166 SYMMETRY PRINCIPLES

The relations not shown below may be obtained by
cyclic permutation of x, y, and 2. Functions belonging
to the same representation are formally identical if they
have a common symmetry origin.

N
I'y:

/.
I‘12a .

Boya’ <> §(x);

Bopy' (ax) <> 8(x),

Bop¥y'(ax) &> —38(y)+€ (),

Bop™y' (ax) <> —38(2)— € (2);
Bop®(x) <> o'+ (ax)
Bop¥8(x) <> 8(2)+€ (3),
Bop*d(x) > —3(3)+€ (y);
Bop®€ (x) < B+7'(s2),
Bop¥e (x) <> 8(z)—€'(2),
Boye (x) <> 6(9)+€ ().

T and T'yp, are not used in the present work.

r‘l:,:
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In the same way we derive the rules for the effects of
the electric-field operator (2.7). Thus from (3.1) and
Table I

Fop’~I‘15x~x .

For the representations used in the present work we find
the subsequent relations.

Ty Fopa <> 5(x);

Tioe: Fop®y(sx) > 8(x),
Fopty(sx) > —38(y)+€ (),
Fopy (sx) > —38(2)—¢€ (2);

Tos’s  Fop®e(x) <> +v"(s%) ,
Fopre(x) > 6(z)—¢€'(2),
Fopre(x) <> 8(3)+€ (),

T Fop8(x) <> at-y(sx)
Fop¥d(x) <> &' (2)+¢(2),

Fop?d(x) <> — ' (y)+e(y).
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Recent optical studies in II-VI compound single crystals have revealed discrepancies between actual
absorption lines and the resonance frequencies obtained from a classical treatment of absorption and dis-
persion in insulators. This treatment neglects explicit dependence of the dielectric constant on the wave
vector k. In this paper, we calculate this wave-vector dependence of both the real and imaginary parts of
the dielectric constant in a treatment which considers the scattering of the coupled exciton-photon (polari-
tion) waves by phonons. Transmission, reflection, and absorption coefficients are then calculated for a
typical II-VI crystal (CdS). The theoretical results obtained are found to be consistent with results given
in the above optical studies. In particular, the intrinsic absorption lines are predicted to be wider and to
peak at higher frequencies than generally expected from the classical treatment.

I. INTRODUCTION

HE absorption bands near the band edge have
been extensively studied in the II-VI semi-
conductors.! Some of these absorption bands are re-
ported to be intrinsic in nature, being attributed to the
formation of free excitons, which are mobile electron-
hole pairs bound together by their mutual energy of
attraction. Also, absorption bands in the same range
of wavelength have been reported which are attributed
to the formation of excitons loosely bound on defect or
foreign-ion complexes. These trapped or bound excitons
for which crystal momentum is not a good quantum
number are expected to behave like classical oscillators.

1 An excellent review of this work is given by D. C. Reynolds,
C. W. Litton, and T. C. Collins, Phys. Status Solidi 9, 645 (1965);
12, 3 (1965).

Thus an accurate description of the absorption spectra
associated with these bound excitons should be derivable
from the classical treatment of absorption and disper-
sion in insulators.?

Noticeable discrepancies have been reported when
this classical treatment has been extended to account
for the absorption believed to be associated with the
formation of free or intrinsic excitons.? Recently, Park
et al.* noticed that a discrepancy of as much as 0.01 eV
existed between actual absorption lines in zinc oxide

2 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Co.,
Inc., New York, 1940), p. 633.

8 To our knowledge, the only paper in which the exciton absorp-
tion is calculated not using the classical method is that by A. A.
Demidenko and S. I. Pekar, Fiz. Tverd. Tela 6, 2771 (1964)
[English transl.: Soviet Phys.—Solid State 6, 2204 (1965)7].

4Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds,
Phys. Rev. 143, 143 (1966).



770

and the resonant frequencies obtained from a classical
(Kramers-Kronig) analysis of reflectivity data. They
found that the intrinsic absorption bands associated
with excitons in ZnO occur on the high-energy side of
the reflectivity maximum rather than on the low-energy
side as predicted by the classical treatment. In fact,
they reported that each intrinsic absorption band ap-
pears to be centered close to the energy of longitudinal
excitons, where a minimum in reflectivity occurs, rather
than at the energy where transverse excitons strongly
couple to the radiation field. Similar discrepancies ap-
pear to be present in CdS and CdSe,>¢ in which also
the absorption bands are reported to be on the order of
10 A wide,57 considerably wider than predicted by the
classical treatment.

A more rigorous look at the theory of excitons in the
manner suggested by Hopfield® is reviewed in Sec. II.
In Sec. III, the interaction Hamiltonian H,.; coupling
phonons with the excitons is introduced. This Hamil-
tonian is treated as a perturbation on the stationary
states of the coupled exciton-photon fields. Using the
boundary conditions introduced by Hopfield and
Thomas,® we then calculate the transmission and re-
flection coefficients and the absorbance for a typical
II-VI semiconductor (CdS) in Sec. IV. In Sec. V, we
discuss how these results might relate to some of the
anomalies reported in the II-VI semiconductors.

II. STATIONARY STATES OF THE COUPLED
EXCITON-PHOTON FIELDS

Hopfield® has shown that the form of the energy of
coupling of the exciton and the photon fields does not
permit one to treat the radiation field as a perturbation
on the exciton field. An external photon entering a
crystal can transform directly into an exciton, provided
they both have the same energy and wave number. But
this does not constitute absorption unless this exciton
is scattered by a phonon or some other defect in the
crystal. If this does not happen (because of the wave-
number conservation rule), the exciton transforms di-
rectly back into a photon indistinguishable from the
original photon, since it has the same energy and wave
number. This switching back and forth between photon
and exciton can occur very rapidly. (The rate of energy
exchange in a IT-VI semiconductor is predicted to be on
the order of 104 sec™! for allowed transitions.) It is thus
necessary to work with the stationary states of the
coupled (exciton-+photon) fields. These states, called
“polariton” states, were first investigated quantum
mechanically by Hopfield.® His theory of a polariton is
now described.

5J. J. Hopfield and D. G. Thomas, Phys. Rev. 122, 35 (1961);

see also D. G. Thomas and J. J. Hopfield, 4bid. 116, 573 (1959).
6R. G. Wheeler and J. O. Dimmock, Phys. Rev. 125, 1805
1962).
( 7E. F. Gross and V. V. Sobolev, Fiz. Tverd. Tela 2, 406
(1960) [English transl.: Soviet Phys.—Solid State 2, 379 (1960)].
5. J. Hopfield, Phys. Rev. 112, 1555 (1958).
¢ J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563 (1963).

wW. C. TAIT AND R. L.

WEIHER 166

POLARITON ENERGY [E;(K)]

WAVE NUMBER (k)

_F16. 1. Energy diagram of polariton bands. The solid curves
give the energy of the polaritons obtained from Eq. (3), and the
dﬁshed curves give the energies of the uncoupled excitons and
photons.

To keep the analysis simple, anisotropies in the di-
electric constant and the effective mass of the exciton
are neglected. Only one band of excitons is treated ex-
plicitly, it being assumed that the interaction of the
other exciton bands on the photon field in the range of
interest can be represented by a frequency- and wave-
number-independent dielectric constant ¢. The static
contribution to the dielectric constant of the exciton
band treated explicitly will be denoted by 4x8,, where
n denotes a band index (z=1, 2, etc.).

The Hamiltonian of the coupled exciton-photon fields
in a II-VI semiconductor in this approximation is
given by?3

H= z? {Ex(bubx+3)+ tve(artant-3)

i B2l w80t/ € viEx) 2L ar b — ardyt
+ dkb_k — aker_kT:]",- (ﬂ'BnEk2/€,th)
X[t ot axa+atast+aas ]} . (1)

The first term in A is the Hamiltonian of this exciton
band; here, Ey=E..+h%2/2M, M=m>*+my* (the
mass of the exciton) and &y and &y represent exciton
annihilation and creation operators. The second term
is the Hamiltonian of the photons, where ax and a;'
are photon annihilation and creation operators. The
terms with square brackets represent the energy of
coupling of the photons and excitons.

This Hamiltonian is diagonalized by the following
transformation:

"“'(“)=§31 Co®as(l), 2

where a1(k) = ax, a2 (k) = by, as(k) = a_,", and a4(k) = b_,".
The matrix C(k) is given by Hopfield® with his parame-
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ters B, wo, and ¢ replaced by 8./¢, Ex/%, and ¢/A/€,
respectively. The energies of the stationary states are
given by E;=E;(k) and E,=E,(k), where E; is the
smaller positive root and E. the larger positive root of
the equation

2tk E2= ¢ +4mB,/(1— B2/ E?). 3)

These roots are plotted against £ in Fig. 1. The dashed
parabolic curve and dashed straight-line curves repre-
sent the energies of an exciton and photon, respectively,
which are the stationary states of the Hamiltonian, Eq.
(1), obtained by setting the coupling constant 3, equal
to zero. The influence of the energy of coupling on the
stationary states is very significant, especially inside the
circle in the vicinity of 2= £, (the wave-number crossing
of the dashed curves). At values of E larger than E.,
outside the circle, the dashed curves coincide with the
solid curves, indicating that the uncoupled exciton and
photon states are good stationary states here, as one
expects. Outside the circle, but at energies lower than
E,,, the dashed and solid curves do not coincide exactly.
Here the effect of an exciton on a photon, though slight,
is not negligible. It affects a photon in the same way as
any other source of polarization below its resonance fre-
quency, that is, through its static contribution to the
dielectric constant 478,. (In a II-VI semiconductor, the
value of 478, of each exciton band is expected to be on
the order 102 or less.) However, in the region inside
the circle where E is near E.,, the stationary states are
neither photonlike nor excitonlike. These states have a
sizable nonclassical effect on the interaction of the
crystal with external photons. This will be discussed
further in Sec. III.

Equation (3) also has solutions wherein % is purely
imaginary. These polariton states give an amplitude
that increases exponentially as a function of position in
certain directions; hence they do not represent bona fide
stationary states of an infinite crystal. However, these
states have to be reckoned with in a finite crystal be-
cause they will couple with external photons and will
propagate a finite distance into the crystal. These states
connect continuously in energy onto the polaritons of
the upper branch in Fig. 1 at 2=0 and are shown in
Fig. 2.

III. CALCULATION OF SCATTERING TERMS

According to the point of view outlined in Sec. II, an
external photon cannot be absorbed by a crystal after
it enters as a polariton unless it is scattered by a phonon
or some other defect in the crystal. Our treatment in
this section will include only the effect of scattering by
longitudinal acoustic phonons on polariton waves which
have a real wave number .. The transverse acoustic
phonons couple very weakly with the excitons.!?
Polaritons with imaginary wave number are not coupled
with phonons by the exciton-lattice coupling Hamil-

10y, Toyozawa, Progr. Theoret. Phys. (Kyoto) 20, 53 (1958).

ABSORPTION OF LIGHT WAVES IN II-VI

CRYSTALS 771

0
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F16. 2. Polariton energy diagram illustrating states which
have imaginary wave number.

tonian discussed below [see Eq. (4)]. It is shown
elsewhere!! that at low temperature the scattering of
polaritons by optical phonons is negligible because it
involves a density of final states near k=0 which is
very small.

The interaction Hamiltonian that couples the

(longitudinal) acoustic phonons and excitons is given
by

Hi=E 5 E ulabubu come- )ik K+0), (4

where ¢q and ¢," are phonon annihilation and creation
operators and, to a first approximation,

Bac(@)=[27/(9p1uV) ]?¢"*C.. ©®)

Here, p1, denotes the density, » the sound velocity, V
the volume of the crystal, and ¢ the magnitude of q. In
the deformable-ion model, C is given by $(E,—E,),
where E, and E, are deformation potentials for the
conduction and valence bands, respectively. In the
present work, the coupling constant C will be treated
as an adjustable parameter.

In order to determine the effect of H .y, to first order
on the stationary states of the exciton-photon system,
it is necessary to express the &’s and 4"s in Eq. (4) in
terms of the creation and annihilation operators of and
a. The terms in H,.; that contribute from the lower
branch are given by

H.'= Zk: g’, > ﬁac(Q)[Cn(k/)al*(k')clz*(k)oq(k)

+Caa(—k)ar" (k') Ca*(— k) (k) ]
X(ecq—c—q"o(k—k'+q), (6)

where use has been made of Eq. (2) [see also Eq. (15) of
Ref. 8. These terms cause scattering of a polariton from

" W. C. Tait, J. R. Packard, D. A. Campbell, and R. L.
Weiher, in Proceedings of the International Conference on
II-VI Semiconducting Compounds, Providence, R. I., 1967
(unpublished).
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F1c. 3. Energy diagram illustrating transitions used in calculating
scattering terms: (a) I'y =T34+ Ty; (b) Te=Ta+Ts.

one state in the lower branch to another state in the
lower branch. The scattering probability per unit time
associated with this type of scattering from a state with
wave number % is designated by TI'ii(k), as shown in
Fig. 3(a).

There will also be terms in H.z, that are responsible
for interband scattering from the lower to upper polari-
ton branch and vice versa. Transition probabilities per
unit time produced by these transitions are designated
by T'i2(k) and T'si(k), respectively. Finally, there will
be the quantity I'ss(k), which defines the transition
probability per unit time that a polariton in the upper
branch is scattered out of the state with wave vector k
into any other state in the upper branch. The total
probability per unit time for scattering of a polariton
from any particular state k in branch (=1, 2) is thus
given by

Ti(k)=2_j=1,2 Tij(k). @)

We now discuss the calculation of I';1(k). This is the
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dominant term in I'y(k). The major term in T'»(k) is
T';1(k) and is calculated later in this section.

Let |Initial)=[0,0,- - -,1%,0," « * )| #2q,,#qy - - -) denote
the initial state which contains one polariton in the
lower branch (¢=1) with wave-vector number k and
nq, phonons per state with wave vector qi, etc. The
probability per unit time that this polariton is scattered
out of its initial state by the phonons into another state
in the same branch is given by

I'1a(k)= (27/ %) 3 tinal states {final | H,z/ | initial) |

X 8(Etina1— Einitia1) = 2w/ %) (24C2/9p V)

X2ks | Cralks) Cra* (k) +Coa( —ky) Coa*(—K) |2

X{(ng+1)g8[ Er(k) — Ex(ky) — frug]

+nqqo Ex(k)— Er(ky)+Tmgl}, (8)

where ¢= |k;—k|. This calculation is very similar to
that of calculating the electrical resistivity of a metal.
The main difference is that there is no exclusion principle
affecting the number of final states available. The energy
of the phonon (##g) is much smaller than the energy of
a polariton. We are therefore justified in assuming that
the scattering is nearly elastic and in setting |k;|
= |k|=*k. It then follows that

2C%3E8 B\ 2
97rpLuE12(k)(—_)
LEwtEa(k) P+ [Ev— Ea(k) 1*) 2
{ LB — Ex¥(k) +4nBa Bt/ € }

I'nu(k)=

eI

2 / 4 sing6 sinfd
0

)
dE\(k)/dk
where g= 2% sin3.

Calculation shows that I'yy(k), for values of A<k, is
small compared to its value with £>>k,. For values of
k> ko, where Ei(k)= Ey, the above expression simplifies
especially at ‘“high” temperature (K7>>%uk) and at
T=0°K, where gny=0. If the phonons are assumed to be
in thermal equilibrium, Eq. (9) becomes to terms of
first order in 7" in the “high”-temperature case

P11(k) =T (k,OOK) (SKT/Zimk) . (10)

Here, 8C2H2M
Pn(k,OOK)=_'—‘ (11)

27mp Luh?

is the value of I'11(%) at T'=0°K.

The contribution of T'12(k) to T'i(k) will be several
orders of magnitude smaller than I'1;;(k). The term
I'12(k) gives the contribution of interband scattering of a
polariton with wave number £ in the lower branch
(¢=1) to the upper branch (;=2) [see Fig. 3(a)]. This
term is proportional to a density of final states with
ky<ko, compared to I'11(k), which is proportional to a
density of final states with 2>k, at the same energy E.
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The term I'»5(k), giving the contribution of intraband
scattering of polariton waves of the upper branch (:=2)
as shown in Fig. 3(b), can be calculated in a similar
manner. Here, the exciton component of a polariton
wave is large only for values of 2<%k, where both the
wave number k; of final states and the % of the initial
state are small (<ko), so that the contribution of this
intraband scattering to I's(k) is small compared to the
interband term Ti2(k), which can be calculated in a
manner similar to T1(k) also. At T=0°K, Ty (k) is
given by

(k)
 Ompruht Ey(R) ([ Et— E2(k) P+AnBuEit/ €}

The exact damping terms I';(%) and T'o(k) given by
Eq. (7) will be applied to the question of transmission
and reflection of light by a crystal in Sec. IV.

1V. RESULTS OF POLARITON SCATTERING
BY ACOUSTIC PHONONS

The optical properties associated with polaritons have
been given a simple classical interpretation by Hopfield
and Thomas.? Their treatment is a simplified version of
the method of spatial dispersion derived by Pekar.!?
Two dielectric constants are defined, one for each branch
of the polariton energy diagram (see Fig. 1):

4nB,E%,?
B2, 2— (w)2— il Ti(k;)

e(kjp)= € L j=1,2. (13)

Here, £; represents the wave number of a damped
polariton wave, and TI';(%;) is a phenomenological scat-
tering term. Although the analysis up to now has been
for an isotropic crystal, this analysis can be applied
directly to the wurtzite phase of a II-VI semiconductor
without modification, provided the directions of k and
the electric field are either parallel or perpendicular to
the ¢ axis of the crystal. When e(£;,»)E; is substituted
into Maxwell’s equations for the displacement field D,
a plane wave of the form exp[i(kx—v/)] is a solution
when

2k 4B, 72
2 I 2% — (hl/)z“"ihzllpj(éj).

(14)

_ Comparing this with Eq. (3), we may assume that
k;*=k;?+0(T), where k; is the wave number of an un-
damped wave. If T';(k;) is an analytic function of %;,
then, consistent to terms of first order in I', we may
replace T';(k;) in Eq. (14) by T';(%;), the scattering term
of the j(=1,2) polariton branch calculated in Sec.

128, 1. Pekar, Zh. Eksperim. i Teor. Fiz. 33, 1022 (1957)
[English transl.: Soviet Phys.—JETP 6, 785 (1958)]; S. I.
Pekar, Fiz. Tverd. Tela 4, 1301 (1962) [English transl.: Soviet
Phys.—Solid State 4, 953 (1962)].
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III [Eq. (7)]. Substituting #;=ck;/v into Eq. (14)

and solving, one obtains the desired result [see Eq. (11)
E2

ﬂj2= % [ 6/_[1—]‘ 2'*’L.h1—‘j(kj)E/E;m2]

of Ref. 97]
Mc2E,,
o

1 E? E
—<—>f<—{e'+[1— Ty (k) ]
4 Ezn2 E:cnz

McE .2 4nB.Mc2E .\ /2
}4. ) . (15)
E2 E?

X

where j=1, 2 and E=/w. In Eq. (15), k; and k. are the
wave numbers of undamped waves at the same angular
frequency v. Since the polaritons with imaginary wave
number are not coupled to the phonons by Eq. (4), the
scattering term for these polaritons is zero in this ap-
proximation. Therefore the complex index of refraction
7iy of these polaritons is given by Eq. (15), with j=2
and T'y=0.

The transmission and reflection coefficients of a
single crystal for normal incidence of a monochromatic
light wave can now be calculated by substituting the
above complex indices of refraction (%, and %) into the
boundary conditions derived by Hopfield and Thomas®
for different values of their boundary parameter /.
This parameter defines the minimum effective distance
that the waves as polaritons can approach the surface
of the crystal because of the potential barrier established
by the crystal-vacuum interface. In their model, the
parameter [ is essentially an adjustable parameter to be
determined by experiment. In the present treatment,
only the case /=0 will be considered.

In Figs. 4(a) and 4(b) are plotted the reflection and
transmission coefficients at normal incidence of light on
a “thin” crystal plate (L=0.5 p), using values of the ex-
citon parameters given for CdS at 7'=0°K.!? In Fig.
4(c) is plotted the absorbance (1—R—T) obtained from
the above results. The absorbance represents the frac-
tion of the incident radiation absorbed by the crystal.
The oscillations in these results on the low-energy side
are caused by interference from standing waves, One
sees that the absorbance has its greatest value at a
photon energy Ep,=E.,(1+4m8,/€)1/?, which corre-
sponds to the energy the polariton has in the upper
branch at £=0. This is also the energy which a longi-
tudinal exciton has at £=0. This result is to be compared
with that given by the classical treatment, which pre-
dicts that the absorption should reach its peak value at
a photon energy where the uncoupled photon and ex-
citon E-versus-k curves intersect (the point where the

18 These exciton parameters were taken from the paper by D. G.
Thomas, J. J. Hopfield, and M. Power, Phys. Rev. 119, 570
(1960). We chose for. the value of the exciton-phonon coupling
constant, the value C=30 eV, and for the thickness of the crystal,
the value L=0.5 u.
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Fic. 4. Theoretically predicted optical behavior of crystal of
CdS as calculated with the following set of crystal parameters:
T=0°K, L=0.5 p, =0, m,=0.25mo, mp=0.65mo, A exciton
(n=1), 4nfr=6.8X10-3, ¢ =7, En=2.5524 eV, C=30 eV, u=4
X105 cm/sec, pr=4.82g/cm?. (a) Reflection coefficient R; (b)
transmission coefficient 7°; (c) absorbance 1—R—7.

dashed curves in Fig. 1 intersect). This energy is very
nearly equal to E,, (the energy of an exciton at 2=0)
and hence is lower by the amount

AE=E .[(14+4n8:/€) 2 —1]=2wBnEn/€ (16)

than the value predicted in the present work. This dif-
ference in energy (AE) can be quite large, and its signif-
icance with experiment is discussed in Sec. V.
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The reason that the absorbance reaches its peak
value at Ez, is as follows. The energy of incident pho-
tons which enters the crystal is carried by the two polari-
ton waves that have the same energy and are moving
in the same direction as the incident photons. The frac-
tion of the energy carried by each of these waves depends
on the energy of the incident photons. When the inci-
dent photons have an energy #v 4 below Ez, as shown in
Fig. 5, the polariton wave at A; carries the larger frac-
tion of the energy. At #wvp above Er,, the polariton wave
at B, carries the larger fraction. At energies E<Ery,
the absorption coefficient ay(=2 times imaginary part
of £y) for the polaritons in the lower branch gives a
measure of the absorption in this energy range. At
energies £> E 1, the absorption coefficient az(= 2 times
imaginary part of kg) for the polaritons in the upper
branch gives a measure of the absorption because these
polaritons carry the larger fraction of the incident energy
above Er,. Therefore an effective absorption coefficient
aett can be defined equal to o below £z, and as above
Ep,. This is shown plotted against energy in Fig. 6.
In the immediate vicinity of Er,, the polaritons from
both branches contribute a significant amount to the
absorption process, and it is not possible to define a
meaningful absorption coefficient here. The aes-versus-
E curve close to Er, is therefore indicated by a dotted
curve. It is on the basis of Fig. 6 that one expects that
the absorbance will reach its peak value in the vicinity
of Er, not E.,. Also plotted in Fig. 6, as a dashed curve,
is agz=1/L In[(1—R)?/T7], which corresponds to the
absorption coefficient given by the classical treatment in
a region where the absorbance is high.

V. COMPARISON WITH EXPERIMENTAL
RESULTS

The observation by Park e/ al.* that the exciton
absorption bands in ZnO are centered very close to
minima in reflectivity, rather than near the resonance
energies as predicted in the classical treatment, was one
of the motivations for the present work. This anomaly
is seen to have a simple explanation in the present
treatment. Substituting values of the optical data for
ZnO by Dietz et al.* into Eq. (16), one finds that
AE=0.01 eV for the lines labeled 4 and B by Park
et al. in agreement with experiment. The line called
Iy by Park et al. also is reported to occur near a mini-
mum in reflectivity. If it does, this result tends to sup-
port Thomas’s assignment of this line!s to a free exciton
also, for if it were associated with a bound exciton as
suggested by Park et al., the absorption should still
peak at its resonance frequency E., near a peak in
reflectivity.

The absorption band of the lowest-lying exciton band
in CdS (n=1) is predicted to peak at an energy AE

14R. E. Dietz, J. J. Hopfield, and D. G. Thomas, J. Appl.
Phys. Suppl. 32, 2282 (1961).
1 D. G. Thomas, J. Phys. Chem. Solids 15, 86_(1960).
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F1c. 5. Energy diagram used in describing the nature of the
absorption coefficient cefs.

(=0.0012 eV) higher than E,, when the data by
Thomas et al.1® are substituted into Eq. (16). This dif-
ference is too small to establish with certainty that the
absorbance is peaking at its corresponding minimum in
reflectivity. However, it is significant to note that this
line (I's), as reported by Hopfield and Thomas,® is
0.0013 eV higher in energy than the weak 4 r(15T) line,
which is attributed to the same exciton, but with spins
of electron and hole parallel instead of antiparallel.
Since the exciton state with spins parallel is expected
to have a much smaller value of 473 than the I'; ex-
citon because it is a forbidden transition, its absorption
band will lie very close to E,,. Hence this energy dis-
crepancy between the T'; and T excitons is readily
explainable in terms of the polariton model.

Wheeler and Dimmock® have reported both trans-
mission and reflectivity data for CdSe at liquid-helium
temperature. Their results show that the absorption
bands associated with intrinsic excitons are positioned
in energy very close to the corresponding minima in
reflectivity. These absorption bands appear to be ap-
proximately 10 A wide, in agreement with results
reported on CdSe by Gross and Sobolev,” and com-
parable in width with that expected in the polariton
model (see Fig. 6).

VI. CONCLUSIONS

The present treatment has emphasized the necessity
of employing the coupled exciton-photon (polariton)
states to account accurately for the position and shape

16 J, J. Hopfield and D. G. Thomas, J. Phys. Chem. Solids 12,
276 (1960).
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of the intrinsic-exciton absorption bands observed in
the II-VI semiconductors. The dependence of the scat-
tering terms (the I's) upon wave number % is seen to
determine the width of these absorption bands, not the
magnitude of the I's as in the classical treatment. Even
though the magnitudes of the scattering terms in CdS
are calculated as being small (#I'< 104 eV), the calcu-
lated widths of the absorption bands are found to be
relatively large (=103 eV), in agreement with experi-
mental results.

In the present work, the effect of the scattering by
phonons has been considered. Dislocations, grain bound-
aries, and other crystal defects also scatter the polari-
tons, but it is difficult to estimate the magnitude of
these types of scattering because the density of these
scattering defects is very likely to vary appreciably
from crystal to crystal. Clearly, additional data at
different temperatures from high-purity “thin” crystals
are needed to minimize the effect of defect scattering
and to make possible a more detailed comparison of
theory and experiment. Work along these lines is in
progress in our laboratory.
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