms
according to a given row of an irreducible representation
at the point I') of wave function and l is the order of the
radial wave function. E,t& is a symmetrized polynomial
{Kubic harmonic) of type s and order 1 and R~ is the
1th-order radial portion of the wave function P,. In (4.2)
/ is summed over those orders containing type s, and $

is summed over the multipl. e polynomials of type s
which may occur for the higher orders of l.

To put Eq. (4.2) in a form more nearly equivalent to
{4.1), we expand E~(F,r) in a power series in r for small
r. %e would 6nd that the series contains odd and even
powers of r with the leading term on Rg being r'. Thus
the lowest power of r which would occur in Eq. (4.2)
is directly related to the order of the lowest-order poly-
nomial E,g& containing type s.

The second common application of symmetrized
polynomials is in an expansion of Z(k) in the Brillouin
zone. ThIs energy-band-structure expansIon may be

J. Callaway, in Solid Slate Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., ¹wYork, 1958), Vol. 7, p. 99.

In Fq. (4.1) I' is the one-dimensional representation
appropriate to band n, A, ; is the expansion coeKcient
for lkl' and the jth polynomial, P,(1'„,K,), is the jth
polynomial appropriate to F and lattice vector K„a,nd
B,(I',K,) is the associated expansion coeKcient. In
order to apply Eq. (4.1) to silicon, we must establish the
ranges of the indices i and j. Before attempting to do
this, let us consider earlier applications involving sym-
metrized polynomials, although the present application
is apparently original in this paper, so the connection
with earlier work is by analogy only.

The two main applications of symmetrized poly-
nomials have been for wave-function expansion (Von
der Lage and Bethe') and for energy-band-structure ex-

pansions (Callaway'). Let us consider the wave-function
expans»on 6I'st. Von der Lage and Bethe weI'e concerned
with ending solutions to a radial Schrodinger equa, tion
which was separable in polar coordinates by virtue of
the fact that the one-electron periodic potential was a,s-

sumed to be spherical within the unit cell. The wave
function P, for the point I" in the Brillouin zone may
thus be written in the form

written as Lusing notation similar to that of Eq. (4.2)]

E(k)= g 2(,, „lkl "IC„i,,(k„k„,k,). (4.3)

As is well known, the type s appropriate to E(k) is the
totally symmetric F» representation and due to time-
reversal symmetry, only even powers of k appear in Eq.
(43).As noted in Sec. III, the polynomials E,, ~, & in. Eq.
(4.3) are identical to those obtained in expanding
b„(k,K,=0, 0, 0) for a I'r band.

We now return to Eq. (4.1) to determine the powers
of k that should be expected to occur in expansions of
the b„(k,K,) for silicon. In Ref. 3 the pseudopotential
plane-wave method was employed to obtain energy
bands and wave functions for silicon. Therein, in order
to keep the numerical labor within reasonable bounds,
the secular equation was truncated after 15 plane waves.
The 15 plane waves employed were the (000) plane
wave, the eight plane waves of the type (111), and
the six plane waves of the type (200) (units 2~/a). In
this section we shall employ a k y perturbation tech-
nique using basis states at k=0 constructed from the
j.5 plane waves to determine which powers of k are
appropriate in Eq. (4.1). Finally we will check the
form of the k y results with the numerical wave func-
tions obtained as in Ref. 3 along a line between the
points I' and Q Lcoordinates 27r/u (0,0,0) and 2w/u

(3,2, 1)$ and quite close to the I' point.
In RpplyHlg the k' p techn»que we are interested only

in the form of the wave function and not in numerical
values. Thus several simpli6cations and short cuts may
be employed. The article by Rane' was followed in gen-
eral and an equation for wave functions to second order
in the perturbation was taken from SchiG."

Table XI contains symmetrized combinations of
plane waves for the F», Fq', F25', and F»~ irreducible
representations of the "little" group at k =0 as obtained
following Mariot. " For the perturbation Hamiltonian
both the

l
k l' and k y terms' are considered. The diag-

onal term lkl2 is trivial. The basis states which are
coupled by the nondiagonal k p term can be easily ascer-
tained by group-theory considerations. In order for two
states, say F„and Fp, to be coupled by the k y term, the
the cross product F XFy must contain the vector rep-
sentation F»5. These results are contained in Table XII.
An X in Table XII indicates that a (nonzero) coupling
is group-theory-allowed. Table XII relates to "whole"
representations. It does not follow and indeed is not the
case that, for example, any row of F25' will couple with
every rom of F»~ in the manner indicated in this table.
The correct degenerate wave functions at @=0 are,
however, linear combinations of the "pure" states given

' E. 0.Kane, in Semiconductors aid Semiesetals, edited by R, K.
Willardson and A. C. Beer I'Academic Press Inc. , New York, 1966),
Pol. 1, p. 75.

@L. I. SchiG, Quantum 3fechanics (McGraw-Hill Book Pub-
lishing Co., Inc., New York, $955), p. 154.

'~ L. Mariot, Group Theory and Sold State I'hysjcs (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1962), p. 86.
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in Table XI and thus are coupled according to Table
XII. Since we are interested only in the form of the
wave functions and not in numerical values, second-
order nondegenerate perturbation theory is adequate.
The results which show the terms which occur in Eq.
(4.1) when applied to silicon are given in Table XIII.
Next numerical wave functions for the eight bands in
question were graphed and found to agree with Table
XIII.

The momentum wave function bs(kK, ,=00, , 0) is
shown in the table with ibis as the leading term. This
particular b„(k,K,) remains zero in both first- and
second-order perturbation theory and was therefore ob-
tained instead by graphing the numerical wave func-
tions. The extension of the present section to wave func-
tions containing more plane waves follows easily using
the results of Sec. III.

TABLE XI. Symmetrized combinations of plane waves for the
diamond lattice and for the F1, F25', and F15 irreducible representa-
tions of the group of the k vector at k=O. {SeeRef. 11.)

Band 1
Rep. Fy
Row 1

J, K,

2 3 4 5 6 7 8
F25' F25' F25' Fg' F15
XF XZ PZ XFZ Z I" X

000 +
iii +
111
iii
iii
111
111
iii
111 +
200 0
200 0
020 0
020 0
002 0
002 0

0 0 0
+ + +
+ +
+ — +

+ +
+ +

+ +
+ — +
+ +
0 0 +
0 0 +
0 + 0
0 + 0
+ 0 0
+ 0 0

0
+

0 0
0 0
0 0
0 0
0 0
0 0

It should be noted, however, that we have not estab-
lished whether a given polynomial in Eq. (4.1) should
be multiplied by a power series in ski containing both
even and odd terms, but merely that near k= 0 a realis-
tic expansion of b (k,K,) will generally have a leading
term of fairly low order and may contain both even and
odd terms. Speciiics of expansions such as (4.1)will have
to be determined from a more detailed numerical appli-
cation than is reported here.

The momentum wave-function expansion [Eq.
(4.1)j, which explicitly displays the transformation
properties [Eq. (2.5)j of the b„(k,K,), pertains to gen-
eral points in the Brillouin zone. Although the behavior
of the b„(k,K,) at general points on the Brillouin zone is
of much more importance in volume integrals over the
Brillouin zone than is the behavior of the b (k,K.) at
symmetry points, it is nonetheless of interest to examine
Eqs. (2.5) and (4.1) near a symmetry point. This has

Tmm XII. Sands (irreducible representations) which are
coupled by the nondiagonal k y term in the perturbing Hamil-
tonian. An X in Table XII indicates that a nonzero coupling is
allowed. This table is incomplete in that couplings to higher bands
have been ignored. For example, the representation F12' is con-
tained in the 15)&15matrix (bands 9 and 10) and would couple to
F25', for instance. For our purposes, the incomplete table is
adequate.

Band

2,3,4
5

6,7,8

Rep.

FI
F25
F2'
F15

F1

0

0
X

Sand
2,3,4

Rep.
F2s' Fa'

0 0
0 X
X 0
X 0

6,7,8

F16

X
X
0
0

TanLE XIII. Leading powers oi i hi which occur in the expan-
sion of silicon momentum wave functions b„(k,K,) for the eight
lowest valence bands and for the 15 lowest plane waves. Second-
order "k p" perturbation theory was employed and both the
diagonal and nondiagonal perturbing terms included. The mo-
mentum wave function b~{k,K=0,0,0) for band 5 and the {0,0,0)
reciprocal lattice vector was obtained by graphing numerical wave
functions.

{K,}
{0,0,0}
{1,1,1}
{2,0,0}

0,2
0,1,2,3

2

Sand
2,3,4

2
0,1,2,3
0,1,2,3

L33
0,1,2,3
0,1,2,3

6,7,8

1,3
0,1,2,3
1,2,3

been done for the I' symmetry point [the origin for the
expansion in Eq. (4.1)j.

Momentum wave functions b (k,K,) were obtained
numerically for small values of k along the I"-Q line in
the Brillouin zone. Using Eq. (2.5) we obtained b (—k,
K.) from the b„(k,K,). In performing this transforma-
tion the identiication of the band symmetries was taken
from Ref. 3. Thus the b„(k,K.) are known as we ap-
proach the I' point from both the positive and negative
directions along the Q-I'-Q line in the Brillouin zone.
A comparison of momentum wave functions b„(k,K,)
with b„(—k,K,) in the limit as k-+ 0 along the I'—Q
line reveals discontinuities in function in the b„(k,K,)
for bands 2, 4, 5, and 8 at the point F. In Ref. 3 these
bands were identihed as I'2', I'i', I'~, and I'~, respectively.
This identi6cation was made in order to obtain con-
tinuity and smoothness in the wave functions across
the boundary planes of the 48 subzones in the Brillouin
zone.

A new character assignment in Eq. (2.5) could be
made which would obtain continuity in the b„(k,K,) at
the point I". Thus Eq. (2.5) yields X„&"(1)=+1 for
bands 1 to 4 and X "'(J)= —1 for bands 5 to 8. This
character assignment which obtains continuity at I' ap-
parently produces discontinuities across entire plans io
the interior of the Brillouin zone for bands 2, 4, 5, and
8. Apparently behavior of the wave functions at F is
such that we may consider them to be "bonding" and
"antibonding" in the Brillouin zone with respect to the
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inversion opcratlon J Rt, . thc point I . This 40Ilding
and "antibonding" classihcation in k space is closely
associated with and "dual" to the "bonding" and "anti-
bonding" classification which emerges from the usual
r-space "tight-binding-approximation" treatment for
the r point.

The main point here is that apparently, at least in the
numerical example being considered, the continuity
symmetry classi6cation appropriate for general points
in the Brillouin zone is not the same as that required at
the symmetry point I'. Thus, with respect to general.
points, the point I' may be regaxded as an isolated point
of singularity for the momentum wave functions. It
would bc of interest, but in the present context some-
what more dificult, to examine the b„(k,K,) at other
symmetry points. It may be that other symmetry points
also .epresent polI ts of singularity.

V. DISCUSSION AND CONCLUSIONS

The motivation for the development of wave-function
expansions of the sort treated in this paper is clear.
There is a wide va, riety of semiconductor problems in
which it would be very useful to have analytical repre-
sentations of the k dependence of wave functions. Hope-
fully, such representations will make feasible theoretical
treatment of problems which in the past has Qot been
prRctlcal.

An important point for discussion concerns the useful-
ness and convergence of the proposed expansions. Be-
cause of the complexity of the wave functions and the
fact that theory for the determination and symmetry
properties of Bloch functions for interacting bands—
bands exhibiting quasidegeneracy —is not fully devel-
oped, many questions remain unanswered.

The expansion which has been developed is based on
R plRnc-wRvc cxpanslon of thc wRvc fuIlctlonp ore ln R

pseudopotential approach, the pscudowave function.
Hence the area, of general usefulness of the expansion
should include those semiconductors and metals whose
energy-band structures are represented fairly well by
pseuodpotential plane-wave expansions.

The symmetry polynomials have been normalized to
4m over the unit sphere. They are therefore not ortho-
normal over the actual Brillouin zone. In view of the
general form of Eq. (4.i) we expect that the expansion
will be useful over the actual Brillouin zone. At any
rate, the principal difhculties which such expansions
may encounter appear to lie in the occurrence of quasi-
degeneracies rather than in the distinction between a
spherical "Brillouin" zone and the actual Brillouin zone.

Thc main questions concerning wave-function ex-
pansions which are not completely resolved relate to the
occurrence of quasidegeneracies in the energy-band
structure. The diKculty' is that if one constructs energy
bands according to the usual "energy-ordering" scheme,
thc l csultlng wRvc functloDS arc Qot Rlways smooth.
functions of k throughout the Brillouin zone. Problems
arise at points of quasidegeneracy where two bands ap-
proach closely. These are accidental in that they are not
l cqulI'cd by symmetry. NcRI' a poolt of quRsldcgcncrRcy
the behavior of the energy bands (as de6ned above)
and the associated wave functions is the following: Al-
though the energy bands do not cross, the wave func-
tions vary rapidly with k in a small region in which the
bands interact strongly. Away from the region of close
approach the wave functions are such that the bands
appear to have crossed and thus switched symmetries.

The bands couM either be treated as a set of isolated
bands and dehned according to their symmetry type
or could be de6ned conventionaOy. Each procedure has
advantages and disadvantages depending on whether
one's principal interest ls ln wave functions or the
density of states. Employment of an expansion such
as (4.1) would be simplest if the "single-synunetry"
dc6nition were employed, although the behavior of such
an expansion at the point of quasidegeneracy is not
clcaI'. Evidently thc cxpRQsloDS would llot bc dlagoDRl
in the band index at the point of quasidcgeneracy. The
OG-diagonal terms are small and it appears they can be
neglected, "provided that the energy band is continued
through the degeneracy according to symmetry.

Since quasidegeneracics are numerous in the conduc-
tion bands of silicon —Rnd would probably be found in
other materials as well if both energy bands and wave
functions were to be carefully considered. —these prob-
lems are of interest in a practical development of ex-
pansions. The valence bands in silicon are much simpler
with quasidegeneracies occurring seldom if at all. While
we believe the proposed expansion will be useful for
both valence and conduction bands, certainly its appli-
cation will be more straightforward for the valence
hands than for the conduction bands.
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